Microbial-Induced Carbonate Precipitation Improves Physical and Structural Properties of Nanjing Ancient City Walls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cubical Samples from the Ancient City Wall Brick
2.2. Microbial Induced Carbonate Precipitation Method
2.3. Compression Strength and Water-Resistance Test
2.4. X-ray Scanning Visualization
3. Results
3.1. Effectiveness of MICP on Megascopic Cracks
3.2. Mechanical Properties of the City Wall Bricks after MICP Treatment
3.3. Effectiveness of MICP on Water Resistance
3.4. Effectiveness of MICP on Natural Cracks Revealed by X-ray Micro-CT
3.5. X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) Analyses
4. Discussion
4.1. MICP Improved the Mechanical Properties of the Bricks
4.2. MICP Improved the Water-Resistance Property of Bricks
4.3. Material Chemistry and Mineralogy after MICP Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.H.; Xia, C.C.; Wu, R.B.; Ma, Y.; Mu, B.G.; Wang, T.W.; Petropoulos, E.; Hokoi, S. Role of the urban plant environment in the sustainable protection of an ancient city wall. Build. Environ. 2021, 187, 13. [Google Scholar] [CrossRef]
- Yang, Z.; Cheng, X. A performance study of high-strength microbial mortar produced by low pressure grouting for the reinforcement of deteriorated masonry structures. Constr. Build. Mater. 2013, 41, 505–515. [Google Scholar] [CrossRef]
- Sepulcre-Aguilar, A.; Hernández-Olivares, F. Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement and sepiolite, for grouting of historic masonry. Cem. Concr. Res. 2010, 40, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Van, R.F. Grout Injection of Masonry, Scientific Approach and Modeling. Restor. Build. Monum. 2001, 7, 407–432. [Google Scholar]
- Kakelar, M.M.; Yavari, M.; Yousefi, M.R.; Nimtaj, A. The influential factors in the effectiveness of microbial induced carbonate precipitation (MICP) for soil consolidation. J. Hum. Env. Health Promot. 2020, 6, 40–46. [Google Scholar]
- De Muynck, W.; De Belie, N.; Verstraete, W. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 2010, 36, 118–136. [Google Scholar] [CrossRef]
- Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 1999, 31, 1563–1571. [Google Scholar] [CrossRef]
- Dekuyer, A.; Cheng, L.; Shahin, M.A.; Cordruwisch, R. Calcium carbonate induced precipitation for soil improvement by urea hydrolysing bacteria. In Proceedings of the World Congress on Advances in Civil, Seoul, Korea, 26–30 August 2012. [Google Scholar]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Improvement in strength properties of ash bricks by bacterial calcite. Ecol. Eng. 2012, 39, 31–35. [Google Scholar] [CrossRef]
- Wang, J.; Arn, M.; Didier, S.; Virginie, W.; Sandra, V.V.; Nico, B.; Nele, D.B. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: A promising strategy for crack self-healing. Front. Microbiol. 2020, 6, 1088. [Google Scholar] [CrossRef]
- Haide, R.; Fest-Santini, S.; Santini, M. Use of X-ray micro-computed tomography for the investigation of drying processes in porous media: A review. Dry. Technol. 2021, 1–14. [Google Scholar] [CrossRef]
- Schlüter, S.; Sheppard, A.; Brown, K.; Wildenschild, D. Image processing of multiphase images obtained via X-ray microtomography: A review. Water Resour. Res. 2014, 50, 3615–3639. [Google Scholar] [CrossRef]
- Munkholm, L.J.; Heck, R.J.; Deen, B. Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability. Geoderma 2012, 181–182, 22–29. [Google Scholar] [CrossRef]
- Zhou, H.; Peng, X.; Perfect, E.; Xiao, T.; Peng, G. Effects of organic and inorganic fertilization on soil aggregation in an Ultisol as characterized by synchrotron based X-ray micro-computed tomography. Geoderma 2013, 195–196, 23–30. [Google Scholar] [CrossRef]
- Peth, S.; Nellesen, J.; Fischer, G.; Horn, R. Non-invasive 3D analysis of local soil deformation under mechanical and hydraulic stresses by μCT and digital image correlation. Soil Tillage Res. 2010, 111, 3–18. [Google Scholar] [CrossRef]
- Gu, K.; Chen, B. Loess stabilization using cement, waste phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction. Constr. Build. Mater. 2020, 231, 117195. [Google Scholar] [CrossRef]
- Yang, X.; Wu, H.; Zhang, J.; Wang, H. Shear behavior of hollow concrete block masonry with precast concrete anti-shear blocks. Adv. Mater. Sci. Eng. 2019, 2019, 9657617. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Wang, H.; Yang, Z. Experimental study on performance of high strength microbial mortar. Mater. Res. Innov. 2014, 18, S2.90–S2.94. [Google Scholar] [CrossRef]
- Kulkarni, P.B.; Nemade, P.D.; Wagh, M.P. Healing of generated cracks in cement mortar using MICP. Civ. Eng. J. 2020, 6, 679–692. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Kim, S.H.; Nam, K. Inhibition of urea hydrolysis by free Cu concentration of soil solution in microbially induced calcium carbonate precipitation. Sci. Total Environ. 2020, 740, 140194. [Google Scholar] [CrossRef]
