A Combined Experimental and Modeling Study for Pellet-Fed Extrusion-Based Additive Manufacturing to Evaluate the Impact of the Melting Efficiency
Abstract
:1. Introduction
2. Materials and Micro-Extruder Machine Details
3. Experimental and Theoretical Methods
3.1. Melting Model
3.2. Rheological Measurements and Cross Model Fitting
3.3. Thermal Properties
3.4. Solid and Melt Density
3.5. Screw-Freezing Experiments
3.6. SEM Analysis of Extruded and Solidified Samples
3.7. Tensile Testing of the Extruded Filaments
4. Results and Discussion
4.1. Model Validation Regarding the Point of Melt Finalization for Three Polymeric Materials
4.2. The Impact of the Polymer Material Type on the Melting Mechanism
4.3. Impact of Melting Efficiency on 3D Printed Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; Liu, P.; Mokasdar, A.; Hou, L. Additive Manufacturing and Its Societal Impact: A Literature Review. Int. J. Adv. Manuf. Technol. 2013, 67, 1191–1203. [Google Scholar] [CrossRef]
- Ben-Ner, A.; Siemsen, E. Decentralization and Localization of Production: The Organizational and Economic Consequences of Additive Manufacturing (3D Printing). Calif. Manag. Rev. 2017, 59, 5–23. [Google Scholar] [CrossRef]
- Calignano, F.; Manfredi, D.; Ambrosio, E.P.; Biamino, S.; Lombardi, M.; Atzeni, E.; Salmi, A.; Minetola, P.; Iuliano, L.; Fino, P. Overview on Additive Manufacturing Technologies. Proc. IEEE 2017, 105, 593–612. [Google Scholar] [CrossRef]
- Peng, T.; Kellens, K.; Tang, R.; Chen, C.; Chen, G. Sustainability of additive manufacturing: An overview on its energy demand and environmental impact. Addit. Manuf. 2018, 21, 694–704. [Google Scholar] [CrossRef]
- Majeed, A.; Zhang, Y.; Ren, S.; Lv, J.; Peng, T.; Waqar, S.; Yin, E. A Big Data-Driven Framework for Sustainable and Smart Additive Manufacturing. Robot. Comput.-Integr. Manuf. 2021, 67, 102026. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Dobrzański, L.B. Dentistry 4.0 Concept in the Design and manufacturing of Prosthetic Dental Restorations. Processes 2020, 8, 525. [Google Scholar] [CrossRef]
- González-Henríquez, C.M.; Sarabia-Vallejos, M.A.; Rodriguez-Hernandez, J. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Prog. Polym. Sci. 2019, 94, 57–116. [Google Scholar] [CrossRef]
- Franco, D.; Ganga, G.M.D.; de Santa-Eulalia, L.A.; Filho, M.G. Consolidated and inconclusive effects of additive manufacturing adoption: A systematic literature review. Comput. Ind. Eng. 2020, 148, 106713. [Google Scholar] [CrossRef]
- Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Khosravani, M.; Reinicke, T. On the Environmental Impacts Of 3D Printing Technology. Appl. Mater. Today 2020, 20, 100689. [Google Scholar] [CrossRef]
- Turner, B.N.; Strong, R.; Gold, S.A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Sisi, W.; Lore, C.; Cardon, L.; D’hooge, D.R. Can the melt flow index be used to predict the success of fused deposition modelling of commercial poly(lactic acid) filaments into 3D printed materials. Plast. Rubber Compos. 2018, 17, 9–16. [Google Scholar] [CrossRef]
- Boğa, C. Investigation of mechanical and fracture behavior of pure and carbon fiber reinforced ABS samples processed by fused filament fabrication process. Rapid Prototyp. J. 2021, 27, 1220–1229. [Google Scholar] [CrossRef]
- Vyavahare, S.; Kumar, S. Numerical and experimental investigation of FDM fabricated re-entrant auxetic structures of ABS and PLA materials under compressive loading. Rapid Prototyp. J. 2021, 27, 223–244. [Google Scholar] [CrossRef]
- Parpala, R.C.; Popescu, D.; Pupaza, C. Infill parameters influence over the natural frequencies of ABS specimens obtained by extrusion-based 3D printing. Rapid Prototyp. J. 2021, 27, 1273–1285. [Google Scholar] [CrossRef]
