Borosilicate Glass-Ceramics Containing Zirconolite and Powellite for RE- and Mo-Rich Nuclear Waste Immobilization
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crum, J.V.; Turo, L.; Riley, B.; Tang, M.; Kossoy, A. Multi-Phase Glass-Ceramics as a Waste Form for Combined Fission Products: Alkalis, Alkaline Earths, Lanthanides, and Transition Metals. J. Am. Ceram. Soc. 2012, 95, 1297–1303. [Google Scholar] [CrossRef]
- Caurant, D.; Majérus, O.; Loiseau, P.; Bardez, I.; Baffier, N.; Dussossoy, J. Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization. J. Nucl. Mater. 2006, 354, 143–162. [Google Scholar] [CrossRef]
- Laura, R.-P.; Soria, B.Y.M. A Review of the Nuclear Fuel Cycle Strategies and the Spent Nuclear Fuel Management Technologies. Energies 2017, 10, 1235. [Google Scholar]
- Goel, A.; McCloy, J.S.; Pokorny, R.; Kruger, A.A. Challenges with vitrification of Hanford High-Level Waste (HLW) to borosilicate glass—An overview. J. Non-Cryst. Solids X 2019, 4, 100033. [Google Scholar] [CrossRef]
- Goel, A.; McCloy, J.S.; Fox, K.M.; Leslie, C.J.; Riley, B.J.; Rodriguez, C.P.; Schweiger, M.J. Structural analysis of some sodium and alumina rich high-level nuclear waste glasses. J. Non-Cryst. Solids 2011, 358, 674–679. [Google Scholar] [CrossRef]
- McCloy, J.S.; Marcial, J.; Patil, D.; Saleh, M.; Ahmadzadeh, M.; Chen, H.; Crum, J.V.; Riley, B.J.; Kamat, H.; Bréhault, A.; et al. Glass structure and crystallization in boro-alumino-silicate glasses containing rare earth and transition metal cations: A US-UK collaborative program. MRS Adv. 2019, 4, 1029–1043. [Google Scholar] [CrossRef]
- Walling, S.A.; Kauffmann, M.N.; Gardner, L.J.; Bailey, D.J.; Stennett, M.C.; Corkhill, C.L.; Hyatt, N.C. Characterisation and disposability assessment of multi-waste stream in-container vitrified products for higher activity radioactive waste. J. Hazard. Mater. 2020, 401, 123764. [Google Scholar] [CrossRef] [PubMed]
- McKeown, D.A.; Gan, H.; Pegg, I.L. X-ray absorption and Raman spectroscopy studies of molybdenum environments in borosilicate waste glasses. J. Nucl. Mater. 2017, 488, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Taurines, T.; Boizot, B. Synthesis of powellite-rich glasses for high level waste immobilization. J. Non-Cryst. Solids 2011, 357, 2723–2725. [Google Scholar] [CrossRef] [Green Version]
- Crum, J.V.; Neeway, J.J.; Riley, B.; Zhu, Z.; Olszta, M.J.; Tang, M. Dilute condition corrosion behavior of glass-ceramic waste form. J. Nucl. Mater. 2016, 482, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kossoy, A.; Schulze, R.; Tang, M.; Safarik, D.; McCabe, R. Nd–Mo-borosilicate glass–ceramic: Synthesis, characterization and response to ionizing radiation. J. Nucl. Mater. 2013, 437, 216–221. [Google Scholar] [CrossRef]
