Boron Removal by Sorption on Modified Chitosan Hydrogel Beads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Biosorbent Preparation
2.3. Analytical Methods and Procedures
2.4. Sorption and Desorption Studies
3. Results and Discussion
3.1. Characterization of the Mn-Biosorbent before and after Boron Sorption
3.1.1. Fourier-Transform Infrared Spectroscopy
3.1.2. X-ray Diffraction
3.1.3. Scanning Electron Microscopy
3.1.4. Specific Surface Area
3.1.5. Raman Spectroscopy
3.1.6. The Proposed Mn-Biosorbent Structure and Boron Sorption Mechanism
3.2. Effect of pH
3.3. Kinetic Study
3.4. Sorption Isotherms
3.5. Desorption of Boron
3.6. Reuse and Stability of the Mn-Biosorbent
3.7. Comparison of the Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabay, N.; Bryjak, M.; Hilal, N. Boron Separation Processes, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization (WHO): Geneva, Switzerland, 2011; ISBN 978-92-4-154815-1.
- Kuru, R.; Yilmaz, S.; Sacan, O.; Yanardag, R.; Yarat, A.; Sahin, F. Boron concentrations in tap water in many cities of Turkey. Toxicol. Environ. Chem. 2020, 102, 240–249. [Google Scholar] [CrossRef]
- Shireen, F.; Nawaz, M.A.; Chen, C.; Zhang, Q.; Zheng, Z.; Sohail, H.; Sun, J.; Cao, H.; Huang, Y.; Bie, Z. Boron: Functions and Approaches to Enhance Its Availability in Plants for Sustainable Agriculture. Int. J. Mol. Sci. 2018, 19, 1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobrowska-Grzesik, E.; Ciba, J.; Grossman, A.; Kluczka, J.; Trojanowska, J.; Zołotajkin, M. Chemical Elements Compendium; 2 Theta: Cesky Tesin, Czech Republic, 2013. [Google Scholar]
- Guan, Z.; Lv, J.; Bai, P.; Guo, X. Boron removal from aqueous solutions by adsorption—A review. Desalination 2016, 383, 29–37. [Google Scholar] [CrossRef]
- Kluczka, J. Reactive Polymers in Mercury Removal from Electrolytic Brine. Sep. Sci. Technol. 2009, 44, 3698–3716. [Google Scholar] [CrossRef]
- Demey, H.; Barron-Zambrano, J.; Mhadhbi, T.; Miloudi, H.; Yang, Z.; Ruiz, M.; Sastre, A.M. Boron Removal from Aqueous Solutions by Using a Novel Alginate-Based Sorbent: Comparison with Al2O3 Particles. Polymers 2019, 11, 1509. [Google Scholar] [CrossRef] [Green Version]
- Jakóbik-Kolon, A.; Bok-Badura, J.; Milewski, A.; Karoń, K. Long Term and Large-Scale Continuous Studies on Zinc(II) Sorption and Desorption on Hybrid Pectin-Guar Gum Biosorbent. Polymers 2019, 11, 96. [Google Scholar] [CrossRef] [Green Version]
- Kluczka, J.; Gnus, M.; Dudek, G.; Turczyn, R. Removal of boron from aqueous solution by composite chitosan beads. Sep. Sci. Technol. 2017, 52, 1559–1571. [Google Scholar] [CrossRef]
- Ngwabebhoh, F.A.; Mammadli, N.; Yildiz, U. Bioinspired modified nanocellulose adsorbent for enhanced boron recovery from aqueous media: Optimization, kinetics, thermodynamics and reusability study. J. Environ. Chem. Eng. 2019, 7. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, X.; Liu, Y.; Zhang, T. Review on preparation and adsorption properties of chitosan and chitosan composites. Polym. Bull. 2021, in press. [Google Scholar] [CrossRef]
- Heydaripour, J.; Gazi, M.; Oladipo, A.A.; Gulcan, H.O. Porous magnetic resin-g-chitosan beads for adsorptive removal of phenolic compounds. Int. J. Biol. Macromol. 2019, 123, 1125–1131. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Crit. Rev. Env. Sci. Technol. 2017, 47, 2331–2386. [Google Scholar] [CrossRef]
