Application of Artificial Neural Networks for Prediction of Mechanical Properties of CNT/CNF Reinforced Concrete
Abstract
:1. Introduction
1.1. Concrete Mix Design
1.2. Artificial Neural Networks
1.3. ANNs for Prediction of Concrete Material Behavior
Aggregate Type/ Binder Type | Plain Cement | Silica Fume | Blast Furnace Slag | Fly Ash | Micro and Nano-Silica | Metakaolin |
---|---|---|---|---|---|---|
Standardized Fine/Coarse Aggregate | [8,15,16,19,23,28,29,33,47,49,50,51,52] | [11,12,21,32,41,53,54] | [6,7,8,9,12,14,15,17,20,27,55,56,57,58,59] | [6,7,8,9,12,14,15,17,20,24,31,41,53,54,55,56,57] | [25,56,60] | [32,44] |
Recycled Concrete Aggregate | [3,5,26,30,37,61] | [62,63] | ||||
Recycled Rubber Aggregate | [22,64] | [18] | ||||
Basalt Powder | [64] | [38] | ||||
Limestone Crushed/ Sand | [2,65,66] | [10] | ||||
Rice Husk Ash | [37] | [10,67] | [67] | [67] | [67] | |
Artificial Aggregate | [38,68] | [10] | [69] | [69] | [69] |
2. Prediction of Properties of Self-Sensing Concrete Using ANNs
2.1. Training Parameters of ANN Models
2.2. Datasets
2.3. ANN Models
2.4. Results
3. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, S.; Alghamdi, S.A. A Statistical Approach to Optimizing Concrete Mixture Design. Sci. World J. 2014, 2014, 561539. [Google Scholar] [CrossRef] [Green Version]
- Cihan, M.T. Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods. Adv. Civ. Eng. 2019, 2019, 3069046. [Google Scholar] [CrossRef]
- Hammoudi, A.; Moussaceb, K.; Belebchouche, C.; Dahmoune, F. Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr. Build. Mater. 2019, 209, 425–436. [Google Scholar] [CrossRef]
- Bingöl, A.F.; Tortum, A.; Gül, R. Neural networks analysis of compressive strength of lightweight concrete after high temperatures. Mater. Des. 2013, 52, 258–264. [Google Scholar] [CrossRef]
- Khademi, F.; Jamal, S.M.; Deshpande, N.; Londhe, S. Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. Int. J. Sustain. Built Environ. 2016, 5, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.-S.; Chiu, C.-K.; Farfoura, M.; Altaharwa, I. Optimizing the Prediction Accuracy of Concrete Compressive Strength Based on a Comparison of Data-Mining Techniques. J. Comput. Civ. Eng. 2011, 25, 242–253. [Google Scholar] [CrossRef]
- Atici, U. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Syst. Appl. 2011, 38, 9609–9618. [Google Scholar] [CrossRef]
- Özturan, M.; Kutlu, B.; Özturan, T. Comparison of Concrete Strength Prediction Techniques With Artificial Neural Network Approach. Build. Res. J. 2008, 56, 23–36. [Google Scholar]
- Deepa, C.; Kumari, K.S.; Sudha, V.P. Prediction of the Compressive Strength of High Performance Concrete Mix using Tree Based Modeling. Int. J. Comput. Appl. 2010, 6, 18–24. [Google Scholar] [CrossRef]
- Sadrmomtazi, A.; Sobhani, J.; Mirgozar, M. Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Constr. Build. Mater. 2013, 42, 205–216. [Google Scholar] [CrossRef]
- Sobhani, J.; Najimi, M.; Pourkhorshidi, A.R.; Parhizkar, T. Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models. Constr. Build. Mater. 2010, 24, 709–718. [Google Scholar] [CrossRef]
- Anyaoha, U.; Zaji, A.; Liu, Z. Soft computing in estimating the compressive strength for high-performance concrete via concrete composition appraisal. Constr. Build. Mater. 2020, 257, 119472. [Google Scholar] [CrossRef]
- Ashrafian, A.; Shokri, F.; Amiri, M.J.T.; Yaseen, Z.M.; Rezaie-Balf, M. Compressive strength of Foamed Cellular Lightweight Concrete simulation: New development of hybrid artificial intelligence model. Constr. Build. Mater. 2020, 230, 117048. [Google Scholar] [CrossRef]
- Feng, D.-C.; Liu, Z.-T.; Wang, X.-D.; Chen, Y.; Chang, J.-Q.; Wei, D.-F.; Jiang, Z.-M. Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Constr. Build. Mater. 2020, 230, 117000. [Google Scholar] [CrossRef]
