Microstructural, Mechanical and Radiological Characterization of Mortars Made with Granite Sand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mortar Preparation
- (a)
- Binder type:
- Cement with high FA content: 70% OPC + 30% FA
- Hybrid alkaline cement: 30% OPC + 70% FA
- (b)
- Sand type:
- Siliceous (S)
- Granite (G)
- (c)
- Presence/absence of the superplasticiser (SP). SP (1 wt% of the binder) was added only to the 70% OPC + 30% FA mortars, for the conventional superplasticisers used in Portland cement concrete are known to be ineffective in alkaline-activated or geopolymer systems.
2.3. Mechanical and Microstructural Characterisation
2.4. Radiological Characterisation. Statistical Analysis
3. Results and Discussion
3.1. Mechanical and Microstructural Characterisation
3.2. Radiological Characterisation
4. Conclusions
- (1)
- Given the same particle size of siliceous and granite sand, mortars made with the latter call for more mixing water, whether the cement used is an FA-bearing OPC or a hybrid alkaline binder. That is attributable to the more irregular shape and more porous texture of granite sand, which consequently retains more water. The ultimate outcome is lower mechanical strength and higher porosity in the respective mortars.
- (2)
- The addition of superplasticisers fluidises FA-bearing OPC mortars prepared with granite sand less than mortars with siliceous sand. That lesser effect on the mixing water needed is likewise due to the surface characteristics of granite sand.
- (3)
- The inference of the foregoing is that mortars made with both types of eco-efficient cements develop lower mechanical strength and higher porosity when prepared with granite than with siliceous sand.
- (1)
- The new system for determining natural radionuclides in 5-cm cubic specimens is valid. To date that methodology has been verified in cement pastes, but not in mortars. Validity applies to both OPC + FA and hybrid alkaline cement mortars made with either siliceous or granite sand.
- (2)
- The microstructural changes associated with the use of superplasticisers lower the mixing water content needed, and consequently the porosity and pore size distribution have no effect on mortar radiological content measurement.
- (3)
- Mortars with granite sand have very high activity concentrations, >0.96, whilst several exceed the threshold value of 1. The uranium series radionuclides and especially 226Ra, which largely account for the dose rate, would therefore determine restricted use of granite sand. The high radionuclide concentration in the uranium natural decay series is due to the hydrothermal formation of that element, which would also explain the higher values observed for the U than for the Th series.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vázquez-Nion, D.; Silva, B.; Prieto, B. Bioreceptivity index for granitic rocks used as construction material. Sci. Total Environ. 2018, 633, 112–121. [Google Scholar] [CrossRef]