- Liang, P.; Zhang, Y.; Wang, D.; Xu, Y.; Luo, L. Preparation of mixed rare earths modified chitosan for fluoride adsorption. J. Rare Earths 2013, 31, 817–822. [Google Scholar] [CrossRef]
- Sowmya, A.; Meenakshi, S. Effective removal of nitrate and phosphate anions from aqueous solutions using functionalised chitosan beads. Des. Water Treat. 2014, 52, 2583–2593. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, W.; Teng, B.; Liu, X.; Zhang, W. Zirconium cross-linked chitosan composite: Preparation, characterization and application in adsorption of Cr(VI). Chem. Eng. J. 2013, 229, 1–8. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Xia, W.; Zhang, W. Preparation and characterization of chitosan-zirconium(IV) composite for adsorption of vanadium(V). Int. J. Biol. Macromol. 2014, 64, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Demey, H.; Vincent, T.; Ruiz, M.; Nogueras, M.; Sastre, A.M.; Guibal, E. Boron recovery from seawater with a new low-cost adsorbent material. Chem. Eng. J. 2014, 254, 463–471. [Google Scholar] [CrossRef]
- Demey, H.; Vincent, T.; Ruiz, M.; Sastre, A.; Guibal, E. Development of a new chitosan/Ni(OH)(2)-based sorbent for boron removal. Chem. Eng. J. 2014, 244, 576–586. [Google Scholar] [CrossRef]
- Kluczka, J. Boron Removal from Aqueous Solutions using an Amorphous Zirconium Dioxide. Int. J. Environ. Res. 2015, 9, 711–720. [Google Scholar]
- Anielak, A.M. High Effective Methods of Water Purification (in Polish); WN PWN SA: Warszawa, Poland, 2015. [Google Scholar]
- Qi, J.; Zhang, G.; Li, H. Efficient removal of arsenic from water using a granular adsorbent: Fe–Mn binary oxide impregnated chitosan bead. Bioresour. Technol. 2015, 193, 243–249. [Google Scholar] [CrossRef]
- Rahmani, A.; Karimi, G.R.; Rahmani, A.; Hosseini, M.; Rahmani, A. Removal/separation of Co(II) ion from environmental sample solutions by MnFe2O4/bentonite nanocomposite as a magnetic nanomaterial. Des. Water Treat. 2017, 89, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Muliwa, A.M.; Leswifi, T.Y.; Maity, A.; Ochieng, A.; Onyango, M.S. Fixed-bed operation for manganese removal from water using chitosan/bentonite/MnO composite beads. Environ. Sci. Pollut. Res. 2018, 25, 18081–18095. [Google Scholar] [CrossRef]
- Matern, K.; Lux, C.; Ufer, K.; Kaufhold, S.; Mansfeldt, T. Removal of nickel from groundwater by iron and manganese oxides. Int. J. Environ. Sci. Technol. 2019, 16, 2895–2904. [Google Scholar] [CrossRef]
- Saeed, T.; Naeem, A.; Mahmood, T.; Ahmad, Z.; Farooq, M.F.; Din, I.U.; Khan, I.W. Comparative study for removal of cationic dye from aqueous solutions by manganese oxide and manganese oxide composite. Int. J. Environ. Sci. Technol. 2021, 18, 659–672. [Google Scholar] [CrossRef]
- Kluczka, J.; Kazek-Kęsik, A.; Dudek, G. Boron Sorption and Removal Using Hybrid Hydrogel Beads. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 2nd ed.; Environmental Science and Engineering; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Balistrieri, L.; Murray, J. The surface-chemistry of goethite (alpha-FeOH) in major ion seawater. Am. J. Sci. 1981, 281, 788–806. [Google Scholar] [CrossRef]
