An Innovative Method for Sustainable Utilization of Blast-Furnace Slag in the Cleaner Production of One-Part Hybrid Cement Mortar
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials Resources
2.2. Preparation of One-Part Hybrid Cement Powder
2.3. Preparation of One-Part HC Mortar
2.4. Experimental Methods
2.5. Instrumental Techniques
3. Results and Discussion
3.1. Characterization of DAS
3.2. Flowability and Zeta Potential of One-Part HC Mortars
3.3. Setting Time of One-Part HC Pastes
3.4. Phase Identification
3.5. Compressive Strength
3.6. Microstructure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juenger, M.; Winnefeld, F.; Provis, J.; Ideker, J. Advances in alternative cementitious binders. Cem. Concr. Res. 2011, 41, 1232–1243. [Google Scholar] [CrossRef]
- Claisse, P.A. Civil Introduction to cement and concrete. In Civil Engineering Materials; Butterworth-Heinemann: Waltham, MA, USA, 2016; pp. 155–162. [Google Scholar]
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef] [Green Version]
- Gartner, E. Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 2004, 34, 1489–1498. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Argiz, C.; Gálvez, J.C.; Moragues, A. Effect of silica fume fineness on the improvement of Portland cement strength performance. Constr. Build. Mater. 2015, 96, 55–64. [Google Scholar] [CrossRef]
- Jeong, Y.; Kang, S.H.; Kim, M.O.; Moon, J. Acceleration of cement hydration by hydrophobic effect from supple-mentary cementitious materials: Performance comparison between silica fume and hydrophobic silica. Cem. Concr. Compos. 2020, 12, 103688. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W. Combination of biochar and silica fume as partial cement replacement in mortar: Performance evaluation under normal and elevated temperature. Waste Biomass Valorization 2020, 11, 2807–2824. [Google Scholar] [CrossRef]
- Tang, P.; Chen, W.; Xuan, D.; Zuo, Y.; Poon, C.S. Investigation of cementitious properties of different constituents in municipal solid waste incineration bottom ash as supplementary cementitious materials. J. Clean. Prod. 2020, 258, 120675. [Google Scholar] [CrossRef]
- Rivera, R.A.; Sanjuán, M.Á.; Martín, D.A. Granulated Blast-Furnace Slag and Coal Fly Ash Ternary Portland Cements Optimization. Sustainability 2020, 12, 5783. [Google Scholar] [CrossRef]
- Miller, S. Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: Can there be too much of a good thing? J. Clean. Prod. 2018, 178, 587–598. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Wang, Z. Optimizing design of high strength cement matrix with supplementary cementitious materials. Constr. Build. Mater. 2016, 120, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.; Dong, Y.; Wang, R.; Lu, C.; Wang, X. Resistance improvement of cement mortar containing silica fume to ex-ternal sulfate attacks at normal temperature. Constr. Build. Mater. 2020, 258, 119630. [Google Scholar] [CrossRef]
- Nasr, M.S.; Hussain, T.; Kubba, H.; Shubbar, A.A.F. Influence of using high volume fraction of silica fume on me-chanical and durability properties of cement mortar. J. Eng. Sci. Technol. 2020, 15, 2494–2506. [Google Scholar]
- Saha, A.K.; Sarker, P.K. Effect of sulphate exposure on mortar consisting of ferronickel slag aggregate and supple-mentary cementitious materials. J. Build. Eng. 2020, 28, 101012. [Google Scholar] [CrossRef]