- Young, B.A.; Hall, A.; Pilon, L.; Gupta, P.; Sant, G. Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods. Cem. Concr. Res. 2019, 115, 379–388. [Google Scholar] [CrossRef]
- Park, J.Y.; Yoon, Y.G.; Oh, T.K. Prediction of Concrete Strength with P-, S-, R-Wave Velocities by Support Vector Machine (SVM) and Artificial Neural Network (ANN). Appl. Sci. 2019, 9, 4053. [Google Scholar] [CrossRef] [Green Version]
- Vakharia, V.; Gujar, R. Prediction of compressive strength and portland cement composition using cross-validation and feature ranking techniques. Constr. Build. Mater. 2019, 225, 292–301. [Google Scholar] [CrossRef]
- Jalal, M.; Grasley, Z.; Gurganus, C.; Bullard, J.W. RETRACTED: Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete. Constr. Build. Mater. 2020, 256, 119478. [Google Scholar] [CrossRef]
- Madandoust, R.; Bungey, J.H.; Ghavidel, R. Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models. Comput. Mater. Sci. 2012, 51, 261–272. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Rahai, A.; Sebt, M.H.; Akbarpour, H. Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic. Constr. Build. Mater. 2012, 36, 411–418. [Google Scholar] [CrossRef]
- Özcan, F.; Atis, C.; Karahan, O.; Uncuoğlu, E.; Tanyildizi, H. Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Adv. Eng. Softw. 2009, 40, 856–863. [Google Scholar] [CrossRef]
- Topçu, I.B.; Sarıdemir, M. Prediction of rubberized mortar properties using artificial neural network and fuzzy logic. J. Mater. Process. Technol. 2008, 199, 108–118. [Google Scholar] [CrossRef]
- Chopra, P.; Sharma, R.K.; Kumar, M.; Chopra, T. Comparison of Machine Learning Techniques for the Prediction of Compressive Strength of Concrete. Adv. Civ. Eng. 2018, 2018, 5481705. [Google Scholar] [CrossRef] [Green Version]
- Chopra, P.; Sharma, R.K.; Kumar, M. Prediction of Compressive Strength of Concrete Using Artificial Neural Network and Genetic Programming. Adv. Mater. Sci. Eng. 2016, 2016, 7648467. [Google Scholar] [CrossRef] [Green Version]
- Azimi-Pour, M.; Eskandari-Naddaf, H. ANN and GEP prediction for simultaneous effect of nano and micro silica on the compressive and flexural strength of cement mortar. Constr. Build. Mater. 2018, 189, 978–992. [Google Scholar] [CrossRef]
- Deshpande, N.; Londhe, S.; Kulkarni, S. Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression. Int. J. Sustain. Built Environ. 2014, 3, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Kandiri, A.; Golafshani, E.M.; Behnood, A. Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm. Constr. Build. Mater. 2020, 248, 118676. [Google Scholar] [CrossRef]
- Mashhadban, H.; Kutanaei, S.S.; Sayarinejad, M.A. Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network. Constr. Build. Mater. 2016, 119, 277–287. [Google Scholar] [CrossRef]
- Sonawane, D.A.; Jadhav, R.M. Prediction of Compression Strength of Concrete by Using Artificial Neural Network. In Proceedings of the 6th International Conference on Recent Trends in Engineering & Technology, Maharashtra, India, 30–31 May 2018; pp. 807–812. [Google Scholar]
- Dantas, A.T.A.; Leite, M.B.; Nagahama, K.D.J. Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks. Constr. Build. Mater. 2013, 38, 717–722. [Google Scholar] [CrossRef]
- Abu Yaman, M.; Elaty, M.A.; Taman, M. Predicting the ingredients of self compacting concrete using artificial neural network. Alex. Eng. J. 2017, 56, 523–532. [Google Scholar] [CrossRef]
- Sarıdemir, M. Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks. Adv. Eng. Softw. 2009, 40, 350–355. [Google Scholar] [CrossRef]
- Lai, S.; Serra, M. Concrete strength prediction neural network, Construct. Build. Mater. 1997, 11, 93–98. [Google Scholar] [CrossRef]