- Nathaphan, S.; Trutassanawin, W. Effects of process parameters on compressive property of FDM with ABS. Rapid Prototyp. J. 2021, 27, 905–917. [Google Scholar] [CrossRef]
- Duty, C.E.; Kunc, V.; Compton, B.; Post, B.; Erdman, D.; Smith, R.; Lind, R.; Lloyd, P.; Love, L. Structure and mechanical behavior of big area additive manufacturing (BAAM) materials. Rapid Prototyp. J. 2017, 23, 181–189. [Google Scholar] [CrossRef]
- Zhou, Z.; Salaoru, I.; Morris, P.; Gibbons, G.J. Additive manufacturing of heat-sensitive polymer melt using a pellet-fed material extrusion. Addit. Manuf. 2018, 24, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Go, J.; Schiffres, S.N.; Stevens, A.G.; Hart, A.J. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design. Addit. Manuf. 2017, 16, 1–11. [Google Scholar] [CrossRef]
- Liu, X.; Chi, B.; Jiao, Z.; Tan, J.; Liu, F.; Yang, W. A large-scale double-stage-screw 3D printer for fused deposition of plastic pellets. J. Appl. Polym. Sci. 2017, 134, 45147. [Google Scholar] [CrossRef]
- Liu, K.; Wang, M.; Li, H.; Zhao, D.; Jin, Y. Effect of characteristic scale on the extrudate swelling behavior of polypropylene melt in a micro-extrusion process. Polym. Eng. Sci. 2021, 61, 1864. [Google Scholar] [CrossRef]
- Wilczyński, K.; Buziak, K.; Lewandowski, A.; Nastaj, A.; Wilczyński, K.J. Rheological Basics for Modeling of Extrusion Process of Wood Polymer Composites. Polymers 2021, 13, 622. [Google Scholar] [CrossRef]
- Rauwendaal, C.; Gonzalez-Nunez, R.; Rodrigue, D. Polymer Processing: Extrusion. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons: New York City, NY, USA, 2017. [Google Scholar]
- Tadmor, Z.; Gogos, C.G. Principles of Polymer Processing; John Wiley & Sons: New York City, NY, USA, 1979. [Google Scholar]
- Rauwendaal, C. Polymer Extrusion, 4th ed.; Hanser: Munich, Germany, 2001. [Google Scholar]
- Giles Harold, F.; Wagner John, R.; Mount Eldridge, M. Extrusion: The Definitive Processing Guide and Handbook. William Andrew: Norwich, NY, USA, 2004. [Google Scholar]
- Dal Fabbro, P.; La Gala, A.; Van De Steene, W.; D’hooge, D.R.; Lucchetta, G.; Cardon, L.; Fiorio, R. Influence of machine type and consecutive closed-loop recycling on macroscopic properties for fused filament fabrication of acrylonitrile-butadiene-styrene parts. Rapid Prototyp. J. 2020, 27. [Google Scholar] [CrossRef]
- Maddock, B. A visual analysis of flow and mixing in extruder screws. SPE ANTEC Tech. Pap. 1959, 15, 383–389. [Google Scholar]
- Tadmor, Z. Fundamentals of Plasticating Extrusion. I. A Theoretical Model for Melting. Polym. Eng. Sci. 1966, 6, 185–190. [Google Scholar] [CrossRef]
- Tadmor, Z.; Duvdevani, I.; Klein, I. Melting in plasticating extuders theory and experiments. Polym. Eng. Sci. 1967, 7, 198–217. [Google Scholar] [CrossRef]
- Tadmor, Z.; Klein, I. Engineering Principles of Plasticating Extrusion; Van Nost. Reinhold: New York City, NY, USA, 1970. [Google Scholar]
- Donovan, R.C. A theoretical melting model for plasticating extruders. Polym. Eng. Sci. 1971, 11, 247–257. [Google Scholar] [CrossRef]
- Chung, C.I. Plasticating single-screw extrusion theory. Polym. Eng. Sci. 1971, 11, 93–98. [Google Scholar] [CrossRef]
- Edmondson, I.; Fenner, R. Melting of thermoplastics in single screw extruders. Polymer 1975, 16, 49–56. [Google Scholar] [CrossRef]
- Mount, E.M.; Watson, J.G.; Chung, C.I. Analytical melting model for extrusion: Melting rate of fully compacted solid polymers. Polym. Eng. Sci. 1982, 22, 729–737. [Google Scholar] [CrossRef]