- Souza, D.J.D.; Medeiros, M.H.F.D.; Hoppe, J. Evaluation of external sulfate attack (Na2SO4 and MgSO4): Portland cement mortars containing siliceous supplementary cementitious materials. Rev. IBRACON Estrut. Mater. 2020, 13, 1–16. [Google Scholar] [CrossRef]
- Yingliang, Z.; Jingping, Q.; Zhengyu, M.; Zhenbang, G.; Hui, L. Effect of superfine blast furnace slags on the binary cement containing high-volume fly ash. Powder Technol. 2020, 375, 539–548. [Google Scholar] [CrossRef]
- Harwalkar, A.B.; Awanti, S.S. Laboratory and field investigations on high-volume fly ash concrete for rigid pavement. Transp. Res. Rec. 2014, 2441, 121–127. [Google Scholar] [CrossRef]
- Yao, Y.; Gong, J.K.; Cui, Z. Anti-corrosion performance and microstructure analysis on a marine concrete utilizing coal combustion byproducts and blast furnace slag. Clean Technol. Environ. Policy 2013, 16, 545–554. [Google Scholar] [CrossRef]
- Provis, J.; Palomo, A.; Shi, C. Advances in understanding alkali-activated materials. Cem. Concr. Res. 2015, 78, 110–125. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Tsang, D.C.W. Green remediation by using low-carbon cement-based stabiliza-tion/solidification approaches. In Sustainable Remediation of Contaminated Soil and Groundwater: Materials, Processes, and Assessment; Hou, D., Ed.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 93–118. [Google Scholar]
- Hewlett, P.C.; Liska, M. Lea’s Chemistry of Cement and Concrete, 5th ed.; Elsevier: Amsterdam, The Netherlands; Butterworth-Heinemann: Oxford, UK, 2019. [Google Scholar]
- Kolani, B.; Buffo-Lacarrière, L.; Sellier, A.; Escadeillas, G.; Boutillon, L.; Linger, L. Hydration of slag-blended cements. Cem. Concr. Compos. 2012, 34, 1009–1018. [Google Scholar] [CrossRef]
- Sakai, K.; Watanabe, H.; Suzuki, M.; Hamazaki, K. Properties of granulated blast-furnace slag cement concrete. Spec. Publ. 1992, 132, 1367–1383. [Google Scholar]
- Escalante, J.; Gómez, L.; Johal, K.; Mendoza, G.; Mancha, H.; Méndez, J. Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions. Cem. Concr. Res. 2001, 31, 1403–1409. [Google Scholar] [CrossRef]
- Binici, H.; Temiz, H.; Köse, M.M. The effect of fineness on the properties of the blended cements incorporating ground granulated blast furnace slag and ground basaltic pumice. Constr. Build. Mater. 2007, 21, 1122–1128. [Google Scholar] [CrossRef]
- Zhu, J.; Zhong, Q.; Chen, G.; Li, D. Effect of particlesize of blast furnace slag on properties of portland cement. Procedia Eng. 2012, 27, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.-H.; Islam, J.; Peethamparan, S. Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag. Cem. Concr. Compos. 2012, 34, 650–662. [Google Scholar] [CrossRef]
- Zhang, M.-H.; Islam, J. Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Constr. Build. Mater. 2012, 29, 573–580. [Google Scholar] [CrossRef]
- Shaikh, F.U.A.; Hosan, A. Effect of nano silica on compressive strength and microstructures of high volume blast furnace slag and high volume blast furnace slag-fly ash blended pastes. Sustain. Mater. Technol. 2019, 20, e00111. [Google Scholar] [CrossRef]
- Jiang, W.; Li, X.; Lv, Y.; Jiang, D.; Liu, Z.; He, C. Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica. Constr. Build. Mater. 2020, 238, 117683. [Google Scholar] [CrossRef]
