Staged Sinus Floor Elevation Using Novel Low-Crystalline Carbonate Apatite Granules: Prospective Results after 3-Year Functional Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design and Ethical Approval
2.2. Surgical Procedure for Sinus Floor Elevation (SFE) and Implant Placement
2.3. Implant Restorative Procedure
2.4. Analyses of Outcomes
2.4.1. SFE Evaluation in a Clinical Trial
2.4.2. Clinical and Radiographic Evaluations after 3-Year Functional Loading
- No detectable mobility on clinical examination;
- No pain or other subjective sensation from the implant;
- No recurrent peri-implant infection or sign of peri-implantitis;
- No continuous radiolucency in the peri-implant bone.
3. Results
3.1. Patients
3.2. The Results of Surgical Procedures
3.3. Clinical Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aghaloo, T.L.; Misch, C.; Lin, G.-H.; Iacono, V.J.; Wang, H.-L. Bone Augmentation of the Edentulous Maxilla for Implant Placement: A Systematic Review. Int. J. Oral Maxillofac. Implant. 2017, 31, s19–s30. [Google Scholar] [CrossRef] [Green Version]
- Raghoebar, G.M.; Onclin, P.; Boven, G.C.; Vissink, A.; Meijer, H.J.A. Long-term effectiveness of maxillary sinus floor augmentation: A systematic review and meta-analysis. J. Clin. Periodontol. 2019, 46, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Danesh-Sani, S.A.; Loomer, P.M.; Wallace, S.S. A comprehensive clinical review of maxillary sinus floor elevation: Anatomy, techniques, biomaterials and complications. Br. J. Oral Maxillofac. Surg. 2016, 54, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Al-Dajani, M. Recent Trends in Sinus Lift Surgery and Their Clinical Implications. Clin. Implant. Dent. Relat. Res. 2016, 18, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, S.; Botticelli, D.; Nakajima, Y.; Sakuma, S.; Baba, S. Anatomical analyses for maxillary sinus floor augmentation with a lateral approach: A cone beam computed tomography study. Ann. Anat. 2019, 226, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Testori, T.; Tavelli, L.; Yu, S.-H.; Scaini, R.; Darnahal, A.; Wallace, S.S.; Wang, H.-L. Maxillary Sinus Elevation Difficulty Score with Lateral Wall Technique. Int. J. Oral Maxillofac. Implant. 2020, 35, 631–638. [Google Scholar] [CrossRef]
- Farina, R.; Franceschetti, G.; Travaglini, D.; Consolo, U.; Minenna, L.; Schincaglia, G.P.; Riccardi, O.; Bandieri, A.; Maietti, E.; Trombelli, L. Morbidity following transcrestal and lateral sinus floor elevation: A randomized trial. J. Clin. Periodontol. 2018, 45, 1128–1139. [Google Scholar] [CrossRef] [Green Version]
- Crespi, R.; Toti, P.; Covani, U.; Crespi, G.; Menchini-Fabris, G.-B. Clinical and Radiographic Evaluation of Modified Transalveolar Two-Step Osteotome-Mediated Localized Maxillary Sinus Elevation: A Retrospective Computed Tomography Study with a 3-Year Follow-up. Int. J. Oral Maxillofac. Implant. 2021, 36, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shi, Y.; Si, M.; Wu, M.; Xie, Z. The comparative evaluation of transcrestal and lateral sinus floor elevation in sites with residual bone height ≤6 mm: A two-year prospective randomized study. Clin. Oral Implant. Res. 2021, 32, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Precheur, H.V. Bone Graft Materials. Dent. Clin. N. Am. 2007, 51, 729–746. [Google Scholar] [CrossRef]
- Nkenke, E.; Stelzle, F. Clinical outcomes of sinus floor augmentation for implant placement using autogenous bone or bone substitutes: A systematic review. Clin. Oral Implant. Res. 2009, 20 (Suppl. S4), 124–133. [Google Scholar] [CrossRef]