- Syrjala, S. A New Approach for the Simulation of Melting in Extruders. Int. Commun. Heat Mass Transf. 2000, 27, 623–634. [Google Scholar] [CrossRef]
- Altınkaynak, A.; Gupta, M.; Spalding, M.A.; Crabtree, S.L. Melting in a Single Screw Extruder: Experiments and 3D Finite Element Simulations. Int. Polym. Process. 2011, 26, 182–196. [Google Scholar] [CrossRef]
- La Gala, A.; Fiorio, R.; Erkoç, M.; Cardon, L.; D’hooge, D.R. Theoretical Evaluation of the Melting Efficiency for the Single-Screw Micro-Extrusion Process: The Case of 3D Printing of ABS. Processes 2020, 8, 1522. [Google Scholar] [CrossRef]
- Chung, C. Extrusion of Polymers; Hanser Publications: Cincinnati, OH, USA, 2020; Chapter 2. [Google Scholar]
- Pearson, J.R.A. Heat transfer in flowing polymers Progress in Heat and Mass Transfer. In Selected Papers of the 1970 International Seminar; Elsevier: Amsterdam, The Netherlands, 1972; pp. 73–87. [Google Scholar]
- Coelho, P.; Pinho, F. A generalized brinkman number for non-Newtonian duct flows. J. Non-Newton. Fluid Mech. 2000, 156, 202–206. [Google Scholar] [CrossRef]
- Winter, H. Viscous Dissipation in Shear Flows of Molten Polymers. Adv. Heat Transf. 1977, 13, 205–267. [Google Scholar] [CrossRef]
- Tso, C.; Mahulikar, S. The role of the Brinkman number in analyzing flow transitions in microchannels. Int. J. Heat Mass Transf. 1999, 42, 1813–1833. [Google Scholar] [CrossRef]
- Kelly, A.; Brown, E.; Coates, P. The effect of screw geometry on melt temperature profile in single screw extrusion. Polym. Eng. Sci. 2006, 46, 1706–1714. [Google Scholar] [CrossRef]
- Vera-Sorroche, J.; Kelly, A.; Brown, E.; Coates, P.; Karnachi, N.; Harkin-Jones, E.; Li, K.; Deng, J. Thermal optimisation of polymer extrusion using in-process monitoring techniques. Appl. Therm. Eng. 2013, 53, 405–413. [Google Scholar] [CrossRef]
- Abeykoon, C.; Kelly, A.; Vera-Sorroche, J.; Brown, E.; Coates, P.; Deng, J.; Li, K.; Harkin-Jones, E.; Price, M. Process efficiency in polymer extrusion: Correlation between the energy demand and melt thermal stability. Appl. Energy 2014, 135, 560–571. [Google Scholar] [CrossRef] [Green Version]
- Nastaj, A.; Wilczyński, K. Optimization and Scale-Up for Polymer Extrusion. Polymers 2021, 13, 1547. [Google Scholar] [CrossRef]
- Behzadnasab, M.; Yousefi, A.A.; Ebrahimibagha, D.; Nasiri, F. Effects of processing conditions on mechanical properties of PLA printed parts. Rapid Prototyp. J. 2019, 26, 381–389. [Google Scholar] [CrossRef]
- Maloch, J.; Hnátková, E.; Žaludek, M.; Krátký, P. Effect of Processing Parameters on Mechanical Properties of 3D Printed Samples. Mater. Sci. Forum 2018, 919, 230–235. [Google Scholar] [CrossRef]
- Acrylonitrile Butadiene Styrene (ABS) Typical Properties Generic ABS. Available online: https://plastics.ulprospector.com/generics/1/c/t/acrylonitrile-butadiene-styrene-abs-properties-processing (accessed on 15 June 2021).
- Overview of Materials for Acrylonitrile Butadiene Styrene (ABS), Extruded. Available online: http://www.matweb.com/search/DataSheet.aspx?MatGUID=3a8afcddac864d4b8f58d40570d2e5aa (accessed on 15 June 2021).
- Polylactic Acid (PLA) Typical Properties | UL Prospector. Available online: https://plastics.ulprospector.com/generics/34/c/t/polylactic-acid-pla-properties-processing (accessed on 15 June 2021).
- Polymer Data Handbook, 2nd ed.; Oxford University Press: Oxford, UK, 2009; pp. 627–635. [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SEBS. Available online: https://www.demgy.com/en/datacomp/259 (accessed on 15 June 2021).
- SEBS. SEBS-Thermoplastic Polymers, Elastomers and Additives. Available online: https://mexpolimeros.com (accessed on 15 June 2021).