- Shaikh, F.U.A.; Hosan, A. Effect of Nano Alumina on Compressive Strength and Microstructure of High Volume Slag and Slag-Fly Ash Blended Pastes. Front. Mater. 2019, 6, 90. [Google Scholar] [CrossRef]
- Amer, I.; Kohail, M.; El-Feky, M.; Rashad, A.; Khalaf, M.A. Characterization of alkali-activated hybrid slag/cement concrete. Ain Shams Eng. J. 2021, 12, 135–144. [Google Scholar] [CrossRef]
- Shagñay, S.; Ramón, L.; Bautista, M.; Fernández-Álvarez, A.; Velasco, F.; Torres-Carrasco, M. Eco-Efficient Hybrid Cements: Pozzolanic, Mechanical and Abrasion Properties. Appl. Sci. 2020, 10, 8986. [Google Scholar] [CrossRef]
- Angulo-Ramírez, D.E.; de Gutiérrez, R.M.; Puertas, F. Alkali-activated Portland blast-furnace slag cement: Mechanical properties and hydration. Constr. Build. Mater. 2017, 140, 119–128. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry and Applications, 5th ed.; Institut Géopolymère: Saint-Quentin, France, 2020. [Google Scholar]
- Abdel-Gawwad, H.A.; Mohammed, M.S.; Ads, E.N. A novel eco-sustainable approach for the cleaner production of ready-mix alkali activated cement using industrial solid wastes and organic-based activator powder. J. Clean. Prod. 2020, 256, 120705. [Google Scholar] [CrossRef]
- Gawwad, H.A.; El-Aleem, S.A.; Ouda, A. Preparation and characterization of one-part non-Portland cement. Ceram. Int. 2016, 42, 220–228. [Google Scholar] [CrossRef]
- ASTM C230/C230M. Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. 2014. Available online: https://www.astm.org/Standards/C230.htm (accessed on 11 August 2021).
- ASTM C191. Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. 2018. Available online: https://www.astm.org/Standards/C191 (accessed on 11 August 2021).
- ASTM C109/C109M. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. 2020. Available online: https://www.astm.org/Standards/C109 (accessed on 11 August 2021).
- Zuhua, Z.; Xiao, Y.; Huajun, Z.; Yue, C. Role of water in the synthesis of calcined kaolin-based geopolymer. Appl. Clay Sci. 2009, 43, 218–223. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X.; Hooton, R.D. Effects of organosilane-modified polycarboxylate superplasticizer on the fluidity and hydration properties of cement paste. Constr. Build. Mater. 2017, 132, 112–123. [Google Scholar] [CrossRef]
- Yliniemi, J.; Walkley, B.; Provis, J.; Kinnunen, P.; Illikainen, M. Influence of activator type on reaction kinetics, setting time, and compressive strength of alkali-activated mineral wools. J. Therm. Anal. Calorim. 2021, 144, 1129–1138. [Google Scholar] [CrossRef] [Green Version]
- Elakneswaran, Y.; Owaki, E.; Miyahara, S.; Ogino, M.; Maruya, T.; Nawa, T. Hydration study of slag-blended cement based on thermodynamic considerations. Constr. Build. Mater. 2016, 124, 615–625. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lei, S.; Lin, M.; Li, Y.; Ye, Z.; Fan, Y. Assessment of pozzolanic activity of calcined coal-series kaolin. Appl. Clay Sci. 2017, 143, 159–167. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, J.; Liu, C.; Chen, X.; Xu, Z. The particle-size effect of waste clay brick powder on its pozzolanic activity and properties of blended cement. J. Clean. Prod. 2020, 242, 118521. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Zibouche, F.; Boudissa, N.; García-Lodeiro, I.; Abadlia, M.T.; Palomo, A. Metakaolin-Slag-Clinker Blends, The role of Na+ or K+ as alkaline activators of these ternary blends. J. Am. Ceram. Soc. 2013, 96, 1991–1998. