Electrodeposition and Corrosion Properties of Nickel–Graphene Oxide Composite Coatings
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Low, C.T.J.; Wills, R.G.A.; Walsh, F.C. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf. Coat. Technol. 2006, 201, 371–383. [Google Scholar] [CrossRef]
- Walsh, F.C. A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: An established and diversifying technology. Trans. IMF 2014, 92, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Tseluikin, V.N.; Koreshkova, A.A. Electrochemical deposition and properties of composite coatings consisting of zinc and carbon nanotubes. Russ. J. Appl. Chem. 2015, 88, 272–274. [Google Scholar] [CrossRef]
- Tseluikin, V.N.; Solov’ova, N.D.; Gun’kin, I.F. Electrodeposition of nickel-fullerene C60 composition coatings. Prot. Met. 2007, 43, 388–390. [Google Scholar] [CrossRef]
- Giannopoulos, F.; Chronopoulou, N.; Bai, J.; Zhao, H.; Pantelis, D.; Pavlatou, E.A.I.; Karatonis, A. Nickel/MWCNT-Al2O3 electrochemical co-deposition: Structural properties and mechanistics aspects. Electrochim. Acta 2016, 207, 76–86. [Google Scholar] [CrossRef]
- Hatipoglu, G.; Kartal, M.; Uysal, M.; Cetinkaya, T.; Akbulut, H. The effect of sliding speed on the wear behaviour of pulse electro co-deposited Ni/MWCNT nanocomposite coatings. Tribol. Int. 2016, 98, 59–73. [Google Scholar] [CrossRef]
- Mosallanejad, M.H.; Shafyei, A.; Akhavan, S. Simultaneous co-deposition of SiC and CNT into the Ni coating. Can. Metall. Q. 2016, 55, 147–155. [Google Scholar] [CrossRef]
- Gyawali, G.; Joshi, B.; Tripathi, K.; Lee, S.W. Effect of ultrasonic nanocrystal surface modification on properties of electrodeposited Ni and Ni-SiC composite coatings. J. Mater. Eng. Perform. 2017, 26, 4462–4469. [Google Scholar] [CrossRef]
- Legkaya, D.A.; Solov’eva, N.D.; Yakovlev, A.V. Physicomechanical properties of nickel coating deposited from sulfate nickel plating electrolyte using preliminary underpotential deposition. Russ. J. Appl. Chem. 2017, 90, 1454–1458. [Google Scholar] [CrossRef]
- Makarova, I.; Dobryden, I.; Kharitonov, D.; Kasach, A.; Ryl, J.; Repo, E.; Vuorinen, E. Nickel-nanodiamond coatings electrodeposited from tartrate electrolyte at ambient temperature. Surf. Coat. Technol. 2019, 380, 125063. [Google Scholar] [CrossRef]
- Lanzutti, A.; Lekka, M.; de Leitenburg, C.; Fedrizzi, L. Effect of pulse current on wear behaviour of Ni matrix micro- and nano-SiC composite coatings at room and elevated temperature. Tribol. Int. 2019, 132, 50–61. [Google Scholar] [CrossRef]
- Vinogradov, S.N.; Sinenkova, O.K. Electrodeposition and physicomechanical properties of nickel-chromium coatings. Russ. J. Appl. Chem. 2007, 80, 1667–1669. [Google Scholar] [CrossRef]
- Meenu, S.; Grips, V.K.; Rajam, K.S. Structure and properties of electrodeposited Ni-Co-YZA composite coatings. J. Appl. Electrochem. 2008, 38, 669–677. [Google Scholar]
- Nayana, O.; Venkatesha, T.V. Effect of ethyl vanillin of ZnNi alloy electrodeposition and its properties. Bull. Mater. Sci. 2014, 37, 1137–1146. [Google Scholar] [CrossRef] [Green Version]
- Tseluikin, V.N.; Koreshkova, A.A. Electrodeposition of zinc-nickel-carbon nanotubes composite coatings. Prot. Met. Phys. Chem. Surf. 2016, 52, 1040–1042. [Google Scholar] [CrossRef]
- Torabinejad, V.; Aliofkhazraei, M.; Assareh, S.; Allahyarzadeh, M.H.; SabourRouhaghdam, A. Electrodeposition of Fe-Ni alloys compoosites, and nano coatings: A review. J. Alloys Compd. 2017, 691, 841–859. [Google Scholar] [CrossRef]
