A Comparison of Amplitude-and Time-Dependent Cyclic Deformation Behavior for Fully-Austenite Stainless Steel 316L and Duplex Stainless Steel 2205
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Description
2.2. LCF Mechanical Tests
2.3. Microstructure Observation
3. Results
3.1. Amplitude-Dependent Cyclic Stress Responses
3.2. Rate-Dependent Cyclic Stress Response
3.3. Cyclic Stress Response under the Effect of Holding
4. Discussion
4.1. Effect of Duplex-Phase Structure on Cyclic Deformation
4.2. Effect of Nitrogen on Cyclic Deformation
5. Conclusions
- (1)
- The cyclic deformation behavior of 2205 was exhibited as the primary cyclic hardening followed by long-term cyclic softening, regardless of strain amplitudes and rates, while an additional secondary hardening was observed for 316L at greater strain amplitudes.
- (2)
- Decreased stress relaxation during cyclic loading was observed for both 316L and 2205. However, it was more significant for the 2205 due to the unpinning of dislocations from the nitrogen and the disorder of Cr-N SRO.
- (3)
- The cyclic softening of 2205 was inhibited by slower loading rates and holding, due to the repining of dislocations by the nitrogen and the reorder of nitrogen with surrounding chromium.
- (4)
- The cyclic plasticity of 2205 started within the austenite, and gradually translated into the ferrite with the elevation of the applied cyclic amplitude. This lead to the severely heterogeneous distribution of local plastic deformation among the two phases, particularly for smaller amplitudes, which further resulted in a faster hardening rate and shorter fatigue life compared with 316L.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Lach, T.G.; Collins, D.A.; Byun, T.S. Evolution of the role of molybdenum in duplex stainless steels during thermal aging: From enhancing spinodal decomposition to forming heterogeneous precipitates. J. Nucl. Mater. 2021, 557, 153268. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, W.; Li, H.; Song, M.; Huang, Y. Effect of tensile overload on fatigue crack behavior of 2205 duplex stainless steel: Experiment and finite element simulation. Int. J. Fatigue 2019, 128, 105199. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Lin, P.C.; Chen, Y.W.; Wang, S.H.; Yang, J.R. Fatigue behavior and microstructural characteristics of a duplex stainless steel weld metal under vibration-assisted welding. Mater. Sci. Eng. A 2018, 721, 319–327. [Google Scholar] [CrossRef]
- Yang, C.H.; Jeyaprakash, N.; Hsu, Y.W. Applicability of non-destructive laser ultrasound and non-linear ultrasonic technique for evaluation of thermally aged CF8 duplex stainless steel. Int. J. Press. Vessel. Pip. 2021, 193, 104451. [Google Scholar] [CrossRef]
- Sasikumar, C.; Sundaresan, R.; Medona, C.M.; Ramakrishnan, A. Corrosion study on AA-TIG welding of duplex stainless steel. Mater. Today Proc. 2021, 45, 3383–3385. [Google Scholar] [CrossRef]
- Freitas, G.C.L.D.; Fonseca, G.S.D.; Moreira, L.P.; Leite, D.N.F. Phase transformations of the duplex stainless steel UNS S31803 under non-isothermal conditions. J. Mater. Res. Technol. 2021, 11, 1847–1851. [Google Scholar] [CrossRef]