- Baker, M.B. The Application of Marble and Granite as Building Materials in Jordan. Jordan J. Civ. Eng. 2017, 11, 234–238. [Google Scholar]
- Mármol, I.; Ballester, P.; Cerro, S.; Monrós, G.; Morales, J.; Sánchez, L. Use of granite sludge wastes for the production of coloured cement-based mortars. Cem. Concr. Compos. 2010, 32, 617–622. [Google Scholar] [CrossRef]
- Terrones-Saeta, J.M.; Suárez-Macías, J.; Corpas-Iglesias, F.A.; Korobiichuk, V.; Shamrai, V. Development of Ceramic Materials for the Manufacture of Bricks with Stone Cutting Sludge from Granite. Minerals 2020, 10, 621. [Google Scholar] [CrossRef]
- Zanelato, E.; Azevedo, A.; Marvila, M.; Lima, T.; Alexandre, J.; Rocha, P.; Monteiro, S.; Vieira, C. Influence of the Granulometry of the Granite Residue on the Sorptivity of Ceramic Blocks. In Characterization of Minerals, Metals, and Materials; Springer Link: New York, NY, USA, 2021; pp. 463–470. [Google Scholar]
- Hernández-Crespo, M.S.; Rincón, J.M. New porcelainized stoneware materials obtained by recycling of MSW incinerator fly ashes and granite sawing residues. Ceram. Int. 2001, 27, 713–720. [Google Scholar] [CrossRef]
- Torres, P.; Fernandes, H.R.; Agathopoulos, S.; Tulyaganov, D.U.; Ferreira, J.M.F. Incorporation of granite cutting sludge in industrial porcelain tile formulations. J. Eur. Ceram. Soc. 2004, 24, 3177–3185. [Google Scholar] [CrossRef]
- Costa, G.; Della, V.P.; Ribeiro, M.J.; Oliveira, A.P.N.; Monrós, G.; Labrincha, J.A. Synthesis of black ceramic pigments from secondary raw materials. Dye. Pigment. 2008, 77, 137–144. [Google Scholar] [CrossRef]
- Sadek, D.M.; El-Attar, M.M.; Ali, H.A. Reusing of marble and granite powders in self-compacting concrete for sustainable development. J. Clean. Prod. 2016, 121, 19–32. [Google Scholar] [CrossRef]
- Ramos, T.; Matos, A.M.; Schmidt, B.; Rio, J.; Sousa-Coutinho, J. Granitic quarry sludge waste in mortar: Effect on strength and durability. Constr. Build. Mater. 2013, 47, 1001–1009. [Google Scholar] [CrossRef]
- Singh, S.; Nagar, R.; Agrawal, V. A review on Properties of Sustainable Concrete using granite dust as replacement for river sand. J. Clean. Prod. 2016, 126, 74–87. [Google Scholar] [CrossRef]
- Felixkala, T.; Partheeban, P. Granite powder concrete. Indian J. Sci. Technol. 2010, 3, 311–317. [Google Scholar] [CrossRef]
- Allard, B.; Olofsson, U.; Torstenfelt, B. Environmental actinide chemistry. Inorg. Chim. Acta 1984, 94, 205–221. [Google Scholar] [CrossRef]
- Condomines, M.; Hemond, C.; Allègre, C.J. UThRa radioactive disequilibria and magmatic processes. Earth Planet. Sci. Lett. 1988, 90, 243–262. [Google Scholar] [CrossRef]