- Onyari, E.K.; Ikotun, B.D. Prediction of compressive and flexural strengths of a modified zeolite additive mortar using artificial neural network. Constr. Build. Mater. 2018, 187, 1232–1241. [Google Scholar] [CrossRef]
- Bui, D.-K.; Nguyen, T.; Chou, J.-S.; Nguyen-Xuan, H.; Ngo, T. A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr. Build. Mater. 2018, 180, 320–333. [Google Scholar] [CrossRef]
- Vineela, M.G.; Dave, A.; Chaganti, P.K. Artificial Neural Network based Prediction of Tensile Strength of Hybrid Composites. Mater. Today Proc. 2018, 5, 19908–19915. [Google Scholar] [CrossRef]
- Getahun, M.A.; Shitote, S.M.; Gariy, Z.C.A. Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes. Constr. Build. Mater. 2018, 190, 517–525. [Google Scholar] [CrossRef]
- Topçu, I.B.; Sarıdemir, M. Prediction of properties of waste AAC aggregate concrete using artificial neural network. Comput. Mater. Sci. 2007, 41, 117–125. [Google Scholar] [CrossRef]
- Chandwani, V.; Agrawal, V.; Nagar, R. Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks. Expert Syst. Appl. 2015, 42, 885–893. [Google Scholar] [CrossRef]
- Chandwani, V.; Agraval, V.; Nagar, R. Applications of Artificial Neural Networks in Modeling Compressive Strength of Concrete: A State of the Art Review. Int. J. Curr. Eng. Technol. 2014, 4, 2949–2956. [Google Scholar]
- Öztaş, A.; Pala, M.; Özbay, E.; Kanca, E.; Çaglar, N.; Bhatti, M.A. Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 2006, 20, 769–775. [Google Scholar] [CrossRef]
- Bal, L.; Buyle-Bodin, F. Artificial neural network for predicting drying shrinkage of concrete. Constr. Build. Mater. 2013, 38, 248–254. [Google Scholar] [CrossRef]
- Kröse, B.; van der Smagt, P. An Introduction to Neural Networks; University of Amsterdam: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Asteris, P.G.; Apostolopoulou, M.; Skentou, A.D.; Moropoulou, A. Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars. Comput. Concr. 2019, 24, 329–345. [Google Scholar] [CrossRef]
- Alshihri, M.M.; Azmy, A.M.; El-Bisy, M.S. Neural networks for predicting compressive strength of structural light weight concrete. Constr. Build. Mater. 2009, 23, 2214–2219. [Google Scholar] [CrossRef]
- Chong, E.P.; Zak, S.H. An Introduction to Optimization; John Wiley & Sons, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Oh, J.-W.; Lee, I.-W.; Kim, J.-T.; Lee, G.-W. Application of Neural networks for proportioning of concrete mixes. ACI Mater. J. 1999, 96, 61–67. [Google Scholar]
- Lee, S.-C. Prediction of concrete strength using artificial neural networks. Eng. Struct. 2003, 25, 849–857. [Google Scholar] [CrossRef]
- Chopra, P.; Sharma, R.K.; Kumar, M. Artificial Neural Networks for the Prediction of Compressive Strength of Concrete. Int. J. Appl. Sci. Eng. 2015, 13, 187–204. [Google Scholar]
- DeRousseau, M.A.; Laftchiev, E.; Kasprzyk, J.R.; Rajagopalan, B.; Srubar, W.V. A comparison of machine learning methods for predicting the compressive strength of field-placed concrete. Constr. Build. Mater. 2019, 228, 116661. [Google Scholar] [CrossRef]
- Ni, H.-G.; Wang, J.-Z. Prediction of compressive strength of concrete by neural networks. Cem. Concr. Res. 2000, 30, 1245–1250. [Google Scholar] [CrossRef]
- Namyong, J.; Sangchun, Y.; Hongbum, C. Prediction of Compressive Strength of In-Situ Concrete Based on Mixture Proportions. J. Asian Arch. Build. Eng. 2004, 3, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Abuodeh, O.R.; Abdalla, J.A.; Hawileh, R.A. Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques. Appl. Soft Comput. 2020, 95, 106552. [Google Scholar] [CrossRef]
- Pala, M.; Özbay, E.; Öztaş, A.; Yuce, M.I. Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Constr. Build. Mater. 2007, 21, 384–394. [Google Scholar] [CrossRef]
- Erdal, H.I. Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction. Eng. Appl. Artif. Intell. 2013, 26, 1689–1697. [Google Scholar] [CrossRef]