- Facheris, G.; Pham, M.S.; Janssens, K.G.F.; Holdsworth, S.R. Microscopic analysis of the influence of ratcheting on the evolution of dislocation structures observed in AISI 316L stainless steel during low cycle fatigue. Mater. Sci. Eng. A 2013, 587, 1–11. [Google Scholar] [CrossRef]
- Chang, B.; Zhang, Z. Low cycle fatigue behavior of a high nitrogen austenitic stainless steel under uniaxial and non-proportional loadings based on the partition of hysteresis loops. Mater. Sci. Eng. A 2012, 547, 72–79. [Google Scholar] [CrossRef]
- Chang, B.; Zhang, Z. Cyclic deformation behavior in a nitrogen-alloyed austenitic stainless steel in terms of the evolution of internal stress and microstructure. Mater. Sci. Eng. A 2012, 556, 625–632. [Google Scholar] [CrossRef]
- Gaudin, C.; Feaugas, X. Cyclic creep process in AISI 316L stainless steel in terms of dislocation patterns and internal stresses. Acta Mater. 2004, 52, 3097–3110. [Google Scholar] [CrossRef]
- Pham, M.S.; Holdsworth, S.R.; Janssens, K.G.F.; Mazza, E. Cyclic deformation response of AISI 316L at room temperature: Mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling. Int. J. Plast. 2013, 47, 43–164. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, Z.; Kanouté, P.; Retraint, D. Experimental analysis and constitutive modelling of cyclic behaviour of 316l steels including hardening/softening and strain range memory effect in LCF regime. Int. J. Plast. 2018, 107, 54–78. [Google Scholar] [CrossRef]
- Pham, M.S.; Holdsworth, S.R. Role of microstructural condition on fatigue damage development of AISI 316L at 20 and 300 °C. Int. J. Fatigue 2013, 51, 36–48. [Google Scholar] [CrossRef]
- Reddy, G.V.P.; Kannan, R.; Mariappan, K.; Sandhya, R.; Sankaran, S.; Rao, K.B.S. Effect of strain rate on low cycle fatigue of 316ln stainless steel with varying nitrogen content: Part-I cyclic deformation behavior. Int. J. Fatigue 2015, 81, 299–308. [Google Scholar] [CrossRef]
- Vogt, J.B. Fatigue properties of high nitrogen steels. J. Mater. Process. Technol. 2001, 117, 364–369. [Google Scholar] [CrossRef]
- Ye, D.; Matsuoka, S.; Nagashima, N.; Suzuki, N. The low-cycle fatigue, deformation and final fracture behaviour of an austenitic stainless steel. Mater. Sci. Eng. A 2006, 415, 104–117. [Google Scholar] [CrossRef]
- Lu, J.; Sun, W.; Becker, A.A. Material characterization and finite element modelling of cyclic plasticity behavior for 304 stainless steel using a crystal plasticity model. Int. J. Mech. Sci. 2016, 105, 315–329. [Google Scholar] [CrossRef]
- Kundu, A.; Field, D.P.; Chakraborti, P.c. Influence of strain amplitude on the development of dislocation structure during cyclic plastic deformation of 304 LN austenitic stainless steel. Mater. Sci. Eng. A 2019, 762, 138090. [Google Scholar] [CrossRef]
- Li, H.; Jing, H.; Xu, L.; Zhao, L.; Han, Y.; Tang, Z. Cyclic deformation behavior of an Fe-Ni-Cr alloy at 700 °C: Microstructural evolution and cyclic hardening model. Mater. Sci. Eng. A 2019, 744, 94–111. [Google Scholar] [CrossRef]