- Tzortzis, M.; Tsertos, H.; Christofides, S.; Christodoulides, G. Gamma radiation measurements and dose rates in commercially-used natural tiling rocks (granites). J. Environ. Radioact. 2003, 70, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Peng, T.; Sun, H.; Yue, H. Release behavior of uranium in uranium mill tailings under environmental conditions. J. Environ. Radioact. 2017, 171, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Abdelouas, A. Uranium Mill Tailings: Geochemistry, Mineralogy, and Environmental Impact. Elements 2006, 2, 335–341. [Google Scholar] [CrossRef]
- Latham, A.G.; Schwarcz, H.P. The relative mobility of U, Th and Ra isotopes in the weathered zones of the Eye-Dashwa Lakes granite pluton, northwestern Ontario, Canada. Geochim. Cosmochim. Acta 1987, 51, 2787–2793. [Google Scholar] [CrossRef]
- Suárez-Navarro, J.A.; Alonso, M.D.M.; Gascó, C.; Pachón, A.; Carmona-Quiroga, P.M.; Argiz, C.; Sanjuán, M.Á.; Puertas, F. Effect of particle size and composition of granitic sands on the radiological behaviour of mortars. Boletín Soc. Española Cerámica Vidr. 2021. In Press. [Google Scholar] [CrossRef]
- Sanjuán, M.A.; Argiz, C.; Alonso, M.M.; Gascó, C.; Suárez-Navarro, J.A.; Puertas, F. Natural radioactivity of Portland cement mortars made with granite sand. In Proceedings of the 15th International Congress on the Chemistry of Cement, Prague, Czech Republic, 16–20 September 2019. [Google Scholar]
- Puertas, F.; Suárez-Navarro, J.A.; Alonso, M.M.; Gascó, C. NORM wastes, cements and concretes. A review. Mater. Constr. 2021, 71, 244. [Google Scholar] [CrossRef]
- EU. Council Directive 2013/59/Euratom of 5 Dec. Laying Down Basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiation, and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom; European Commission: Brussel, Belgium, 2013. [Google Scholar]
- Trevisi, R.; Risica, S.; D’Alessandro, M.; Paradiso, D.; Nuccetelli, C. Natural radioactivity in building materials in the European Union: A database and an estimate of radiological significance. J. Environ. Radioact. 2012, 105, 11–20. [Google Scholar] [CrossRef]
- Labrincha, J.; Puertas, F.; Schroeyers, W.; Kovler, K.; Pontikes, Y.; Nuccetelli, C.; Krivenko, P.; Kovalchuk, O.; Petropavlovsky, O.; Komljenovic, M.; et al. 7—From NORM by-products to building materials. In Naturally Occurring Radioactive Materials in Construction; Schroeyers, W., Ed.; Springer: New York, NY, USA, 2017; pp. 183–252. [Google Scholar] [CrossRef]
- Suárez-Navarro, J.A.; Moreno-Reyes, A.M.; Gascó, C.; Alonso, M.M.; Puertas, F. Gamma spectrometry and LabSOCS-calculated efficiency in the radiological characterisation of quadrangular and cubic specimens of hardened portland cement paste. Radiat. Phys. Chem. 2020, 171, 108709. [Google Scholar] [CrossRef]
- Moreno de los Reyes, A.M.; Suárez-Navarro, J.A.; Alonso, M.D.M.; Gascó, C.; Sobrados, I.; Puertas, F. New Approach for the Determination of Radiological Parameters on Hardened Cement Pastes with Coal Fly Ash. Materials 2021, 14, 475. [Google Scholar] [CrossRef]