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. Variation in hybrid cements over time. Alkaline activation of fly ash-portland cement blends. Cem. Concr. Res. 2013, 52, 112–122. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. Hydration kinetics in hybrid binders: Early reaction stages. Cem. Concr. Compos. 2013, 39, 82–92. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Donatello, S.; Fernández-Jiménez, A.; Palomo, Á. Hydration of hybrid alkaline cement containing a very large proportion of fly ash: A descriptive model. Materials 2016, 9, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fridrichová, M.; Dvořák, K.; Gazdič, D.; Mokrá, J.; Kulísek, K. Thermodynamic Stability of Ettringite Formed by Hydration of Ye’elimite Clinker. Adv. Mater. Sci. Eng. 2016, 2016, 9280131. [Google Scholar] [CrossRef] [Green Version]
- Halaweh, M.A. Effect of Alkalis and Sulfates on Portland Cement Systems. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2006. [Google Scholar]
- Abdel-Gawwad, H.A.; Mohammed, M.S.; Alomayri, T. Single and dual effects of magnesia and alumina nano-particles on strength and drying shrinkage of alkali activated slag. Constr. Build. Mater. 2019, 228, 116827. [Google Scholar] [CrossRef]
- L’Hôpital, E.; Lothenbach, B.; Kulik, D.; Scrivener, K. Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate. Cem. Concr. Res. 2016, 85, 111–121. [Google Scholar] [CrossRef]
- Jiang, D.; Li, X.; Lv, Y.; Zhou, M.; He, C.; Jiang, W.; Liu, Z.; Li, C. Utilization of limestone powder and fly ash in blend-ed cement: Rheology, strength and hydration characteristics. Constr. Build. Mater. 2020, 232, 117228. [Google Scholar] [CrossRef]
- Wu, Z.; Wei, Y.; Wang, S.; Chen, J. Application of X-Ray Micro-CT for Quantifying Degree of Hydration of Slag-Blended Cement Paste. J. Mater. Civ. Eng. 2020, 32, 04020008. [Google Scholar] [CrossRef]
- Chen, Z.; Chu, S.; Lee, Y.; Lee, H. Coupling effect of γ-dicalcium silicate and slag on carbonation resistance of low carbon materials. J. Clean. Prod. 2020, 262, 121385. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, C.; Zhang, Z. Effect of Na2O concentration and water/binder ratio on carbonation of alkali-activated slag/fly ash cements. Constr. Build. Mater. 2021, 269, 121258. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Boudissa, N.; Fernández-Jiménez, A.; Palomo, A. Use of clays in alkaline hybrid cement preparation. The role of bentonites. Mater. Lett. 2018, 233, 134–137. [Google Scholar] [CrossRef]
- Abdollahnejad, Z.; Hlavacek, P.; Miraldo, S.; Pacheco-Torgal, F.; Aguiar, J.L.B.D. Compressive strength, microstructure and hydration products of hybrid alkaline cements. Mater. Res. 2014, 17, 829–837. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Gawwad, H.A.; García, S.V.; Hassan, H.S. Thermal activation of air cooled slag to create one-part alkali activated cement. Ceram. Int. 2018, 44, 14935–14939. [Google Scholar] [CrossRef]
- Abdel-Gawwad, H.A.; Mohamed, S.A.; Mohammed, M.S. Recycling of slag and lead-bearing sludge in the cleaner production of alkali activated cement with high performance and microbial resistivity. J. Clean. Prod. 2019, 220, 568–580. [Google Scholar] [CrossRef]