- Yeh, I.-C. Modeling of strength of high-performance concrete using Artificial Neural Networks. Cem. Concr. Res. 1998, 28, 1797–1808. [Google Scholar] [CrossRef]
- Khashman, A.; Akpinar, P. Non-Destructive Prediction of Concrete Compressive Strength Using Neural Networks. Procedia Comput. Sci. 2017, 108, 2358–2362. [Google Scholar] [CrossRef]
- Bilim, C.; Atis, C.; Tanyildizi, H.; Karahan, O. Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv. Eng. Softw. 2008, 40, 334–340. [Google Scholar] [CrossRef]
- Han, I.-J.; Yuan, T.-F.; Lee, J.-Y.; Yoon, Y.-S.; Kim, J.-H. Learned Prediction of Compressive Strength of GGBFS Concrete Using Hybrid Artificial Neural Network Models. Materials 2019, 12, 3708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kooshkaki, A.; Eskandari-Naddaf, H. Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by multi-objective ANN modeling. Constr. Build. Mater. 2019, 212, 176–191. [Google Scholar] [CrossRef]
- Naderpour, H.; Rafiean, A.H.; Fakharian, P. Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng. 2018, 16, 213–219. [Google Scholar] [CrossRef]
- Elevado, K.J.T. Artificial Neural Network (Ann) Modelling of Concrete Mixed with Waste Ceramic Tiles and Fly Ash. Int. J. Geomate 2018, 15, 154–159. [Google Scholar] [CrossRef]
- Deng, F.; He, Y.; Zhou, S.; Yu, Y.; Cheng, H.; Wu, X. Compressive strength prediction of recycled concrete based on deep learning. Constr. Build. Mater. 2018, 175, 562–569. [Google Scholar] [CrossRef]
- Gupta, T.; Patel, K.A.; Siddique, S.; Sharma, R.K.; Chaudhary, S. Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN. Measurement 2019, 147, 106870. [Google Scholar] [CrossRef]
- Apostolopoulou, M.; Armaghani, D.J.; Bakolas, A.; Douvika, M.G.; Moropoulou, A.; Asteris, P.G. Compressive strength of natural hydraulic lime mortars using soft computing techniques. Procedia Struct. Integr. 2019, 17, 914–923. [Google Scholar] [CrossRef]
- Trtnik, G.; Kavčič, F.; Turk, G. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics 2009, 49, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Abellán-García, J. Four-layer perceptron approach for strength prediction of UHPC. Constr. Build. Mater. 2020, 256, 119465. [Google Scholar] [CrossRef]
- Kurpinska, M.; Kułak, L. Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks. Materials 2019, 12, 2002. [Google Scholar] [CrossRef] [Green Version]
- Koneru, V.S.; Ghorpade, V.G. Assessment of strength characteristics for experimental based workable self compacting concrete using artificial neural network. Mater. Today Proc. 2020, 26, 1238–1244. [Google Scholar] [CrossRef]
- Duan, Z.; Kou, S.; Poon, C.S. Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete. Constr. Build. Mater. 2013, 44, 524–532. [Google Scholar] [CrossRef]
- Davraz, M.; Kilincarslan, S.; Ceylan, H. Predicting the Poisson Ratio of Lightweight Concretes using Artificial Neural Network. Acta Phys. Pol. A 2015, 128, 184–186. [Google Scholar] [CrossRef]
- Abambres, M.; Lantsoght, E.O. ANN-Based Fatigue Strength of Concrete under Compression. Materials 2019, 12, 3787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakoç, M.B.; Demirboğa, R.; Türkmen, I.; Can, I. Modeling with ANN and effect of pumice aggregate and air entrainment on the freeze–thaw durabilities of HSC. Constr. Build. Mater. 2011, 25, 4241–4249. [Google Scholar] [CrossRef]
- Shi, L.; Lin, S.; Lu, Y.; Ye, L.; Zhang, Y. Artificial neural network based mechanical and electrical property prediction of engineered cementitious composites. Constr. Build. Mater. 2018, 174, 667–674. [Google Scholar] [CrossRef]
- Marks, M.; Glinicki, M.A.; Gibas, K. Prediction of the Chloride Resistance of Concrete Modified with High Calcium Fly Ash Using Machine Learning. Materials 2015, 8, 5483. [Google Scholar] [CrossRef] [Green Version]