- Aïtcin, P.-C.; Mindess, S. Sustainability of Concrete; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Puertas, F.; Alonso, M.; Palacios, M. Construcción Sostenible. In El Papel de los Materiales; MATERIAL-ES (SOCIEMAT): Madrid, Spain, 2020. [Google Scholar]
- Palomo, A.; Monteiro, P.; Martauz, P.; Bilek, V.; Fernandez-Jimenez, A. Hybrid binders: A journey from the past to a sustainable future (opus caementicium futurum). Cem. Concr. Res. 2019, 124, 105829. [Google Scholar] [CrossRef]
- Arjuman, P.; Silsbee, M.; Roy, D.M. Quantitative determination of the crystalline and amorphous phases in low calcium fly ash. In Proceedings of the 10th International Congress on Chemistry of Cement, Gotherberg, Sweden, 2–6 June 1997. [Google Scholar]
- EN-196-2: 2014. Methods of Testing Cement. Part 2. Chemical Analysis of Cement; CEN: Brussels, Belgium, 2014. [Google Scholar]
- Pujol, L.; Suárez-Navarro, J.A. Self-absorption correction for beta radioactivity measurements in water samples. Appl. Radiat. Isot. 2004, 60, 693–702. [Google Scholar] [CrossRef]
- EN 196-1:2018. Methods of Testing Cement—Part 1: Determination of Strength; CEN: Brussels, Belgium, 2018. [Google Scholar]
- EN-1097-6:2001. Test for Mechanical and Physical Properties of Aggregates. Part 6: Determination of Particle Density and Water Absorption; CEN: Brussels, Belgium, 2011. [Google Scholar]
- UNE-EN-1015-3. Métodos de Ensayo de los Morteros de Albañilería. Parte 3. Determinación del Mortero Fresco (por la Mesa de Sacudidas); UNE: Madrid, Spain, 2000. [Google Scholar]
- ASTM Committee. ASTM C109/C109M-02 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars; Annu B ASTM Stand 4:1-6; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- EN 12390-7:2009. Testing Hardened Concrete—Part 7: Density of Hardened Concrete; CEN: Brussels, Belgium, 2009. [Google Scholar]
- UNE-EN ISO/IEC 17025:2005. Conformity Assessment. General Requirements for the Competence of Testing and Calibration Laboratories; AENOR: Madrid, Spain, 2005. [Google Scholar]
- CANBERRA. Genie 2000 Operations Manual; Canberra Industries: Meriden, CT, USA, 2012. [Google Scholar]
- Be, M.-M. Summary Report on the Gamma-Ray Measurements and Evaluation of Decay Data at CEA-BNM/LNHB; International Atomic Energy Agency: Vienna, Austria, 2000. [Google Scholar]
- Suárez-Navarro, J.A.; Gascó, C.; Alonso, M.M.; Blanco-Varela, M.T.; Lanzon, M.; Puertas, F. Use of Genie 2000 and Excel VBA to correct for γ-ray interference in the determination of NORM building material activity concentrations. Appl. Radiat. Isot. 2018, 142, 1–7. [Google Scholar] [CrossRef]
- EC-European Commission. Radiological protection principles concerning the natural radioactivity of building materials. Radiat. Prot. 1999, 112. [Google Scholar]