- Li, H.; Jing, H.; Xu, L.; Han, Y.; Zhao, L.; Tang, Z. Microstructure mechanism, cyclic deformation behavior of an Fe-Ni-Cr alloy considering non-masing behavior. Int. J. Fatigue 2019, 127, 537–550. [Google Scholar] [CrossRef]
- Polak, J.; Petras, R.; Heczko, M.; Kubena, I.; Kruml, T.; Chai, G. Low cycle fatigue behavior of sanicro25 steel at room and at elevated temperature. Mater. Sci. Eng. A 2014, 615, 175–182. [Google Scholar] [CrossRef]
- Polak, J.; Petras, R.; Heczko, M.; Kruml, T.; Chai, G. Evolution of the cyclic plastic response of Sanicro 25 steel cycled at ambient and elevated temperatures. Int. J. Fatigue 2016, 83, 75–83. [Google Scholar] [CrossRef]
- Heczko, M.; Polák, J.; Kruml, T. Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures. Mater. Sci. Eng. A 2017, 680, 168–181. [Google Scholar] [CrossRef]
- Rao, C.V.; Srinivas, N.C.S.; Sastry, G.V.S.; Singh, V. Low cycle fatigue, deformation and fracture behaviour of Inconel 617 alloy. Mater. Sci. Eng. A 2019, 765, 138286.1–138286.19. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, F.C.; Long, X.Y.; Lv, B. Cyclic deformation and fatigue behaviors of hadfield manganese steel. Mater. Sci. Eng. A 2014, 591, 59–68. [Google Scholar] [CrossRef]
- Chen, B.; Wang, F.; Zhang, F. Low-cycle fatigue behaviors of pre-hardening hadfield steel. Mater. Sci. Eng. A 2017, 695, 144–153. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, F.; Lv, B.; Ma, H.; Wang, L.; Zhang, H. Asynchronous effect of N+Cr alloying on the monotonic and cyclic deformation behaviors of hadfield steel. Mater. Sci. Eng. A 2019, 761, 138015. [Google Scholar] [CrossRef]
- Strubbia, R.; Marinelli, M.C.; Alvarez-Armas, I. Fatigue damage in coarse-grained lean duplex stainless steels. Mater. Sci. Eng. A 2016, 659, 47–54. [Google Scholar] [CrossRef]
- Strubbia, R.; Hereñú, S.; Marinelli, M.C.; Alvarez-Armas, I. Short crack nucleation and growth in lean duplex stainless steels fatigued at room temperature. Int. J. Fatigue 2012, 41, 90–94. [Google Scholar] [CrossRef]
- Mateo, A.; Llanes, L.; Iturgoyen, L. Cyclic stress-strain response and dislocation substructure evolution of a ferrite-austenite stainless steel. Acta Mater. 1996, 44, 1143–1153. [Google Scholar] [CrossRef]
- Mateo, A.; Gironès, A.; Keichel, J.; Llanes, L.; Akdut, N.; Anglada, M. Cyclic deformation behaviour of superduplex stainless steels. Mater. Sci. Eng. A 2001, 314, 176–185. [Google Scholar] [CrossRef]
- Alvarez-Armas, I.; Marinelli, M.C.; Hereñú, S.; Degallaix, S.; Armas, A.F. On the cyclic softening behavior of SAF 2507 duplex stainless steel. Acta Mater. 2006, 54, 5041–5049. [Google Scholar] [CrossRef]
- Polak, J.; Petrenec, M.; Kruml, T. Cyclic plastic response and fatigue life in superduplex 2507 stainless steel. Int. J. Fatigue 2010, 32, 279–287. [Google Scholar] [CrossRef]
- Li, B.; Zheng, Y.; Shi, S.; Zhang, Z.; Chen, X. Cyclic deformation behavior and failure mechanism of s32205 duplex stainless steel under torsional fatigue loadings. Mater. Sci. Eng. A 2020, 786, 139443. [Google Scholar] [CrossRef]
- Myhr, O.R.; Grong, Ø.; Andersen, S.J. Modelling of the age hardening behaviour of Al-Mg-Si alloys. Acta Mater. 2001, 49, 65–75. [Google Scholar] [CrossRef]