- Boğa, A.R.; Öztürk, M.; Topçu, I.B. Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI. Compos. Part B Eng. 2013, 45, 688–696. [Google Scholar] [CrossRef]
- Hodhod, O.; Ahmed, H. Developing an artificial neural network model to evaluate chloride diffusivity in high performance concrete. HBRC J. 2013, 9, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Zavrtanik, N.; Prosen, J.; Tušar, M.; Turk, G. The use of artificial neural networks for modeling air void content in aggregate mixture. Autom. Constr. 2016, 63, 155–161. [Google Scholar] [CrossRef]
- Onal, O.; Ozturk, A.U. Artificial neural network application on microstructure–compressive strength relationship of cement mortar. Adv. Eng. Softw. 2010, 41, 165–169. [Google Scholar] [CrossRef]
- Guo, K.; Yang, Z.; Yu, C.-H.; Buehler, M.J. Artificial intelligence and machine learning in design of mechanical materials. Mater. Horiz. 2021, 8, 1153–1172. [Google Scholar] [CrossRef]
- Al-Shamiri, A.K.; Kim, J.H.; Yuan, T.-F.; Yoon, Y.S. Modeling the compressive strength of high-strength concrete: An extreme learning approach. Constr. Build. Mater. 2019, 208, 204–219. [Google Scholar] [CrossRef]
- Karlik, B.; Olgac, A.V. Performance Analysis of Various Activation Functions in Generalized MLP Architectures of Neural Networks. IJAE 2013, 1, 111–122. [Google Scholar]
- Sharma, S.; Sharma, S.; Athaiya, A. Activation Functions in Neural Networks. Int. J. Eng. Appl. Sci. Technol. 2020, 4, 310–316. [Google Scholar] [CrossRef]
- Kahidan, A.; Shirmohammadian, M. Properties of Carbon Nanotube (CNT) Reinforced Cement. Int. J. Eng. Res. 2016, 5, 497–503. [Google Scholar] [CrossRef]
- Parvaneh, V.; Khiabani, S.H. Mechanical and piezoresistive properties of self-sensing smart concretes reinforced by carbon nanotubes. Mech. Adv. Mater. Struct. 2019, 26, 993–1000. [Google Scholar] [CrossRef]
- Musso, S.; Tulliani, J.-M.; Ferro, G.; Tagliaferro, A. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 2009, 69, 1985–1990. [Google Scholar] [CrossRef]
- Sindu, B.; Sasmal, S. Properties of carbon nanotube reinforced cement composite synthesized using different types of surfactants. Constr. Build. Mater. 2017, 155, 389–399. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Batis, G.; Danoglidis, P.; Zacharopoulou, A.K.; Zacharopoulou, E.K.; Falara, M.G.; Shah, S.P. Effect of CNT and CNF loading and count on the corrosion resistance, conductivity and mechanical properties of nanomodified OPC mortars. Constr. Build. Mater. 2017, 147, 48–57. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Danoglidis, P.A.; Shah, S.P. High modulus concrete: Effects of low carbon nanotube and nanofiber additions. Theor. Appl. Fract. Mech. 2019, 103, 102295. [Google Scholar] [CrossRef]
- Hanxun, B.; Yu, X.; Zhang, K.; Kwon, E.; Ou, J. Sensing properties of CNT-filled cement-based stress sensors. J. Civ. Struct. Health Monit. 2011, 1, 17–24. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Danoglidis, P.A.; Falara, M.G.; Nitodas, S.F. Fresh and mechanical properties, and strain sensing of nanomodified cement mortars: The effects of MWCNT aspect ratio, density and functionalization. Cem. Concr. Compos. 2017, 82, 137–151. [Google Scholar] [CrossRef]
- Galao, O.; Baeza, F.J.; Zornoza, E.; Garcés, P. Strain and damage sensing properties on multifunctional cement composites with CNF admixture. Cem. Concr. Compos. 2014, 46, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Li, G.Y.; Wang, P.M.; Zhao, X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Compos. 2007, 29, 377–382. [Google Scholar] [CrossRef]
- Parveen, S.; Rana, S.; Fangueiro, R.; Paiva, M. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cem. Concr. Res. 2015, 73, 215–227. [Google Scholar] [CrossRef]