- Nuccetelli, C.; Risica, S.; D’Alessandro, M.; Trevisi, R. Natural radioactivity in building material in the European Union: Robustness of the activity concentration index I and comparison with a room model. J. Radiol. Prot. 2012, 32, 349. [Google Scholar] [CrossRef] [PubMed]
- EC. Radiation Protection 122. In Practical Use of the Concepts of Clearance and Exemption Part II: Application of the Concepts of Exemption and Clearance to Natural Radiation Sources. Radiation Protection; European Commission: Brussels, Belgium, 2001. [Google Scholar]
- Bambynek, W. Uncertainty Assignment in Radionuclide Metrology. In Low-Level Measurements and Their Applications to Environmental Radioactivity; García-Leon, M., Madurga, G., Eds.; World Scientific: Singapore; Huelva, Spain, 1987. [Google Scholar]
- Miller, J.N.; Miller, J.C. Estadística y Quimiometría Para Química Analítica, 4th ed.; Pearson Educación: Madrid, Spain, 2005. [Google Scholar]
- Ramos, G.R.; Garcia-Alvarez-Coque, C. Quimiometría; Síntesis: Madrid, Spain, 2001. [Google Scholar]
- Barros-Dios, J.M.; Ruano-Ravina, A.; Gastelu-Iturri, J.; Figueiras, A. Factors underlying residential radon concentration: Results from Galicia, Spain. Environ. Res. 2007, 103, 185–190. [Google Scholar] [CrossRef] [PubMed]
Material | CaO | SiO2 | Al2O3 | MgO | Fe2O3 | MnO | Na2O | P2O5 | SO3 | K2O | TiO2 | Otros | LoI 1 | I.R. 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OPC | 64.47 | 20.29 | 5.67 | 0.84 | 2.35 | - | 0.11 | 0.14 | 2.91 | 0.97 | 0.24 | 0.17 | 2.97 | 1.07 |
FA | 4.78 | 42.44 | 26.95 | 0.80 | 18.40 | - | 0.50 | 0.20 | 1.44 | 1.53 | 1.07 | 0.03 | 1.63 | 7.78 |
S | 0.15 | 92.95 | 4.11 | 0.15 | 0.76 | 0.03 | - | - | 0.04 | 1.17 | 0.09 | 0.36 | 0.19 | - |
G | 0.90 | 71.90 | 15.39 | 0.52 | 1.39 | 0.03 | - | - | 0.02 | 5.56 | 0.25 | 3.34 | 0.70 | - |
Material | OPC | |||||||
Phase | C3S | C2S | C3A | C4AF | Gypsum | Bassanite | Calcite | |
(wt%) | 64.21 | 13.16 | 8.98 | 5.82 | 1.77 | 1.64 | 4.42 | |
FA | ||||||||
Material Phase | Amorphous phase | Quartz | Mullite | Hematite | Magnesium ferrite | Magnetite | Maghemite | Calcite |
(wt%) | 62.09 | 7.97 | 20.43 | 2.41 | 3.99 | 1.65 | 0.82 | 0.64 |
Material | Dv10 (µm) | Dv50 (µm) | Dv90 (µm) | Blaine (m2 kg−1) |
---|---|---|---|---|
OPC | 2.34 | 9.31 | 27.01 | 404.68 |
FA | 1.93 | 16.13 | 51.54 | 451.87 |
Sand | Quartz | Alkaline Feldspars | TiO2 | Phyllosilicates |
---|---|---|---|---|
S | 92.3 | 7.7 | -- | -- |
G | 64.8 | 28.2 | 2.4 | 4.6 |
Siliceous (S) and Granite (G) Sand Particle Size Distribution | |
---|---|
Sieve (mm) | (%) |
2 | 0 |
1 | 34.263 |
0.5 | 32.079 |
0.212 | 14.952 |
0.125 | 12.18 |
0.063 | 6.015 |
≤0.063 | 0.501 |
Mortar | % OPC | % FA | Sand | L/S | Liquid | % SP |
---|---|---|---|---|---|---|
M1S | 70 | 30 | S | 0.50 | Water | -- |
M1S-SP | 70 | 30 | S | 0.35 | Water | 1 |