- Kluczka, J.; Tórz, A.; Łącka, D.; Kazek-Kęsik, A.; Adamek, J. Boron Removal by Adsorption on Cobalt(II) Doped Chitosan Bio-composite. J. Polym. Environ. 2018, 26, 2039–2048. [Google Scholar] [CrossRef] [Green Version]
- Peng, T.; Xu, L.; Chen, H. Preparation and characterization of high specific surface area Mn3O4 from electrolytic manganese residue. Cent. Eur. J. Chem. 2010, 8, 1059–1068. [Google Scholar] [CrossRef]
- Günister, E.; Pestreli, D.; Ünlü, C.H.; Atıcı, O.; Güngör, N. Synthesis and characterization of chitosan MMT biocomposite systems. Carbohydr. Polym. 2007, 67, 358–365. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Rafigh, S.M.; Heydarinasab, A. Mesoporous Chitosan−SiO2 Nanoparticles: Synthesis, Characterization, and CO2 Adsorption Capacity. ACS Sustain. Chem. Eng. 2017, 5, 10379–10386. [Google Scholar] [CrossRef]
- Dongre, R.; Ghugal, D.N.; Meshram, J.S.; Ramteke, D.S. Fluoride removal from water by zirconium (IV) doped chitosan bio-composite. Afr. J. Environ. Sci. Technol. 2012, 6, 130–141. [Google Scholar] [CrossRef]
- Barbusiński, K.; Filipek, K.; Salwiczek, S. Effect of chitosan modification on its structure and specific surface area. In Chitosan-Based Adsorbents for Wastewater Treatment; Materials Research Foundations: Millersville, PA, USA, 2018; Volume 34, pp. 81–98. [Google Scholar]
- Acharyya, S.S.; Ghosh, S.; Sharma, S.K.; Bal, R. Cetyl alcohol mediated fabrication of forest of Ag/Mn3O4 nanowhiskers catalyst for the selective oxidation of styrene with molecular oxygen. RSC Adv. 2015, 5, 89879–89887. [Google Scholar] [CrossRef]
- Sasidharanpillai, S.; Arcis, H.; Trevani, L.; Tremaine, P.R. Triborate Formation Constants and Polyborate Speciation under Hydrothermal Conditions by Raman Spectroscopy using a Titanium/Sapphire Flow Cell. J. Phys. Chem. B 2019, 123, 5147–5159. [Google Scholar] [CrossRef]
- Cotton, F.A.; Wilkinson, G.; Gaus, P.L. Basic Inorganic Chemistry; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1987. [Google Scholar]
- Owen, B.B. The dissociation constant of boric acid from 10 to 50 °C. J. Am. Chem. Soc. 1934, 56, 1695–1697. [Google Scholar] [CrossRef]
- Lagergren, S. About the Theory of So-Called Adsorption of Soluble Substances. K. Sven. Vetensk. Handlingar. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.; McKay, G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 1998, 76, 822–827. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. Proc. Am. Soc. Civ. Eng. 1963, 89, 31–60. [Google Scholar] [CrossRef]
- Modrzejewska, Z.; Rogacki, G.; Sujka, W.; Zarzycki, R. Sorption of copper by chitosan hydrogel: Kinetics and equilibrium. Chem. Eng. Process. 2016, 109, 104–113. [Google Scholar] [CrossRef]
- Giles, C.H.; D’Silva, A.P.; Easton, I.A. A general treatment and classification of the solute adsorption isotherm, II Experimental interpretation. J. Colloid. Interface Sci. 1974, 47, 766–778. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 1918, 40, 1361. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Dubinin, M.M.; Zaverina, E.D.; Radushkevich, L.V. Sorption and structure of active carbons. I. Adsorption of organic vapors. Zh. Fiz. Khim. 1947, 21, 1351–1362. [Google Scholar]