- Rahmani, H.; Aliofkhazraei, M.; Karimzadeh, A. Effect of frequency and duty cycle on corrosion and wear resistance of functionally graded Zn-Ni nanocomposite coating. Can. Metall. Q. 2018, 57, 99–108. [Google Scholar] [CrossRef]
- Beltowska-Lehmana, E.; Bigosa, A.; Indykab, P.; Chojnackaa, A.; Drewienkiewiczc, A.; Zimowskid, S.; Kotd, M.; Szczerbaa, M.J. Optimisation of the electrodeposition process of Ni-W/ZrO2 nanocomposites. J. Electroanal. Chem. 2018, 813, 39–51. [Google Scholar] [CrossRef]
- Tseluikin, V.N.; Koreshkova, A.A. Pulsed electrodeposition of composite coatings based on zinc-nickel alloy. Prot. Met. Phys. Chem. Surf. 2018, 54, 453–456. [Google Scholar] [CrossRef]
- Yakovlev, A.V.; Yakovleva, E.V.; Tseluikin, V.N.; Krasnov, V.V.; Mostovoy, A.S.; Rakhmetulina, L.A.; Frolov, I.N. Electrochemical synthesis of multilayer graphene oxide by anodic oxidation of disperse graphite. Russ. J. Electrochem. 2019, 55, 1196–1202. [Google Scholar] [CrossRef]
- Chang, L.M.; Chen, D.; Liu, J.H.; Zhang, R.J. Effect of different plating modes on microstructure and corrosion resistance of Zn-Ni alloy coatings. J. Alloys Compd. 2009, 479, 489–493. [Google Scholar] [CrossRef]
- Pinate, S.; Leisner, P.; Zanella, C. Electrocodeposition of nano-SiC particles by pulse-reverse under an adapted waveform. J. Electrochem. Soc. 2019, 166, D804–D809. [Google Scholar]
- Guglielmi, N. Kinetics of the deposition of inert particles from electrolytic bath. J. Electrochem. Soc. 1972, 119, 1009–1012. [Google Scholar] [CrossRef]
- Yang, F.; Kang, H.; Guo, E.; Li, R.; Chen, Z.; Zeng, Y. The role of nickel in mechanical perfopmance and corrosion behaviour of nickel-aluminium bronze in 3.5 wt.% NaCl solution. Corros. Sci. 2018, 139, 333–345. [Google Scholar] [CrossRef]
- Rekha, M.Y.; Srivastava, C. Microstructural evolution and corrosion behavior of Zn-Ni-graphene oxide composite coatings. Metall. Mater. Trans. A 2019, 50, 5896–5913. [Google Scholar] [CrossRef]
No. | Electrolyte Composition | Concentration, g/L | Deposition Parameters |
---|---|---|---|
1 | NiSO4·7H2O | 220 | Temperature t = 45 °C |
2 | NiCl2·6H2O | 40 | – |
3 | CH3COONa | 30 | – |
4 | Graphene oxide | 10 | – |
Time Ratio tc/ta, s | Nickel | nickel–GO CECs |
---|---|---|
10:1 | 0.656 | 0.451 |
12:1 14:1 16:1 | 0.533 0.410 0.246 | 0.369 0.287 0.164 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseluikin, V.; Dzhumieva, A.; Yakovlev, A.; Mostovoy, A.; Zakirova, S.; Strilets, A.; Lopukhova, M. Electrodeposition and Corrosion Properties of Nickel–Graphene Oxide Composite Coatings. Materials 2021, 14, 5624. https://doi.org/10.3390/ma14195624
Tseluikin V, Dzhumieva A, Yakovlev A, Mostovoy A, Zakirova S, Strilets A, Lopukhova M. Electrodeposition and Corrosion Properties of Nickel–Graphene Oxide Composite Coatings. Materials. 2021; 14(19):5624. https://doi.org/10.3390/ma14195624
Chicago/Turabian StyleTseluikin, Vitaly, Asel Dzhumieva, Andrey Yakovlev, Anton Mostovoy, Svetlana Zakirova, Anastasia Strilets, and Marina Lopukhova. 2021. "Electrodeposition and Corrosion Properties of Nickel–Graphene Oxide Composite Coatings" Materials 14, no. 19: 5624. https://doi.org/10.3390/ma14195624
APA StyleTseluikin, V., Dzhumieva, A., Yakovlev, A., Mostovoy, A., Zakirova, S., Strilets, A., & Lopukhova, M. (2021). Electrodeposition and Corrosion Properties of Nickel–Graphene Oxide Composite Coatings. Materials, 14(19), 5624. https://doi.org/10.3390/ma14195624