M1G | 70 | 30 | G | 0.65 | Water | -- |
M1G-SP | 70 | 30 | G | 0.53 | Water | 1 |
M2S | 30 | 70 | S | 0.76 | 8 M NaOH | -- |
M2G | 30 | 70 | G | 0.91 | 8 M NaOH | -- |
Mortar | Water Absorption (% wt) | Density (g/mL) | % Total Porosity |
---|---|---|---|
M1S | 17.75 | 2.11 | 23.10 |
M1S-SP | 12.50 | 2.20 | 12.34 |
M1-G | 21.72 | 1.97 | 20.73 |
M1G-SP | 17.05 | 2.05 | 18.61 |
M2S | 22.39 | 2.02 | 21.96 |
M2G | 24.01 | 1.93 | 26.01 |
Mortar | Water Absorption (% wt) | Density (g/mL) | % Total Porosity |
---|---|---|---|
M1S | 15.68 | 2.15 | 10.90 |
M1S-SP | 10.42 | 2.21 | 9.86 |
M1-G | 20.06 | 2.00 | 17.68 |
M1G-SP | 14.47 | 2.09 | 15.37 |
M2S | 22.30 | 2.01 | 21.83 |
M2G | 23.32 | 1.92 | 26.97 |
Sample | Uranium Series | Thorium Series | Actinium Series | 40K | ||||||
---|---|---|---|---|---|---|---|---|---|---|
234Th | 226Ra | 214Pb | 214Pb | 210Pb | 228Ac | 212Pb | 208Tl | 235U | ||
FA | 184.5 ± 6.4 | 164 ± 13 | 178 ± 10 | 159.6 ± 2.9 | 108.0 ± 3.7 | 59.6 ± 1.6 | 66.8 ± 3.8 | 23.30 ± 0.71 | 7.82 ± 0.68 | 292.0 ± 9.2 |
OPC | 20.2 ± 1.3 | 19.0 ± 1.9 | 18.8 ± 1.1 | 17.29 ± 0.42 | 19.1 ± 1.4 | 20.14 ± 0.64 | 21.4 ± 1.6 | 8.26 ± 0.27 | <2.4 | 235.0 ± 7.4 |
Sand (S) | 11.2 ± 2.8 | 9.4 ± 5.0 | 7.26 ± 0.66 | 6.7 ± 1.1 | 20.4 ± 3.9 | 5.97 ± 0.44 | 7.47 ± 0.50 | 2.92 ± 0.22 | <3.5 | 141 ± 10 |
Sand (G) | 208 ± 15 | 179 ± 16 | 202 ± 11 | 188 ± 12 | 227 ± 23 | 59.6 ± 2.2 | 64.2 ± 3.7 | 26.8 ± 1.3 | 7.9 ± 1.0 | 1066 ± 46 |
NaOH 8 M | <3.8 | <3.8 | <0.9 | <0.9 | <3.5 | <1.2 | <0.6 | <0.3 | <2.2 | <4.6 |
SP | <6.5 | <4.6 | <0.4 | <0.3 | <6.5 | <0.7 | <0.3 | <0.2 | <1.6 | <2.4 |
Sample | Type | Uranium Series | Thorium Series | Actinium Series | 40K | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
234Th | 226Ra | 214Pb | 214Pb | 210Pb | 228Ac | 212Pb | 208Tl | 235U | |||
M1S-2d | Cubic specimens | 25.7 ± 1.9 | 19.2 ± 3.0 | 19.0 ± 1.9 | 17.8 ± 2.0 | 26.4 ± 2.4 | 11.8 ± 1.0 | 12.59 ± 0.70 | 5.27 ± 0.33 | <1.2 | 154 ± 13 |
Ground samples | 23.8 ± 2.1 | 12.7 ± 2.2 | 18.0 ± 1.7 | 17.0 ± 1.8 | 21.1 ± 2.6 | 11.76 ± 0.50 | 12.67 ± 0.86 | 5.30 ± 0.37 | <1.8 | 138.3 ± 5.9 | |
Calculated | 22.9 ± 1.9 | 20.2 ± 3.5 | 19.6 ± 3.5 | 17.80 ± 0.76 | 23.8 ± 2.6 | 11.09 ± 0.33 | 12.76 ± 0.49 | 4.79 ± 0.16 | 0.521 ± 0.045 | 150.0 ± 6.8 | |
M1S-SP-2d | Cubic specimens | 26.4 ± 2.5 | 20.9 ± 5.7 | 19.1 ± 2.6 | 17.3 ± 2.3 | 26.0 ± 3.1 | 11.8 ± 1.0 | 12.31 ± 0.90 | 5.14 ± 0.23 | <1.5 | 158 ± 15 |
Ground samples | 21.7 ± 2.0 | 16.7 ± 2.7 | 17.8 ± 1.8 | 17.9 ± 2.3 | 16.6 ± 4.6 | 11.90 ± 0.49 | 12.28 ± 0.74 | 4.67 ± 0.28 | <1.8 | 144.4 ± 5.3 | |
Calculated | 23.6 ± 2.0 | 20.8 ± 3.6 | 20.3 ± 3.6 | 18.36 ± 0.79 | 24.5 ± 2.7 | 11.44 ± 0.34 | 13.17 ± 0.50 | 4.94 ± 0.16 | 0.538 ± 0.047 | 154.8 ± 7.0 | |
M2S-2d | Cubic specimens | 43.8 ± 2.2 | 29.4 ± 3.8 | 29.8 ± 1.2 | 27.7 ± 1.2 | 40.9 ± 3.6 | 15.51 ± 0.36 | 16.48 ± 0.69 | 6.91 ± 0.31 | <2.3 | 171.4 ± 3.6 |