- Sun, G.; Liang, R.; Lu, Z.; Zhang, J.; Li, Z. Mechanism of cement/carbon nanotube composites with enhanced mechanical properties achieved by interfacial strengthening. Constr. Build. Mater. 2016, 115, 87–92. [Google Scholar] [CrossRef]
- Jeevanagoudar, Y.V.; Krishna, R.H.; Gowda, R.; Preetham, R.; Prabhakara, R. Improved mechanical properties and piezoresistive sensitivity evaluation of MWCNTs reinforced cement mortars. Constr. Build. Mater. 2017, 144, 188–194. [Google Scholar] [CrossRef]
- Mohsen, M.; Taha, R.; Abu Taqa, A.; Shaat, A. Optimum carbon nanotubes’ content for improving flexural and compressive strength of cement paste. Constr. Build. Mater. 2017, 150, 395–403. [Google Scholar] [CrossRef]
- Jiang, S.; Zhou, D.; Zhang, L.; Ouyang, J.; Yu, X.; Cui, X.; Han, B. Comparison of compressive strength and electrical resistivity of cementitious composites with different nano- and micro-fillers. Arch. Civ. Mech. Eng. 2018, 18, 60–68. [Google Scholar] [CrossRef]
- Liew, K.M.; Kai, M.; Zhang, L. Mechanical and damping properties of CNT-reinforced cementitious composites. Compos. Struct. 2017, 160, 81–88. [Google Scholar] [CrossRef]
- Meoni, A.; D’Alessandro, A.; Downey, A.; García-Macías, E.; Rallini, M.; Materazzi, A.L.; Torre, L.; Laflamme, S.; Castro-Triguero, R.; Ubertini, F. An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures. Sensors 2018, 18, 831. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Sturm, M.; Mo, Y.L. Electrical resistance of carbon-nanofiber concrete. Smart Mater. Struct. 2009, 18, 095039. [Google Scholar] [CrossRef]
- Hawreen, A.; Bogas, J.A.; Dias, A.P.S. On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes. Constr. Build. Mater. 2018, 168, 459–470. [Google Scholar] [CrossRef]
- Galao, Ó.; Zornoza, E.; Baeza, F.J.; Bernabeu, A.; Garces, P. Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials. Mater. Constr. 2012, 62, 343–357. [Google Scholar] [CrossRef] [Green Version]
- Danoglidis, P.; Konsta-Gdoutos, M.S.; Gdoutos, E.E.; Shah, S.P. Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars. Constr. Build. Mater. 2016, 120, 265–274. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
- Rashmi, R.; Padmapriya, R. Mechanical and durability characteristics of multiwalled carbon nano tube in concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 872, 012110. [Google Scholar] [CrossRef]
- Irshidat, M.R.; Al-Nuaimi, N.; Salim, S.; Rabie, M. Carbon Nanotubes Dosage Optimization for Strength Enhancement of Cementitious Composites. Procedia Manuf. 2020, 44, 366–370. [Google Scholar] [CrossRef]
- Azeem, M.; Saleem, M.A. Role of electrostatic potential energy in carbon nanotube augmented cement paste matrix. Constr. Build. Mater. 2020, 239, 117875. [Google Scholar] [CrossRef] [Green Version]
- Assi, L.N.; Al-Hamadani, Y.A.J.; Deaver, E.; Soltangharaei, V.; Ziehl, P.; Yoon, Y. Effect of Sonicated Deionized Water on The Early Age Behavior of Portland Cement-Based Concrete and Paste. Constr. Build. Mater. 2020, 247, 118571. [Google Scholar] [CrossRef]
- Zhang, J.; Ke, Y.; Zhang, J.; Han, Q.; Dong, B. Cement paste with well-dispersed multi-walled carbon nanotubes: Mechanism and performance. Constr. Build. Mater. 2020, 262, 120746. [Google Scholar] [CrossRef]
Prediction Method | Reference |
---|---|
MLR–Multiple linear regression | [3,4,5,6,7,8,9,10,11,12,13] |
SVM–Support vector machine | [2,6,13,14,15,16,17,18] |
ANFIS–Adaptive neuro-fuzzy inference system | [5,10,11,18,19,20] |
FL–Fuzzy logic | [2,21,22] |
RF–Random forest | [2,17,23] |
DT–Decision tree | [2,15,23] |
GP–genetic programming | [18,24,25] |
M5PMT–M5P Model tree | [9,26,27] |
Salp swarm algorithm | [27,28] |
CART–Classification and regression tree | [12] |
Dataset | Nomenclature | Data Tuples | Input Neurons | Output Neurons |
---|---|---|---|---|
1 | COMP | 329 | 20 | 1 |
2 | FLEX | 207 | 16 | 1 |
3 | C+F | 185 | 11 | 2 |