- Caurant, D.; Majérus, O.; Fadel, E.; Quintas, A.; Gervais, C.; Charpentier, T.; Neuville, D. Structural investigations of borosilicate glasses containing MoO3 by MAS NMR and Raman spectroscopies. J. Nucl. Mater. 2010, 396, 94–101. [Google Scholar] [CrossRef]
- Patil, D.; Konale, M.; Gabel, M.; Neill, O.K.; Crum, J.V.; Goel, A.; Stennett, M.C.; Hyatt, N.C.; McCloy, J.S. Impact of rare earth ion size on the phase evolution of MoO3-containing aluminoborosilicate glass-ceramics. J. Nucl. Mater. 2018, 510, 539–550. [Google Scholar] [CrossRef]
- Boué, E.; Schuller, S.; Toplis, M.; Charpentier, T.; Mesbah, A.; Pablo, H.; Monnereau, M.; Moskura, M. Kinetic and thermodynamic factors controlling the dissolution of molybdate-bearing calcines during nuclear glass synthesis. J. Nucl. Mater. 2019, 519, 74–87. [Google Scholar] [CrossRef]
- Chouard, N.; Caurant, D.; Majérus, O.; Dussossoy, J.-L.; Ledieu, A.; Peuget, S.; Baddour-Hadjean, R.; Pereira-Ramos, J.-P. Effect of neodymium oxide on the solubility of MoO3 in an aluminoborosilicate glass. J. Non-Cryst. Solids 2011, 357, 2752–2762. [Google Scholar] [CrossRef]
- Chouard, N.; Caurant, D.; Majérus, O.; Guezi-Hasni, N.; Dussossoy, J.L.; Baddour-Hadjean, R.; Pereira-Ramos, J.P. Thermal stability of SiO2-B2O3-Al2O3-Na2O-CaO glasses with high Nd2O3 and MoO3 concentrations. J. Alloy. Compd. 2016, 671, 84–99. [Google Scholar] [CrossRef]
- Caurant, D.; Majerus, O.; Fadel, E.; Lenoir, M.; Gervais, C.; Pinet, O. Effect of molybdenum on the structure and on the crystallization of SiO2-Na2O-CaO-B2O3 glasses. J. Am. Ceram. Soc. 2007, 90, 774–783. [Google Scholar] [CrossRef]
- Nicoleau, E.; Schuller, S.; Angeli, F.; Charpentier, T.; Jollivet, P.; Le Gac, A.; Fournier, M.; Mesbah, A.; Vasconcelos, F. Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass. J. Non-Cryst. Solids 2015, 427, 120–133. [Google Scholar] [CrossRef]
- Pinet, O.; Dussossoy, J.; David, C.; Fillet, C. Glass matrices for immobilizing nuclear waste containing molybdenum and phosphorus. J. Nucl. Mater. 2008, 377, 307–312. [Google Scholar] [CrossRef]
- Brehault, A.; Patil, D.; Kamat, H.; Youngman, R.E.; Thirion, L.M.; Mauro, J.C.; Corkhill, C.L.; McCloy, J.S.; Goel, A. Compositional Dependence of Solubility/Retention of Molybdenum Oxides in Aluminoborosilicate-Based Model Nuclear Waste Glasses. J. Phys. Chem. B 2018, 122, 1714–1729. [Google Scholar] [CrossRef] [Green Version]
- Peterson, J.A.; Crum, J.V.; Riley, B.J.; Asmussen, R.M.; Neeway, J.J. Synthesis and characterization of oxyapatite [Ca2Nd8(SiO4)6O2] and mixed-alkaline-earth powellite [(Ca,Sr,Ba)MoO4] for a glass-ceramic waste form. J. Nucl. Mater. 2018, 510, 623–634. [Google Scholar] [CrossRef]