Ground samples | 37.5 ± 3.2 | 30.0 ± 3.5 | 34.6 ± 1.9 | 32.9 ± 1.2 | 33.5 ± 3.9 | 16.25 ± 0.59 | 17.0 ± 1.0 | 6.97 ± 0.34 | <1.9 | 156.3 ± 5.4 | |
Calculated | 35.5 ± 2.0 | 31.2 ± 3.7 | 31.9 ± 3.7 | 28.79 ± 0.81 | 30.4 ± 2.5 | 13.80 ± 0.37 | 15.93 ± 0.65 | 5.79 ± 0.17 | 1.15 ± 0.10 | 146.6 ± 6.5 | |
M1S-28d | Cubic specimens | 25.9 ± 2.4 | 16.8 ± 3.9 | 20.24 ± 0.81 | 18.75 ± 0.59 | 26.3 ± 3.2 | 12.26 ± 0.79 | 12.91 ± 0.55 | 5.61 ± 0.22 | <1.6 | 140.9 ± 6.4 |
Ground samples | 21.5 ± 1.8 | 16.2 ± 2.4 | 18.7 ± 1.9 | 17.2 ± 2.1 | 25.3 ± 3.0 | 12.60 ± 0.61 | 12.91 ± 0.77 | 5.20 ± 0.27 | <1.7 | 136.1 ± 4.7 | |
Calculated | 22.9 ± 1.9 | 20.2 ± 3.5 | 19.6 ± 3.5 | 17.80 ± 0.76 | 23.8 ± 2.6 | 11.09 ± 0.33 | 12.77 ± 0.49 | 4.79 ± 0.16 | 0.522 ± 0.045 | 150.0 ± 6.8 | |
M1S-SP-28d | Cubic specimens | 27.4 ± 1.9 | 15.8 ± 5.1 | 18.6 ± 2.2 | 17.2 ± 2.1 | 25.6 ± 4.5 | 11.6 ± 1.1 | 12.43 ± 0.71 | 5.12 ± 0.33 | <1.2 | 153 ± 18 |
Ground samples | 22.0 ± 2.0 | 19.4 ± 3.3 | 21.1 ± 2.7 | 20.4 ± 3.1 | 22.6 ± 2.6 | 12.43 ± 0.92 | 12.84 ± 0.74 | 4.91 ± 0.25 | <1.3 | 143.3 ± 8.3 | |
Calculated | 21.8 ± 2.0 | 19.1 ± 3.6 | 18.5 ± 3.6 | 16.77 ± 0.78 | 22.8 ± 2.7 | 9.59 ± 0.33 | 11.20 ± 0.45 | 4.18 ± 0.16 | 0.538 ± 0.047 | 133.2 ± 6.9 | |
M2S-28d | Cubic specimens | 41.8 ± 2.9 | 23.7 ± 1.9 | 29.0 ± 3.9 | 26.6 ± 3.7 | 38.0 ± 3.9 | 14.3 ± 1.0 | 15.7 ± 1.2 | 6.77 ± 0.34 | <1.6 | 151 ± 12 |
Ground samples | 37.6 ± 3.2 | 26.9 ± 3.4 | 26.9 ± 2.3 | 24.7 ± 1.9 | 26.0 ± 3.6 | 14.37 ± 0.56 | 15.28 ± 0.88 | 5.82 ± 0.33 | <2.1 | 122.6 ± 4.8 | |
Calculated | 34.2 ± 2.0 | 30.0 ± 3.7 | 30.8 ± 3.7 | 27.69 ± 0.81 | 29.2 ± 2.5 | 12.53 ± 0.36 | 14.58 ± 0.64 | 5.27 ± 0.17 | 1.15 ± 0.10 | 131.8 ± 6.4 |
Sample | Type | Uranium Series | Thorium Series | Actinium Series | 40K | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
234Th | 226Ra | 214Pb | 214Pb | 210Pb | 228Ac | 212Pb | 208Tl | 235U | |||
M1G-2d | Cubic specimens | 158 ± 13 | 130 ± 13 | 153 ± 12 | 140 ± 14 | 153 ± 11 | 51.4 ± 3.4 | 56.2 ± 2.5 | 21.7 ± 1.0 | 6.4 ± 1.0 | 845 ± 63 |
Ground samples | 153 ± 12 | 130 ± 14 | 149.9 ± 8.1 | 137.8 ± 5.2 | 147 ± 15 | 48.8 ± 1.8 | 54.5 ± 3.1 | 21.4 ± 1.0 | 6.9 ± 1.2 | 892 ± 30 | |
Calculated | 149 ± 10 | 129 ± 10 | 144 ± 10 | 134.1 ± 7.7 | 156 ± 15 | 45.3 ± 1.4 | 48.9 ± 2.4 | 20.02 ± 0.84 | 5.60 ± 0.65 | 741 ± 30 | |
M1G-SP-2d | Cubic specimens | 180 ± 10 | 138 ± 11 | 163.4 ± 6.2 | 147.9 ± 4.6 | 165 ± 13 | 54.3 ± 1.1 | 58.7 ± 2.4 | 23.25 ± 0.76 | 7.7 ± 1.0 | 902 ± 20 |
Ground samples | 160 ± 12 | 140 ± 13 | 155.0 ± 8.5 | 138.2 ± 3.1 | 160 ± 17 | 54.5 ± 1.7 | 56.8 ± 3.3 | 22.4 ± 1.0 | 7.4 ± 1.2 | 919 ± 28 | |
Calculated | 153 ± 10 | 132 ± 11 | 148 ± 11 | 137.4 ± 7.9 | 160 ± 15 | 46.4 ± 1.5 | 50.1 ± 2.5 | 20.52 ± 0.86 | 5.74 ± 0.66 | 760 ± 30 | |
M2G-2d | Cubic specimens | 173 ± 17 | 137 ± 14 | 148.2 ± 7.8 | 134.4 ± 8.9 | 165 ± 12 | 52.1 ± 3.9 | 57.3 ± 3.3 | 22.3 ± 1.3 | 5.20 ± 0.85 | 814 ± 47 |