COMP | FLEX | C+F | ||||||
---|---|---|---|---|---|---|---|---|
# | Neuron | Min/Max | # | Neuron | Min/Max | # | Neuron | Min/Max |
1 | CEM | 317.61/1875 kg/m3 | 1 | CEM | 317.61/1578.95 kg/m3 | 1 | CEM | 317.61/1578.95 kg/m3 |
2 | WAT | 121.6/789.48 kg/m3 | 2 | WAT | 142/789.48 kg/m3 | 2 | WAT | 142/789.48 kg/m3 |
3 | FA | 0/1994.4 kg/m3 | 3 | FA | 0/1994.4 kg/m3 | 3 | FA | 0/1994.4 kg/m3 |
4 | CA | 0/1284 kg/m3 | 4 | CA | 0/1284 kg/m3 | 4 | CA | 0/1284 kg/m3 |
5 | SPL | 0/27.27 kg/m3 | 5 | SPL | 0/27.27 kg/m3 | 5 | SPL | 0/27.27 kg/m3 |
6 | CNT | 0/2 wt% | 6 | CNT | 0/0.5 wt% | 6 | CNT | 0/0.5 wt% |
7 | CNF | 0/2.5 wt% | 7 | CNF | 0/2 wt% | 7 | CNF | 0/2 wt% |
8 | CEM-CLASS | 42.5/52.5 | 8 | CEM-CLASS | 42.5/52.5 | 8 | CEM-CLASS | 42.5/52.5 |
9 | FUNCT | 0/1 (no/yes) | 9 | FUNCT | 0/1 (no/yes) | 9 | FUNCT | 0/1 (no/yes) |
10 | C_S-A | 0/1 (no/yes) | 10 | C_S-A | 0/1 (no/yes) | 10 | DEM-AGE | 24/48 h |
11 | C_S-B | 0/1 (no/yes) | 11 | C_S-B | 0/1 (no/yes) | 11 | AGE | 3/120 days |
12 | C_S-C | 0/1 (no/yes) | 12 | C_S-C | 0/1 (no/yes) | 1 | OUTPUT 1 | 19.8/97.2 MPa |
13 | C_S-D | 0/1 (no/yes) | 13 | C_S-D | 0/1 (no/yes) | 2 | OUTPUT 2 | 2.18/16.4 MPa |
14 | C_S-E | 0/1 (no/yes) | 14 | C_S-E | 0/1 (no/yes) | |||
15 | C_S-F | 0/1 (no/yes) | 15 | DEM-AGE | 18/48 h | |||
16 | C_S-G | 0/1 (no/yes) | 16 | AGE | 3/120 days | |||
17 | C_S-H | 0/1 (no/yes) | 1 | OUTPUT | 2.18/16.4 MPa | |||
18 | C_S-I | 0/1 (no/yes) | ||||||
19 | DEM-AGE | 24/48 h | ||||||
20 | AGE | 3/120 days | ||||||
1 | OUTPUT | 4.4/152 MPa |
# | Model | Dataset | Input Neurons | Hidden Neurons | Output Neurons | Training % (#) | Validation % (#) | Testing % (#) |
---|---|---|---|---|---|---|---|---|
1 | COMP_NN70_10_20-20 | COMP | 20 | 20 | 1 | 70% (230) | 10% (33) | 20% (66) |
2 | COMP_NN70_10_20-41 | COMP | 20 | 41 | 1 | 70% (230) | 10% (33) | 20% (66) |
3 | COMP_NN70_10_20-60 | COMP | 20 | 60 | 1 | 70% (230) | 10% (33) | 20% (66) |
4 | COMP_NN80_10_10-20 | COMP | 20 | 20 | 1 | 80% (263) | 10% (33) | 10% (33) |
5 | COMP_NN80_10_10-41 | COMP | 20 | 41 | 1 | 80% (263) | 10% (33) | 10% (33) |
6 | COMP_NN80_10_10-60 | COMP | 20 | 60 | 1 | 80% (263) | 10% (33) | 10% (33) |
7 | COMP_NN80_5_15-20 | COMP | 20 | 20 | 1 | 80% (264) | 5% (16) | 15% (49) |
8 | COMP_NN80_5_15-41 | COMP | 20 | 41 | 1 | 80% (264) | 5% (16) | 15% (49) |
9 | COMP_NN80_5_15-60 | COMP | 20 | 60 | 1 | 80% (264) | 5% (16) | 15% (49) |
10 | COMP_NN85_5_10-20 | COMP | 20 | 20 | 1 | 85% (280) | 5% (16) | 10% (33) |
11 | COMP_NN85_5_10-41 | COMP | 20 | 41 | 1 | 85% (280) | 5% (16) | 10% (33) |
12 | COMP_NN85_5_10-60 | COMP | 20 | 60 | 1 | 85% (280) | 5% (16) | 10% (33) |
13 | FLEX_NN70_10_20-16 | FLEX | 16 | 16 | 1 | 70% (145) | 10% (21) | 20% (41) |
14 | FLEX_NN70_10_20-33 | FLEX | 16 | 22 | 1 | 70% (145) | 10% (21) | 20% (41) |
15 | FLEX_NN70_10_20-48 | FLEX | 16 | 48 | 1 | 70% (145) | 10% (21) | 20% (41) |
16 | FLEX_NN80_10_10-16 | FLEX | 16 | 16 | 1 | 80% (165) | 10% (21) | 10% (21) |
17 | FLEX_NN80_10_10-33 | FLEX | 16 | 22 | 1 | 80% (165) | 10% (21) | 10% (21) |
18 | FLEX_NN80_10_10-48 | FLEX | 16 | 48 | 1 | 80% (165) | 10% (21) | 10% (21) |
19 | FLEX_NN80_5_15-16 | FLEX | 16 | 16 | 1 | 80% (166) | 5% (10) | 15% (31) |
20 | FLEX_NN80_5_15-33 | FLEX | 16 | 22 | 1 | 80% (166) | 5% (10) | 15% (31) |
21 | FLEX_NN80_5_15-48 | FLEX | 16 | 48 | 1 | 80% (166) | 5% (10) | 15% (31) |
22 | FLEX_NN85_5_10-16 | FLEX | 16 | 16 | 1 | 85% (176) | 5% (10) | 10% (21) |
23 | FLEX_NN85_5_10-33 | FLEX | 16 | 22 | 1 | 85% (176) | 5% (10) | 10% (21) |
24 | FLEX_NN85_5_10-48 | FLEX | 16 | 48 | 1 | 85% (176) | 5% (10) | 10% (21) |
25 | C+F_NN70_10_20-11 | C+F | 11 | 11 | 2 | 70% (129) | 10% (19) | 20% (37) |
26 | C+F_NN70_10_20-23 | C+F | 11 | 23 | 2 | 70% (129) | 10% (19) | 20% (37) |
27 | C+F_NN70_10_20-33 | C+F | 11 | 33 | 2 | 70% (129) | 10% (19) | 20% (37) |