- Neeway, J.J.; Asmussen, R.M.; McElroy, E.M.; Peterson, J.A.; Riley, B.J.; Crum, J.V. Kinetics of oxyapatite [Ca2Nd8(SiO4)6O2] and powellite [(Ca,Sr,Ba)MoO4] dissolution in glass-ceramic nuclear waste forms in acidic, neutral, and alkaline conditions. J. Nucl. Mater. 2019, 515, 227–237. [Google Scholar] [CrossRef]
- Asmussen, R.M.; Neeway, J.J.; Kaspar, T.C.; Crum, J.V. Corrosion Behavior and Microstructure Influence of Glass-Ceramic Nuclear Waste Forms. Corrosion 2017, 73, 1306–1319. [Google Scholar] [CrossRef]
- McCloy, J.S.; Goel, A. Glass-ceramics for nuclear-waste immobilization. MRS Bull. 2017, 42, 233–240. [Google Scholar] [CrossRef]
- Xu, A.; Wei, T.; Gregg, D.J.; Vance, E.R.; Zhang, Y.; Lumpkin, G.R. Micro-compression testing of gold ion irradiated zirconolite glass-ceramics as nuclear waste forms. J. Nucl. Mater. 2019, 527, 151813. [Google Scholar] [CrossRef]
- Gupta, M.; Kulriya, P.K.; Shukla, R.; Dhaka, R.S.; Kumar, R.; Ghumman, S.S. Reduction and structural modification of zirconolite on He+ ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2016, 379, 119–125. [Google Scholar] [CrossRef]
- Blackburn, L.R.; Sun, S.; Gardner, L.J.; Maddrell, E.R.; Stennett, M.C.; Hyatt, N.C. A systematic investigation of the phase assemblage and microstructure of the zirconolite CaZr1-xCexTi2O7 system. J. Nucl. Mater. 2020, 535, 152137. [Google Scholar] [CrossRef]
- Blackburn, L.R.; Bailey, D.J.; Sun, S.-K.; Gardner, L.J.; Stennett, M.C.; Corkhill, C.L.; Hyatt, N.C. Review of zirconolite crystal chemistry and aqueous durability. Adv. Appl. Ceram. 2021, 120, 69–83. [Google Scholar] [CrossRef]
- Wu, L.; Li, Y.; Teng, Y.; Meng, G. Preparation and characterization of borosilicate glass-ceramics containing zirconolite and titanite crystalline phases. J. Non-Cryst. Solids 2013, 380, 123–127. [Google Scholar] [CrossRef]
- Loiseau, P.; Caurant, D. Glass-ceramic nuclear waste forms obtained by crystallization of SiO2-Al2O3-CaO-ZrO2-TiO2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface. J. Nuclear Mater. 2010, 402, 38–54. [Google Scholar] [CrossRef]
- Lv, P.; Chen, L.; Zhang, B.; Zhang, D.; Yuan, W.; Duan, B.; Guan, Y.; Pan, C.; Chen, Z.; Zhang, L.; et al. The effects of temperature and Ce-dopant concentration on the synthesis of zirconolite glass-ceramic. Ceram. Int. 2019, 45, 11819–11825. [Google Scholar] [CrossRef]
- Li, H.; Wu, L.; Xu, D.; Wang, X.; Teng, Y.; Li, Y. Structure and chemical durability of barium borosilicate glass–ceramics containing zirconolite and titanite crystalline phases. J. Nucl. Mater. 2015, 466, 484–490. [Google Scholar] [CrossRef]
- Zhang, K.; Yin, D.; Peng, L.; Wu, J. Self-propagating synthesis and CeO 2 immobilization of zirconolite-rich composites using CuO as the oxidant. Ceram. Int. 2017, 43, 1415–1423. [Google Scholar] [CrossRef]
- ASTM C1285-14, Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT); ASTM: West Conshohocken, PA, USA, 2014.