- Shi, C.; Krivenko, P.V.; Roy, D. Alkali-Activated slag cement and concrete. In Hydration and Microstructure of Alkali Activated Slag Cement; Taylor & Francis: New York, NY, USA, 2006; pp. 64–276. [Google Scholar]
- Hasegawa, Y.; Hotta, H.; Sato, K.; Nagase, T.; Mizukami, F. Preparation of novel chabazite (CHA)-type zeolite layer on porous α-Al2O3 tube using template-free solution. J. Membr. Sci. 2009, 347, 193–196. [Google Scholar] [CrossRef]
- Zhang, N.; Xin, Y.; Li, Q.; Ma, X.; Qi, Y.; Zheng, L.; Zhang, Z. Ion Exchange of One-Pot Synthesized Cu-SAPO-44 with NH4NO3 to Promote Cu Dispersion and Activity for Selective Catalytic Reduction of NOx with NH3. Catalysts 2019, 9, 882. [Google Scholar] [CrossRef] [Green Version]
- Nearchou, A.; Sartbaeva, A. Influence of alkali metal cations on the formation of zeolites under hydrothermal condi-tions with no organic structure directing agents. Cryst. Eng. Comm. 2015, 17, 2496–2503. [Google Scholar] [CrossRef] [Green Version]
Samples Notations | SiO2 | CaO | MgO | Fe2O3 | Al2O3 | Na2O | K2O | Cl | SO3 | P2O5 | TiO2 | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
OPC | 21.01 | 63.15 | 2.45 | 3.36 | 5.09 | 0.37 | 0.07 | 0.04 | 2.69 | - | - | 1.82 |
BFS | 41.51 | 34.58 | 4.59 | 0.57 | 13.38 | 1.94 | 0.86 | 0.06 | 1.73 | 0.32 | 0.43 | - |
Sand | 94.38 | - | - | 1.21 | 2.17 | 0.12 | 0.09 | 0.03 | 0.09 | 0.02 | 0.04 | 0.13 |
Dry Activator Notations | BFS | NaOH | Water Content | Theoretical wt of DAS | Actual wt of DAS | NaOH within DAS Powder | BFS within DAS Powder | Combined Water within DAS Powder | |
---|---|---|---|---|---|---|---|---|---|
Weight (gram) | Wt.% | ||||||||
DAS-1 | 100.00 | 1.00 | 10.00 | 111.00 | 103.18 | 0.97 | 96.91 | 2.11 | |
DAS-2 | 100.00 | 2.00 | 10.00 | 112.00 | 105.48 | 1.90 | 94.80 | 3.30 | |
DAS-3 | 100.00 | 3.00 | 10.0 | 113.00 | 106.51 | 2.82 | 93.88 | 3.41 |
Mixture Notations | BFS | OPC | DAS | Weight of BFS within DAS | Weight of NaOH within DAS |
---|---|---|---|---|---|
Weight (gram) | |||||
Control | 70.00 | 30.00 | - | 70.00 | - |
HC-DAS-1 | - | 30.00 | 72.23 | 70.00 | 0.70 |
HC-DAS-2 | - | 30.00 | 73.84 | 70.00 | 1.40 |
HC-DAS-3 | - | 30.00 | 74.56 | 70.00 | 2.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayed, E.K.; El-Hosiny, F.I.; El-Kattan, I.M.; Al-kroom, H.; Abd Elrahman, M.; Abdel-Gawwad, H.A. An Innovative Method for Sustainable Utilization of Blast-Furnace Slag in the Cleaner Production of One-Part Hybrid Cement Mortar. Materials 2021, 14, 5669. https://doi.org/10.3390/ma14195669
Fayed EK, El-Hosiny FI, El-Kattan IM, Al-kroom H, Abd Elrahman M, Abdel-Gawwad HA. An Innovative Method for Sustainable Utilization of Blast-Furnace Slag in the Cleaner Production of One-Part Hybrid Cement Mortar. Materials. 2021; 14(19):5669. https://doi.org/10.3390/ma14195669
Chicago/Turabian StyleFayed, Esraa K., Fouad I. El-Hosiny, Ibrahim M. El-Kattan, Hussein Al-kroom, Mohamed Abd Elrahman, and Hamdy A. Abdel-Gawwad. 2021. "An Innovative Method for Sustainable Utilization of Blast-Furnace Slag in the Cleaner Production of One-Part Hybrid Cement Mortar" Materials 14, no. 19: 5669. https://doi.org/10.3390/ma14195669
APA StyleFayed, E. K., El-Hosiny, F. I., El-Kattan, I. M., Al-kroom, H., Abd Elrahman, M., & Abdel-Gawwad, H. A. (2021). An Innovative Method for Sustainable Utilization of Blast-Furnace Slag in the Cleaner Production of One-Part Hybrid Cement Mortar. Materials, 14(19), 5669. https://doi.org/10.3390/ma14195669