- Treybal, R.E. Mass Transfer Operations; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Kluczka, J. Removal of boron and manganese ions from wet-flue gas desulfurization wastewater by hybrid chitosan-zirconium sorbent. Polymers 2020, 12, 635. [Google Scholar] [CrossRef] [Green Version]
- Smolik, M.; Zolotajkin, M.; Kluczka, J. Distribution of trace amounts of impurities during manganese(II) sulfate crystallization at 20 °C and 2 °C. Pol. J. Chem. 1995, 69, 1322–1327. [Google Scholar]
- Lin, J.Y.; Mahasti, N.N.N.; Huang, Y.H. Recent advances in adsorption and coagulation for boron removal from wastewater: A comprehensive review. J. Hazard Mater. 2021, 407, 124401. [Google Scholar] [CrossRef] [PubMed]
- Kluczka, J.; Pudło, W.; Krukiewicz, K. Boron adsorption removal by commercial and modified activated carbons. Chem. Eng. Res. Des. 2019, 147, 30–42. [Google Scholar] [CrossRef]
- Babiker, E.; Al-Ghouti, M.A.; Zouari, N.; McKay, G. Removal of boron from water using adsorbents derived from waste tire rubber. J. Environ. Chem. Eng. 2019, 7, 102948. [Google Scholar] [CrossRef]
- Oladipo, A.A.; Gazi, M. High boron removal by functionalized magnesium ferrite nanopowders. Environ. Chem. Lett. 2016, 14, 373–379. [Google Scholar] [CrossRef]
- Sarri, S.; Misaelides, P.; Zamboulis, D.; Warchol, J. Boron removal from aqueous solutions by a polyethylenimine-epichlorohydrin resin. J. Serb. Chem. Soc. 2018, 83, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Syed, M.A.; Al Sawafi, M.; Shaik, F.; Nayeemuddin, M. Polyurethane Green Composites: Synthesize, Characterization and Treatment of Boron Present in the Oil Produced Water. Int. J. Eng. Res. Technol. 2020, 13, 1866–1873. [Google Scholar] [CrossRef]
- Mahdavi, S.; Salehi, Z.; Zarabi, M. Isotherm and kinetic studies for adsorption of boron on nano-copper oxide (CuO) in non-competitive and competitive solutions. Desalin. Water Treat. 2020, 192, 259–270. [Google Scholar] [CrossRef]
- Kluczka, J.; Dudek, G.; Kazek-Kęsik, A.; Gnus, M. Chitosan Hydrogel Beads Supported with Ceria for Boron Removal. Int. J. Mol. Sci. 2019, 20, 1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kluczka, J.; Dudek, G.; Kazek-Kęsik, A.; Gnus, M.; Krzywiecki, M.; Mitko, K.; Krukiewicz, K. The Use of Lanthanum Ions and Chitosan for Boron Elimination from Aqueous Solutions. Polymers 2019, 11, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, R.; Zhang, Y.; Kang, J.; Tang, Y.; Zhu, C.; Liu, L. Nanorod-Like Polymer Adsorbents with Intermediate Dihydroxy Functional Groups for Efficient Boron Removal. ChemistrySelect 2021, 6, 6197–6201. [Google Scholar] [CrossRef]
- Abba, M.U.; Che Man, H.; Syahidah Azis, R.; Idris, A.I.; Hazwan Hamzah, M.; Abdulsalam, M. Synthesis of Nano-Magnetite from Industrial Mill Chips for the Application of Boron Removal: Characterization and Adsorption Efficacy. Int. J. Environ. Res. Public Health 2021, 18, 1400. [Google Scholar] [CrossRef] [PubMed]
Element | Elemental Composition in wt.% | |
---|---|---|
Unmodified Chitosan | Mn-Biosorbent | |
carbon | 40.2 | 19.7 |
oxygen | 38.2 | 42.2 |
nitrogen | 21.6 | 17.8 |
manganese | - | 20.2 |
Initial Boron Concentration | Experimental Capacity | Parameters of the Kinetic Models | |||
---|---|---|---|---|---|
Pseudo-first order | |||||
C0 (mg/L) | qexpt (mg/g) | q1 (mg/g) | K1 (g/(mg × h)) | R12 | |
20 | 1.08 | 0.167 | −0.006 | 0.133 | |
100 | 4.79 | 0.439 | 0.040 | 0.386 | |