- Bardel, D.; Perez, M.; Nelias, D.; Deschamps, A.; Hutchinson, C.R.; Maisonnette, D.; Chaise, T.; Garnier, J.; Bourlier, F. Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy. Acta Mater. 2014, 62, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Bardel, D.; Perez, M.; Nelias, D.S.; Dancette, A.; Hutchinson, C.R.; Maisonnette, D.; Chaise, T.; Garnier, J.; Bourlier, F. Cyclic behaviour of a 6061 aluminium alloy: Coupling precipitation and elastoplastic modelling. Acta Mater. 2015, 83, 256–268. [Google Scholar] [CrossRef]
- Cui, Y.Y.; Jia, Y.F.; Xuan, F.Z. Micro-deformation evolutions of the constituent phases in duplex stainless steel during cyclic nanoindentation. Sci. Rep. 2018, 8, 6199. [Google Scholar] [CrossRef] [PubMed]
- Murayama, M.; Hono, K.; Hirukawa, H.; Ohmura, T.; Matsuoka, S. The combined effect of molybdenum and nitrogen on the fatigued microstructure of 316 type austenitic stainless steel. Scr. Mater. 1999, 41, 467–473. [Google Scholar] [CrossRef]
- Han, D.; Wang, Z.; Yan, Y.; Shi, F.; Li, X. A good strength-ductility match in Cu-Mn alloys with high stacking fault energies: Determinant effect of short range ordering. Scr. Mater. 2017, 133, 59–64. [Google Scholar] [CrossRef]
Element | C | Cr | Ni | Mn | S | P | Si | Mo | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|
316L | 0.025 | 16.2 | 10.2 | 1.4 | 0.025 | 0.025 | 0.4 | 2.1 | 0.043 | Rest |
2205 | 0.02 | 21.8 | 5.7 | 1.4 | 0.002 | 0.023 | 0.4 | - | 0.15 | Rest |
ID | Material | Amplitude | Rate (s−1) | Holding Time (s) | Number of Specimens |
---|---|---|---|---|---|
1~3 | 316L/2205 | 0.3% | 5 × 10−3 | 0 | 1(316L)/2(2205) |
4,5 | 316L | 0.4% | 5 × 10−3 | 0 | 2 |
6 | 2205 | 0.45% | 5 × 10−3 | 0 | 1 |
7,8 | 316L | 0.5% | 5 × 10−3 | 0 | 2 |
9~12 | 316L/2205 | 0.6% | 5 × 10−3 | 0 | 2/2 |
13,14 | 316L | 0.7% | 5 × 10−3 | 0 | 2 |
15,16 | 2205 | 0.8% | 5 × 10−3 | 0 | 2 |
17,18 | 2205 | 1.0% | 5 × 10−3 | 0 | 2 |
19 | 316L | 0.6% | 5 × 10−4 | 0 | 1 |
20,21 | 316L/2205 | 0.6% | 1 × 10−3 | 0 | 1/1 |
22,23 | 2205 | 0.6% | 1 × 10−2 | 0 | 2 |
24~26 | 316L/2205 | 0.6% | 5 × 10−3 | 30 | 2(316L)/1(2205) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Jiang, W.; Xie, X.; Dong, Z. A Comparison of Amplitude-and Time-Dependent Cyclic Deformation Behavior for Fully-Austenite Stainless Steel 316L and Duplex Stainless Steel 2205. Materials 2021, 14, 5594. https://doi.org/10.3390/ma14195594
Li S, Jiang W, Xie X, Dong Z. A Comparison of Amplitude-and Time-Dependent Cyclic Deformation Behavior for Fully-Austenite Stainless Steel 316L and Duplex Stainless Steel 2205. Materials. 2021; 14(19):5594. https://doi.org/10.3390/ma14195594
Chicago/Turabian StyleLi, Shaohua, Wenchun Jiang, Xuefang Xie, and Zhilong Dong. 2021. "A Comparison of Amplitude-and Time-Dependent Cyclic Deformation Behavior for Fully-Austenite Stainless Steel 316L and Duplex Stainless Steel 2205" Materials 14, no. 19: 5594. https://doi.org/10.3390/ma14195594
APA StyleLi, S., Jiang, W., Xie, X., & Dong, Z. (2021). A Comparison of Amplitude-and Time-Dependent Cyclic Deformation Behavior for Fully-Austenite Stainless Steel 316L and Duplex Stainless Steel 2205. Materials, 14(19), 5594. https://doi.org/10.3390/ma14195594