- Zhao, Z.; Chen, H.; Xiang, H.; Dai, F.-Z.; Wang, X.; Xu, W.; Sun, K.; Peng, Z.; Zhou, Y. High-entropy (Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: A promising thermal/environmental barrier material for oxide/oxide composites. J. Mater. Sci. Technol. 2020, 47, 45–51. [Google Scholar] [CrossRef]
- Wang, X.; Wu, L.; Li, H.; Xiao, J.; Cai, X.; Teng, Y. Preparation and characterization of SO3-doped barium borosilicate glass-ceramics containing zirconolite and barite phases. Ceram. Int. 2017, 43, 534–539. [Google Scholar] [CrossRef]
- Rossell, H.J. Zirconolite—a fluorite-related superstructure. Nature 1980, 283, 282–283. [Google Scholar] [CrossRef]
- Gürmen, E.; Daniels, E.; King, J.S. Crystal Structure Refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by Neutron Diffraction. J. Chem. Phys. 1971, 55, 1093–1097. [Google Scholar] [CrossRef] [Green Version]
- Beran, A.; Libowitzky, E.; Armbruster, T. A single-crystal infrared spectroscopic and X-ray diffraction study of untwinned San Benito perovskite containing O-H groups. Can. Mineral. 1996, 34, 803–809. [Google Scholar]
- Loiseau, P.; Caurant, D.; Baffier, N.; Mazerolles, L.; Fillet, C. Glass–ceramic nuclear waste forms obtained from SiO2–Al2O3–CaO–ZrO2–TiO2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of internal crystallization. J. Nucl. Mater. 2004, 335, 14. [Google Scholar] [CrossRef]
- Begg, B.D.; Vance, E.R. The incorporation of cerium in zirconolite. Mater. Res. Soc. 1997, 465, 333–340. [Google Scholar] [CrossRef]
- Vance, E.; Ball, C.; Day, R.; Smith, K.; Blackford, M.; Begg, B.; Angel, P. Actinide and rare earth incorporation into zirconolite. J. Alloy. Compd. 1994, 213-214, 406–409. [Google Scholar] [CrossRef]
- Wu, L.; Li, H.; Wang, X.; Xiao, J.; Teng, Y.; Li, Y. Effects of Nd Content on Structure and Chemical Durability of Zirconolite-Barium Borosilicate Glass-Ceramics. J. Am. Ceram. Soc. 2016, 99, 4093–4099. [Google Scholar] [CrossRef]
- Liao, C.-Z.; Shih, K.; Lee, W.E. Crystal Structures of Al–Nd Codoped Zirconolite Derived from Glass Matrix and Powder Sintering. Inorg. Chem. 2015, 54, 7353–7361. [Google Scholar] [CrossRef]
- Patel, K.B.; Peuget, S.; Schuller, S.; Lampronti, G.I.; Facq, S.P.; Grygiel, C.; Monnet, I.; Farnan, I. Discovery of a maximum damage structure for Xe-irradiated borosilicate glass ceramics containing powellite. J. Nucl. Mater. 2018, 510, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Brinkman, K.; Fox, K.; Marra, J.; Reppert, J.; Crum, J.; Tang, M. Single phase melt processed powellite (Ba,Ca)MoO4 for the immobilization of Mo-rich nuclear waste. J. Alloy. Compd. 2013, 551, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Wang, F.; Liao, Q.; Wang, Y.; Zhu, Y. Effect of CeO2 and Nd2O3 on phases, microstructure and aqueous chemical durability of borosilicate glass-ceramics for nuclear waste immobilization. Mater. Chem. Phys. 2020, 249, 122936. [Google Scholar] [CrossRef]
- Bunker, B.C.; Arnold, G.W.; Day, D.E.; Bray, P.J. The effect of molecular structure on borosilicate glass leaching. J. Non-Cryst. Solids 1986, 87, 226–253. [Google Scholar] [CrossRef]