- Benini, S.; Rypniewski, W.R.; Wilson, K.S.; Miletti, S.; Ciurli, S.; Mangani, S. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: Why urea hydrolysis costs two nickels. Structure 1999, 7, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Guo, H.; Cheng, X.; Li, M. The promotion of magnesium ions on aragonite precipitation in MICP process. Constr. Build. Mater. 2020, 263, 120057. [Google Scholar] [CrossRef]
- Liu, J.; Li, G.; Li, X.a. Geotechnical engineering properties of soils solidified by microbially induced CaCO3 precipitation (MICP). Adv. Civ. Eng. 2021, 2021, 6683930. [Google Scholar]
- Intarasoontron, J.; Pungrasmi, W.; Nuaklong, P.; Jongvivatsakul, P.; Likitlersuang, S. Comparing performances of MICP bacterial vegetative cell and microencapsulated bacterial spore methods on concrete crack healing. Constr. Build. Mater. 2021, 302, 124227. [Google Scholar] [CrossRef]
- Ramachandran, S.K.; Ramakrishnan, V.; Bang, S.S. Remediation of Concrete Using Microorganisms. ACI Mater. J. 2001, 98, 3–9. [Google Scholar]
- Achal, V.; Mukherjee, A.; Basu, P.C.; Reddy, M.S. Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J. Ind. Microbiol. 2009, 36, 433–438. [Google Scholar] [CrossRef]
- Nunes, C.; Pel, L.; Kunecký, J.; Slížková, Z. The influence of the pore structure on the moisture transport in lime plaster-brick systems as studied by NMR. Constr. Build. Mater. 2017, 142, 395–409. [Google Scholar] [CrossRef]
- Sun, X.; Miao, L.; Wang, H.; Yuan, J.; Fan, G. Enhanced rainfall erosion durability of enzymatically induced carbonate precipitation for dust control. Sci. Total Environ. 2021, 791, 148369. [Google Scholar] [CrossRef]
- Preciado, A.; Orduña, A. Numerical modeling strategies for the seismic analysis of masonry structures. In Masonry: Design, Materials and Techniques; Nova Science Publishers: Hauppauge, NY, USA, 2018; pp. 55–79. [Google Scholar]
- Guo, H.; Yue, Z.; Cheng, X.; Ma, R. Crack repair and surface deposition of cement-based materials by MICP technology. Ind. Constr. 2015, 45, 36–41. [Google Scholar]
- Khaliq, W.; Ehsan, M.B. Crack healing in concrete using various bio influenced self-healing techniques. Constr. Build. Mater. 2016, 102, 349–357. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Rodriguez-Gallego, M.; Chekroun, K.B.; Gonzalez-Munoz, M.T. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl. Environ. Microbiol. 2003, 69, 2182–2193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.-J.; Peng, C.-F.; Tang, C.-W.; Chen, Y.-T. Self-healing concrete by biological substrate. Materials 2019, 12, 4099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Miao, L.; Wu, L.; Wang, H. Theoretical quantification for cracks repair based on microbially induced carbonate precipitation (MICP) method. Cem. Concr. Compos. 2021, 118, 103950. [Google Scholar] [CrossRef]
- Jongvivatsakul, P.; Janprasit, K.; Nuaklong, P.; Pungrasmi, W.; Likitlersuang, S. Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Constr. Build. Mater. 2019, 212, 737–744. [Google Scholar] [CrossRef]
- Lai, Y.; Yu, J.; Liu, S.; Liu, J.; Wang, R.; Dong, B. Experimental study to improve the mechanical properties of iron tailings sand by using MICP at low pH. Constr. Build. Mater. 2021, 273, 121729. [Google Scholar] [CrossRef]
- Zomorodian, S.M.A.; Ghaffari, H.; O’Kelly, B.C. Stabilisation of crustal sand layer using biocementation technique for wind erosion control. Aeolian Res. 2019, 40, 34–41. [Google Scholar] [CrossRef]
Materials | Advantages | Disadvantages | Reference |
---|---|---|---|
Lime |
|
| [3] |
Cement |
|
| [4] |
Epoxy |
|
| [2] |
Treatments | Failure Load (kN) | Compressive Strength (MPa) |
---|---|---|
Original cubes | 40.02 ± 3.84 a | 20.67 ± 1.98 a |
MICP remediation | 33.56 ± 9.07 a | 17.33 ± 4.69 a |
No MICP remediation | 19.00 ± 1.98 b | 9.84 ± 1.02 b |
Materials | SiO2 | CaO | Al2O3 | Fe2O3 | P2O5 | SO3 | Cl | K2O | TiO2 | Others |
---|---|---|---|---|---|---|---|---|---|---|
Brick | 59.05 | 3.25 | 16.56 | 5.81 | 0.01 | 0.02 | 0.01 | 2.40 | 0.52 | 12.37 |
MICP filler | 72.66 | 4.31 | 0.05 | 0.07 | 0.37 | 0.09 | 1.08 | 0.02 | – | 21.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, B.; Gui, Z.; Lu, F.; Petropoulos, E.; Yu, Y. Microbial-Induced Carbonate Precipitation Improves Physical and Structural Properties of Nanjing Ancient City Walls. Materials 2021, 14, 5665. https://doi.org/10.3390/ma14195665
Mu B, Gui Z, Lu F, Petropoulos E, Yu Y. Microbial-Induced Carbonate Precipitation Improves Physical and Structural Properties of Nanjing Ancient City Walls. Materials. 2021; 14(19):5665. https://doi.org/10.3390/ma14195665
Chicago/Turabian StyleMu, Baogang, Zheyi Gui, Fei Lu, Evangelos Petropoulos, and Yongjie Yu. 2021. "Microbial-Induced Carbonate Precipitation Improves Physical and Structural Properties of Nanjing Ancient City Walls" Materials 14, no. 19: 5665. https://doi.org/10.3390/ma14195665
APA StyleMu, B., Gui, Z., Lu, F., Petropoulos, E., & Yu, Y. (2021). Microbial-Induced Carbonate Precipitation Improves Physical and Structural Properties of Nanjing Ancient City Walls. Materials, 14(19), 5665. https://doi.org/10.3390/ma14195665