28 | C+F_NN80_10_10-11 | C+F | 11 | 11 | 2 | 80% (147) | 10% (19) | 10% (19) |
29 | C+F_NN80_10_10-23 | C+F | 11 | 23 | 2 | 80% (147) | 10% (19) | 10% (19) |
30 | C+F_NN80_10_10-33 | C+F | 11 | 33 | 2 | 80% (147) | 10% (19) | 10% (19) |
31 | C+F_NN80_5_15-11 | C+F | 11 | 11 | 2 | 80% (147) | 5% (9) | 15% (28) |
32 | C+F_NN80_5_15-23 | C+F | 11 | 23 | 2 | 80% (147) | 5% (9) | 15% (28) |
33 | C+F_NN80_5_15-33 | C+F | 11 | 33 | 2 | 80% (147) | 5% (9) | 15% (28) |
34 | C+F_NN85_5_10-11 | C+F | 11 | 11 | 2 | 85% (157) | 5% (9) | 10% (19) |
35 | C+F_NN85_5_10-23 | C+F | 11 | 23 | 2 | 85% (157) | 5% (9) | 10% (19) |
36 | C+F_NN85_5_10-33 | C+F | 11 | 33 | 2 | 85% (157) | 5% (9) | 10% (19) |
# | Model Nomenclature | Regression Coefficient R | Mean Squared Error MSE | Epoch |
---|---|---|---|---|
1 | COMP_NN70_10_20-20 | 0.95267 | 0.00195 | 11 |
2 | COMP_NN70_10_20-41 | 0.9688 | 0.00107 | 10 |
3 | COMP_NN70_10_20-60 | 0.96502 | 0.00151 | 11 |
4 | COMP_NN80_10_10-20 | 0.96367 | 0.000979 | 12 |
5 | COMP_NN80_10_10-41 | 0.98091 | 0.000766 | 23 |
6 | COMP_NN80_10_10-60 | 0.9791 | 0.000415 | 29 |
7 | COMP_NN80_5_15-20 | 0.98256 | 0.000391 | 32 |
8 | COMP_NN80_5_15-41 | 0.93784 | 0.00367 | 8 |
9 | COMP_NN80_5_15-60 | 0.96813 | 0.001488 | 9 |
10 | COMP_NN85_5_10-20 | 0.97202 | 0.001193 | 27 |
11 | COMP_NN85_5_10-41 | 0.97858 | 0.000681 | 24 |
12 | COMP_NN85_5_10-60 | 0.97274 | 0.001157 | 11 |
13 | FLEX_NN70_10_20-16 | 0.91543 | 0.005345 | 15 |
14 | FLEX_NN70_10_20-33 | 0.89097 | 0.007012 | 9 |
15 | FLEX_NN70_10_20-48 | 0.92254 | 0.001995 | 24 |
16 | FLEX_NN80_10_10-16 | 0.87775 | 0.00877 | 9 |
17 | FLEX_NN80_10_10-33 | 0.89732 | 0.00707 | 9 |
18 | FLEX_NN80_10_10-48 | 0.90198 | 0.00396 | 23 |
19 | FLEX_NN80_5_15-16 | 0.92508 | 0.005 | 20 |
20 | FLEX_NN80_5_15-33 | 0.86375 | 0.008407 | 8 |
21 | FLEX_NN80_5_15-48 | 0.87383 | 0.005773 | 10 |
22 | FLEX_NN85_5_10-16 | 0.94388 | 0.00378 | 32 |
23 | FLEX_NN85_5_10-33 | 0.93602 | 0.00461 | 18 |
24 | FLEX_NN85_5_10-48 | 0.91121 | 0.00533 | 10 |
25 | C+F_NN70_10_20-11 | 0.86913 | 0.009495 | 10 |
26 | C+F_NN70_10_20-23 | 0.90129 | 0.0076 | 12 |
27 | C+F_NN70_10_20-33 | 0.88072 | 0.004027 | 18 |
28 | C+F_NN80_10_10-11 | 0.93468 | 0.003361 | 27 |
29 | C+F_NN80_10_10-23 | 0.95102 | 0.003566 | 21 |
30 | C+F_NN80_10_10-33 | 0.83489 | 0.005389 | 16 |
31 | C+F_NN80_5_15-11 | 0.94066 | 0.005587 | 19 |
32 | C+F_NN80_5_15-23 | 0.93937 | 0.00511 | 16 |
33 | C+F_NN80_5_15-33 | 0.95118 | 0.004076 | 12 |
34 | C+F_NN85_5_10-11 | 0.83851 | 0.01363 | 10 |
35 | C+F_NN85_5_10-23 | 0.88078 | 0.008397 | 10 |
36 | C+F_NN85_5_10-33 | 0.90683 | 0.00636 | 10 |
# | Model Nomenclature | Training | Testing | Validation | Total |
---|---|---|---|---|---|
1 | COMP_NN70_10_20-41 | 0.9764 | 0.95837 | 0.95823 | 0.9688 |
2 | FLEX_NN80_5_15-16 | 0.93545 | 0.90633 | 0.87768 | 0.92508 |
3 | C+F_NN80_5_15-11 | 0.94032 | 0.93642 | 0.97165 | 0.94066 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kekez, S.; Kubica, J. Application of Artificial Neural Networks for Prediction of Mechanical Properties of CNT/CNF Reinforced Concrete. Materials 2021, 14, 5637. https://doi.org/10.3390/ma14195637
Kekez S, Kubica J. Application of Artificial Neural Networks for Prediction of Mechanical Properties of CNT/CNF Reinforced Concrete. Materials. 2021; 14(19):5637. https://doi.org/10.3390/ma14195637
Chicago/Turabian StyleKekez, Sofija, and Jan Kubica. 2021. "Application of Artificial Neural Networks for Prediction of Mechanical Properties of CNT/CNF Reinforced Concrete" Materials 14, no. 19: 5637. https://doi.org/10.3390/ma14195637
APA StyleKekez, S., & Kubica, J. (2021). Application of Artificial Neural Networks for Prediction of Mechanical Properties of CNT/CNF Reinforced Concrete. Materials, 14(19), 5637. https://doi.org/10.3390/ma14195637