- Crawford, C.; Marra, J.; Bibler, N. Glass fabrication and product consistency testing of lanthanide borosilicate glass for plutonium disposition. J. Alloy. Compd. 2007, 444-445, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.; Ribet, I.; Frugier, P.; Gin, S. Alteration kinetics of the glass-ceramic zirconolite and role of the alteration film—Comparison with the SON68 glass. J. Nucl. Mater. 2007, 366, 277–287. [Google Scholar] [CrossRef]
- Rebiscoul, D.; Van der Lee, A.; Rieutord, F.; Né, F.; Spalla, O.; El-Mansouri, A.; Frugier, P.; Ayral, A.; Gin, S. Morphological evolution of alteration layers formed during nuclear glass alteration: New evidence of a gel as a diffusive barrier. J. Nucl. Mater. 2004, 326, 9–18. [Google Scholar] [CrossRef]
- Wu, L.; Wang, X.; Li, H.; Teng, Y.; Peng, L. The effects of sulfate content on crystalline phase, microstructure, and chemical durability of zirconolite-barium borosilicate glass-ceramics. J. Nucl. Mater. 2016, 478, 303–309. [Google Scholar] [CrossRef]
SiO2 | B2O3 | Na2O | Al2O3 | CaO | TiO2 | ZrO2 | Nd2O3 | MoO3 | |
---|---|---|---|---|---|---|---|---|---|
CTZ-20 | 48.80 | 10.73 | 12.07 | 1.21 | 7.63 | 7.83 | 3.41 | 2.67 | 3.07 |
CTZ-30 | 43.85 | 9.64 | 13.16 | 1.08 | 9.04 | 12.07 | 5.25 | 2.75 | 3.15 |
CTZ-40 | 38.63 | 8.50 | 11.60 | 0.95 | 10.53 | 16.53 | 7.19 | 2.82 | 3.24 |
CTZ-50 | 33.11 | 7.28 | 9.94 | 0.82 | 12.11 | 21.26 | 9.25 | 2.90 | 3.33 |
Parameters | Raw Lattice | CTZ-30 | CTZ-40 | CTZ-50 |
---|---|---|---|---|
a(Å) | 12.4458 | 12.5298(4) | 12.7909(1) | 12.6149(4) |
b(Å) | 7.2734 | 7.2264(2) | 7.3946(4) | 7.2780(9) |
c(Å) | 11.3942 | 11.9817(4) | 11.6172(1) | 11.4489(3) |
α(°) | 90.000 | 90.000(0) | 90.000(0) | 90.000(0) |
β(°) | 100.533 | 100.095(2) | 100.900(6) | 100.697(2) |
γ(°) | 90.000 | 90.000(0) | 90.000(0) | 90.000(0) |
V(Å3) | 1014.06 | 1068.09(2) | 1078.97(8) | 1032.86(6) |
Parameters | Raw Lattice | CTZ-30 | CTZ-40 | CTZ-50 |
---|---|---|---|---|
a(Å) | 5.226 | 5.241(8) | 5.249(10) | 5.237(1) |
b(Å) | 5.226 | 5.241(8) | 5.249(10) | 5.237(1) |
c(Å) | 11.43 | 11.49(2) | 11.49(2) | 11.47(1) |
α(°) | 90.0 | 90.0(0) | 90.0(0) | 90.0(0) |
β(°) | 90.0 | 90.0(0) | 90.0(0) | 90.0(0) |
γ(°) | 90.0 | 90.0(0) | 90.0(0) | 90.0(0) |
V(Å3) | 312.17 | 315.48(6) | 316.59(9) | 314.62(2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, W.; Zhu, Y.; Zhang, X.; Yang, D.; Huo, Y.; Xu, C.; Yu, H.; Zhao, J.; Huo, J.; Meng, B. Borosilicate Glass-Ceramics Containing Zirconolite and Powellite for RE- and Mo-Rich Nuclear Waste Immobilization. Materials 2021, 14, 5747. https://doi.org/10.3390/ma14195747
Wan W, Zhu Y, Zhang X, Yang D, Huo Y, Xu C, Yu H, Zhao J, Huo J, Meng B. Borosilicate Glass-Ceramics Containing Zirconolite and Powellite for RE- and Mo-Rich Nuclear Waste Immobilization. Materials. 2021; 14(19):5747. https://doi.org/10.3390/ma14195747
Chicago/Turabian StyleWan, Wei, Yongchang Zhu, Xingquan Zhang, Debo Yang, Yonglin Huo, Chong Xu, Hongfu Yu, Jian Zhao, Jichuan Huo, and Baojian Meng. 2021. "Borosilicate Glass-Ceramics Containing Zirconolite and Powellite for RE- and Mo-Rich Nuclear Waste Immobilization" Materials 14, no. 19: 5747. https://doi.org/10.3390/ma14195747
APA StyleWan, W., Zhu, Y., Zhang, X., Yang, D., Huo, Y., Xu, C., Yu, H., Zhao, J., Huo, J., & Meng, B. (2021). Borosilicate Glass-Ceramics Containing Zirconolite and Powellite for RE- and Mo-Rich Nuclear Waste Immobilization. Materials, 14(19), 5747. https://doi.org/10.3390/ma14195747