- Thermoplastic Elastomer (TPE) Typical Properties Generic SEBS. Available online: https://plastics.ulprospector.com/generics/53/c/t/thermoplastic-elastomer-tpe-properties-processing/sp/18 (accessed on 15 June 2021).
- Dreval, V.; Vasil’ev, G.; Borisenkova, E.; Semakov, A.; Kulichikhin, V. Influence of Molecular Weight of SAN on Rheological and Mechanical Properties of ABS-plastics. Appl. Rheol. 2007, 17, 44745-1–44745-11. [Google Scholar] [CrossRef]
- Kubota, H. Flow properties of ABS (acrylonitrile–butadiene–styrene) terpolymer. J. Appl. Polym. Sci. 1975, 19, 2299–2308. [Google Scholar] [CrossRef]
- Veenstra, H.; van Lent, B.; van Dam, J.; Posthuma de Boer, A. Co-continuous morphologies in polymer blends with SEBS block copolymers. Polymer 1999, 40, 6661–6672. [Google Scholar] [CrossRef]
- Wieme, T.; Duan, L.; Mys, N.; Cardon, L.; D’hooge, D. Effect of Matrix and Graphite Filler on Thermal Conductivity of Industrially Feasible Injection Molded Thermoplastic Composites. Polymers 2019, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Duan, L. Extrusion-Based Manufacturing and Structural Engineering for Highly Sensitive Piezoresistive Strain Sensors: A Fundamental Study. Ph.D. Thesis, Ghent University, Faculty of Engineering and Architecture, Ghent, Belgium, 2019. [Google Scholar]
- Mount, E.M.; Chung, C.I. Melting behavior of solid polymers on a metal surface at processing conditions. Polym. Eng. Sci. 1978, 18, 711–720. [Google Scholar] [CrossRef]
- Tang, D.; Marchesini, F.H.; Cardon, L.; D’hooge, D. State of the-art for extrudate swell of molten polymers: From fundamental understanding at molecular scale toward optimal die design at final product scale. Macromol. Mater. Eng. 2020, 305, 2000340. [Google Scholar] [CrossRef]
ABS | PLA | SEBS | Unit | |
---|---|---|---|---|
Density (at 300 K) | 1.01–1.08 | 1.22–1.30 | 0.87 | [g/cm3] |
Tg | 381-382 | 326–337 | 183 (Butadiene)–373 (Styrene) | [K] |
Tm | 443–593 | 418–459 | 455–553 | [K] |
Tensile strength, break | 22–59.3 | 59 | 1.80–12.00 | [MPa] |
Elongation at break | 2.5–40 | <10% | 310–860 | [%] |
Modulus of Elasticity | 1.5–2.6 | 3.5 | 0.6–4.68 | [GPa] |
Morphology | Amorphous | Semicrystalline | Thermoplastic elastomer |
Characteristic | Unit | ||
---|---|---|---|
Axial length | La | 662 | [mm] |
- Feeding | Lf | 280 | [mm] |
- Compression | Lc | 274 | [mm] |
- Metering | Lm | 108 | [mm] |
Screw diameter-initial | Di | 28 | [mm] |
Screw diameter-final | Df | 16 | [mm] |
Helical length | Lh | 690 | [mm] |
Channel depth-initial | Hi | 6 | [mm] |
Channel depth-final | Hf | 2 | [mm] |
Channel width | W | 16 | [mm] |
Pitch angle | Θ | 0.308 | [rad] |
Material Properties | ABS | PLA | SEBS | Unit | Section | |
Cross model parameter | η0 | 115,126 | 1755 | 10,700 | [Pa s] | Section 3.1 |
Cross model parameter | τ* | 49,521 | 265,954 | 79,318 | [Pa] | Section 3.1 |
Cross model temperature | Tcr | 483 | 453 | 463 | [K] | Section 3.1 |
Pseudo-plasticity index | N | 0.24 | 0.1856 | 0.39 | [/] | Section 3.1 |
Specific heat capacity solid | cs | 1273 | 1315 | 1993 | [J kg−1 K−1] | Section 3.2 |
Specific heat capacity melt | cm | 2277 | 2425 | 2607 | [J kg−1 K−1] | Section 3.2 |