Pseudo-second order | |||||
C0 (mg/L) | qexpt (mg/g) | q2 (mg/g) | k2 (g/(mg × h)) | R22 | r (mg/(g × h)) |
20 | 1.08 | 1.14 | 3.41 | 0.999 | 4.40 |
100 | 4.79 | 4.86 | 1.90 | 0.999 | 44.8 |
Intraparticle diffusion model | |||||
C0 (mg/L) | qexpt (mg/g) | q3 (mg/g) | Kp (mg/(g × (h)1/2)) | R32 | |
20 | 1.08 | 0.950 | 0.028 | 0.552 | |
100 | 4.79 | 4.07 | 0.136 | 0.377 |
Langmuir Model | Freundlich Model | Dubinin–Radushkevich Model | ||||||
---|---|---|---|---|---|---|---|---|
qm (mg/g) | B (L/mg) | R2 | KF ((mg/g)(L/mg)1/n) | n | R2 | xm (mg/g) | E (kJ/mol) | R2 |
4.1 | 0.0195 | 0.9950 | 0.068 | 1.035 | 0.9996 | 21.8 | −7.1 | 0.9914 |
Cycle No | q (mg/g) | D (%) | Manganese Concentration in Solution (mg/L) | |
---|---|---|---|---|
After Sorption | After Desorption | |||
1 | 4.44 ± 0.20 | 94.5 ± 2.2 | 0.010 ± 0.002 | 0.026 ± 0.002 |
2 | 4.17 ± 0.18 | 103.4 ± 3.8 | 0.027 ± 0.008 | 0.020 ± 0.002 |
3 | 4.07 ± 0.07 | 102.2 ± 3.1 | 0.023 ± 0.008 | 0.020 ± 0.001 |
Sorbent/Parameter | Temp. (°C) | pH | C0 (mg/L) | Sorbent Dosage (g/L) | t (h) | q (mg/g) | Ref. |
---|---|---|---|---|---|---|---|
BSR Amberlite IRA-743 | 30 | 9.5 | 40 | 10 | - | 7.5 | [6] |
Alginate–alumina | 25 | 9.5 | 500 | 7 | 72 | 19.6 | [8] |
Alumina | 25 | 9.5 | 500 | 7 | 72 | 4.5 | [8] |
Chitosan–NanoTiO2 | 25 | 4 | 20 | 50 | 5 | 4.3 | [10] |
Chitosan–NanoCr2O3 | 25 | 4 | 20 | 50 | 5 | 3.5 | [10] |
Chitosan–NanoFe3O4 | 25 | 4 | 20 | 50 | 5 | 4.4 | [10] |
Chitosan–Fe(OH)3 | 25 | 4 | 20 | 50 | 5 | 7.8 | [10] |
Chitosan–NanoTiO2 | 25 | 4 | 20 | 50 | 5 | 4.3 | [10] |
Chitosan–Co(OH)2 | 25 | 8.5 | 20 | 50 | 60 | 2.5 | [31] |
Activated carbon F400 | 25 | 7 | 60 | 10 | 2 | 0.85 | [54] |
F400-mannitol | 25 | 8.5 | 60 | 10 | 4 | 1.5 | [54] |
Waste tire rubber | - | 2 | 17.5 | - | - | 16.7 | [55] |
Glycidol-magnesium ferrite | 25 | 7 | 100 | 1 | 0.5 | 69.2 | [56] |
Polyethylenimine-epichlorohydrin resin | 25 | 9 | 5000 | 5 | 24 | 55 | [57] |
Polyurethane-algae | - | 7 | 6.44 OPW * | 20 | 72 | 0.27 | [58] |
Cooper oxide nanoparticles | 25 | 7 | 10 | 1 | 24 | 3.5 | [59] |
Chitosan–Ce(OH)4 | 20 | 7 | 500 | 100 | 48 | 13.5 | [60] |
Chitosan–La(OH)3 | 20 | 5 | 100 | 100 | 24 | 11.1 | [61] |
Poly (VBC-DVB)-TRIS | - | 8 | 500 | - | - | 8.99 | [62] |
Nano-magnetite (Fe3O4) | - | 8 | 50 | 0.5 | 3 | 8.44 | [63] |
Mn-biosorbent | 20 | 7 | 5000 | 50 | 2 | 187 | Present study |
Mn-biosorbent | 20 | 7 | 100 | 50 | 2 | 4.8 | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluczka, J.; Dudek, G.; Pudło, W.; Kazek-Kęsik, A.; Turczyn, R. Boron Removal by Sorption on Modified Chitosan Hydrogel Beads. Materials 2021, 14, 5646. https://doi.org/10.3390/ma14195646
Kluczka J, Dudek G, Pudło W, Kazek-Kęsik A, Turczyn R. Boron Removal by Sorption on Modified Chitosan Hydrogel Beads. Materials. 2021; 14(19):5646. https://doi.org/10.3390/ma14195646
Chicago/Turabian StyleKluczka, Joanna, Gabriela Dudek, Wojciech Pudło, Alicja Kazek-Kęsik, and Roman Turczyn. 2021. "Boron Removal by Sorption on Modified Chitosan Hydrogel Beads" Materials 14, no. 19: 5646. https://doi.org/10.3390/ma14195646
APA StyleKluczka, J., Dudek, G., Pudło, W., Kazek-Kęsik, A., & Turczyn, R. (2021). Boron Removal by Sorption on Modified Chitosan Hydrogel Beads. Materials, 14(19), 5646. https://doi.org/10.3390/ma14195646