Ground samples | 159 ± 12 | 137 ± 12 | 147.8 ± 7.7 | 138.8 ± 6.1 | 148 ± 15 | 50.3 ± 2.8 | 53.9 ± 3.1 | 21.5 ± 1.0 | 6.20 ± 0.76 | 817 ± 25 | |
Calculated | 154.5 ± 9.2 | 134 ± 10 | 150 ± 10 | 138.5 ± 7.3 | 156 ± 14 | 46.1 ± 1.4 | 50.1 ± 2.3 | 20.18 ± 0.80 | 5.94 ± 0.62 | 707 ± 28 | |
M1G-28d | Cubic specimens | 152.2 ± 8.1 | 123 ± 10 | 146.6 ± 5.5 | 135.1 ± 8.1 | 146 ± 11 | 50.3 ± 3.0 | 54.8 ± 2.7 | 21.6 ± 1.4 | 5.87 ± 0.88 | 840 ± 65 |
Ground samples | 147 ± 11 | 132 ± 12 | 146 ± 11 | 138 ± 13 | 152 ± 15 | 50.6 ± 3.4 | 51.8 ± 2.9 | 21.5 ± 1.3 | 6.8 ± 1.1 | 871 ± 36 | |
Calculated | 149 ± 10 | 129 ± 10 | 144 ± 10 | 134.1 ± 7.7 | 156 ± 15 | 45.3 ± 1.4 | 48.9 ± 2.4 | 20.02 ± 0.84 | 5.60 ± 0.65 | 741 ± 30 | |
M1G-SP-28d | Cubic specimens | 172 ± 10 | 135 ± 10 | 155.5 ± 6.0 | 143.0 ± 2.2 | 160 ± 12 | 54.1 ± 1.1 | 58.4 ± 2.4 | 23.21 ± 0.77 | 8.19 ± 0.76 | 911 ± 20 |
Ground samples | 161 ± 12 | 139 ± 14 | 157.0 ± 8.5 | 145.1 ± 3.5 | 163 ± 17 | 54.8 ± 1.9 | 57.4 ± 3.4 | 22.6 ± 1.1 | <5.6 | 955 ± 30 | |
Calculated | 153 ± 10 | 132 ± 11 | 148 ± 11 | 137.4 ± 7.9 | 160 ± 15 | 46.4 ± 1.5 | 50.1 ± 2.5 | 20.52 ± 0.86 | 5.74 ± 0.66 | 760 ± 30 | |
M2G-28d | Cubic specimens | 161.0 ± 8.6 | 123.6 ± 8.8 | 143.0 ± 5.2 | 129.6 ± 5.6 | 127 ± 18 | 51.4 ± 2.4 | 56.4 ± 2.7 | 22.0 ± 1.2 | 7.3 ± 1.0 | 803 ± 35 |
Ground samples | 150 ± 11 | 125 ± 12 | 133.8 ± 7.1 | 123 ± 10 | 143 ± 15 | 47.8 ± 3.1 | 53.0 ± 3.0 | 21.1 ± 1.2 | 8.0 ± 1.8 | 803 ± 49 | |
Calculated | 154.5 ± 9.2 | 134 ± 10 | 150 ± 10 | 138.5 ± 7.3 | 156 ± 14 | 46.1 ± 1.4 | 50.1 ± 2.3 | 20.18 ± 0.80 | 5.94 ± 0.62 | 707 ± 28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puertas, F.; Suárez-Navarro, J.A.; Gil-Maroto, A.; Moreno de los Reyes, A.M.; Gascó, C.; Pachón, A.; Alonso, M.d.M. Microstructural, Mechanical and Radiological Characterization of Mortars Made with Granite Sand. Materials 2021, 14, 5656. https://doi.org/10.3390/ma14195656
Puertas F, Suárez-Navarro JA, Gil-Maroto A, Moreno de los Reyes AM, Gascó C, Pachón A, Alonso MdM. Microstructural, Mechanical and Radiological Characterization of Mortars Made with Granite Sand. Materials. 2021; 14(19):5656. https://doi.org/10.3390/ma14195656
Chicago/Turabian StylePuertas, Francisca, José Antonio Suárez-Navarro, Alfredo Gil-Maroto, Ana María Moreno de los Reyes, Catalina Gascó, Alicia Pachón, and María del Mar Alonso. 2021. "Microstructural, Mechanical and Radiological Characterization of Mortars Made with Granite Sand" Materials 14, no. 19: 5656. https://doi.org/10.3390/ma14195656
APA StylePuertas, F., Suárez-Navarro, J. A., Gil-Maroto, A., Moreno de los Reyes, A. M., Gascó, C., Pachón, A., & Alonso, M. d. M. (2021). Microstructural, Mechanical and Radiological Characterization of Mortars Made with Granite Sand. Materials, 14(19), 5656. https://doi.org/10.3390/ma14195656