Specific heat capacity (avg.) | c | 1775 | 1870 | 2300 | [J kg−1 K−1] | Section 3.2 |
Thermal conductivity (avg.) | K | 0.191 | 0.227 | 0.331 | [W m−1K−1] | |
Heat of fusion | λ | 0 | 47,000 | 0 | [J kg−1] | Section 3.2 |
“Melt” temperature | Tm | 423 | 442 | 423 | [K] | Section 3.2 |
Glass transition temperature | Tg | 373 | 331 | 238 | [K] | Section 3.2 |
Density (solid) | ρs | 1050 | 1240 | 910 | [kg m−3] | Section 3.2 |
Density (melt) | ρm | 979 | 1119 | 796 | [kg m−3] | Section 3.3 |
Operating Conditions | ABS | PLA | SEBS | Unit | Section | |
Initial Temperature | T0 | 300 | 300 | 300 | [K] | / |
Barrel Temperature | Tb | 483 | 453 | 463 | [K] | / |
Screw frequencies (for model validation) | N | 2,5,8 | 5 | 5 | [rpm] | / |
Volumetric inlet flow at 2 rpm | Q0 | 141.3 | - | - | [mm3 s−1] | / |
Volumetric inlet flow at 5 rpm | Q0 | 104.3 | 98.1 | 109.4 | [mm3 s−1] | / |
Volumetric inlet flow at 8 rpm | Q0 | 47.1 | - | - | [mm3 s−1] | / |
Material 1 | Temperature [K] | Measured k [W m−1 K−1] | Error [W m−1 K−1] |
---|---|---|---|
ABS | 296 | 0.181 | ±0.0003 |
ABS | 373 | 0.200 | ±0.0010 |
PLA | 296 | 0.224 | ±0.0020 |
PLA | 383 | 0.229 | ±0.0030 |
SEBS | 296 | 0.331 | ±0.001 |
Temperature [K] | ABS | PLA | SEBS | Unit | ||
---|---|---|---|---|---|---|
Specific heat capacity | cs | 300 | 1273 | 1315 | 1993 | [J kg−1 K−1] |
Specific heat capacity | cm | 460 | 2277 | 2425 | 2607 | [J kg−1 K−1] |
Material | MVR [cm3/10 min] | Error [cm3/10 min] | Extruded Weight [g/10 min] | Temperature [K] | External Weight [kg] | Melt Density [g/cm3] |
---|---|---|---|---|---|---|
ABS | 8.187 | ±0.401 | 7.910 | 493 | 10 | 0.966 |
ABS | 8.809 | ±0.138 | 8.727 | 493 | 10 | 0.991 |
PLA | 6.975 | ±0.150 | 7.852 | 473 | 2.16 | 1.126 |
PLA | 7.365 | ±0.286 | 8.186 | 473 | 2.16 | 1.111 |
SEBS | 3.701 | ±0.027 | 2.930 | 473 | 2.16 | 0.792 |
SEBS | 3.639 | ±0.032 | 2.908 | 473 | 2.16 | 0.799 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Gala, A.; Fiorio, R.; Ceretti, D.V.A.; Erkoç, M.; Cardon, L.; D’hooge, D.R. A Combined Experimental and Modeling Study for Pellet-Fed Extrusion-Based Additive Manufacturing to Evaluate the Impact of the Melting Efficiency. Materials 2021, 14, 5566. https://doi.org/10.3390/ma14195566
La Gala A, Fiorio R, Ceretti DVA, Erkoç M, Cardon L, D’hooge DR. A Combined Experimental and Modeling Study for Pellet-Fed Extrusion-Based Additive Manufacturing to Evaluate the Impact of the Melting Efficiency. Materials. 2021; 14(19):5566. https://doi.org/10.3390/ma14195566
Chicago/Turabian StyleLa Gala, Andrea, Rudinei Fiorio, Daniel V. A. Ceretti, Mustafa Erkoç, Ludwig Cardon, and Dagmar R. D’hooge. 2021. "A Combined Experimental and Modeling Study for Pellet-Fed Extrusion-Based Additive Manufacturing to Evaluate the Impact of the Melting Efficiency" Materials 14, no. 19: 5566. https://doi.org/10.3390/ma14195566
APA StyleLa Gala, A., Fiorio, R., Ceretti, D. V. A., Erkoç, M., Cardon, L., & D’hooge, D. R. (2021). A Combined Experimental and Modeling Study for Pellet-Fed Extrusion-Based Additive Manufacturing to Evaluate the Impact of the Melting Efficiency. Materials, 14(19), 5566. https://doi.org/10.3390/ma14195566