- Klijn, R.J.; Beucken, J.J.J.P.V.D.; Bronkhorst, E.; Berge, S.J.; Meijer, G.J.; Jansen, J.A. Predictive value of ridge dimensions on autologous bone graft resorption in staged maxillary sinus augmentation surgery using Cone-Beam CT. Clin. Oral Implant. Res. 2011, 23, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Tosta, M.; Cortes, A.R.G.; Corrêa, L.; Pinto, D.D.S.; Tumenas, I.; Katchburian, E. Histologic and histomorphometric evaluation of a synthetic bone substitute for maxillary sinus grafting in humans. Clin. Oral Implant. Res. 2011, 24, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Chavda, S.; Levin, L. Human Studies of Vertical and Horizontal Alveolar Ridge Augmentation Comparing Different Types of Bone Graft Materials: A Systematic Review. J. Oral Implant. 2018, 44, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Moreno, P.; de Buitrago, J.G.; Padial-Molina, M.; Fernández-Barbero, J.E.; Ata-Ali, J.; O′valle, F. Histopathological comparison of healing after maxillary sinus augmentation using xenograft mixed with autogenous bone versus allograft mixed with autogenous bone. Clin. Oral Implant. Res. 2018, 29, 192–201. [Google Scholar] [CrossRef]
- Kolerman, R.; Nissan, J.; Rahmanov, M.; Calvo-Guirado, J.L.; Green, N.T.; Tal, H. Sinus augmentation analysis of the gradient of graft consolidation: A split-mouth histomorphometric study. Clin. Oral Investig. 2019, 23, 3397–3406. [Google Scholar] [CrossRef]
- Chaushu, L.; Silva, E.R.; Balan, V.F.; Chaushu, G.; Xavier, S.P. Sinus augmentation—Autograft vs. fresh frozen allograft: Bone density dynamics and implant stability. J. Stomatol. Oral Maxillofac. Surg. in press. 2020. [Google Scholar] [CrossRef]
- Al-Moraissi, E.; Alkhutari, A.; Abotaleb, B.; Altairi, N.; Del Fabbro, M. Do osteoconductive bone substitutes result in similar bone regeneration for maxillary sinus augmentation when compared to osteogenic and osteoinductive bone grafts? A systematic review and frequentist network meta-analysis. Int. J. Oral Maxillofac. Surg. 2020, 49, 107–120. [Google Scholar] [CrossRef]
- Zapanta-Legeros, R. Effect of Carbonate on the Lattice Parameters of Apatite. Nature 1965, 206, 403–404. [Google Scholar] [CrossRef]
- Legeros, R.Z.; Trautz, O.R.; Legeros, J.P.; Klein, E.; Shirra, W.P. Apatite Crystallites: Effects of Carbonate on Morphology. Science 1967, 155, 1409–1411. [Google Scholar] [CrossRef]
- Ishikawa, K. Bone Substitute Fabrication Based on Dissolution-Precipitation Reactions. Materials 2010, 3, 1138–1155. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, K.; Matsuya, S.; Lin, X.; Lei, Z.; Yuasa, T.; Miyamoto, Y. Fabrication of low crystalline B-type carbonate apatite block from low crystalline calcite block. J. Ceram. Soc. Jpn. 2010, 118, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, K.; Akita, K.; Fukuda, N.; Kamada, K.; Kudoh, T.; Ohe, G.; Mano, T.; Tsuru, K.; Ishikawa, K.; Miyamoto, Y. Compositional and histological comparison of carbonate apatite fabricated by dissolution–precipitation reaction and Bio-Oss®. J. Mater. Sci. Mater. Electron. 2018, 29, 121. [Google Scholar] [CrossRef]
- Mano, T.; Akita, K.; Fukuda, N.; Kamada, K.; Kurio, N.; Ishikawa, K.; Miyamoto, Y. Histological comparison of three apatitic bone substitutes with different carbonate contents in alveolar bone defects in a beagle mandible with simultaneous implant installation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 1450–1459. [Google Scholar] [CrossRef]
- Nagai, H.; Kobayashi-Fujioka, M.; Fujisawa, K.; Ohe, G.; Takamaru, N.; Hara, K.; Uchida, D.; Tamatani, T.; Ishikawa, K.; Miyamoto, Y. Effects of low crystalline carbonate apatite on proliferation and osteoblastic differentiation of human bone marrow cells. J. Mater. Sci. Mater. Electron. 2015, 26, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kudoh, K.; Fukuda, N.; Kasugai, S.; Tachikawa, N.; Koyano, K.; Matsushita, Y.; Ogino, Y.; Ishikawa, K.; Miyamoto, Y. Maxillary Sinus Floor Augmentation Using Low-Crystalline Carbonate Apatite Granules With Simultaneous Implant Installation: First-in-Human Clinical Trial. J. Oral Maxillofac. Surg. 2019, 77, 985.e1–985.e11. [Google Scholar] [CrossRef]
- Nakagawa, T.; Kudoh, K.; Fukuda, N.; Kasugai, S.; Tachikawa, N.; Koyano, K.; Matsushita, Y.; Sasaki, M.; Ishikawa, K.; Miyamoto, Y. Application of low-crystalline carbonate apatite granules in 2-stage sinus floor augmentation: A prospective clinical trial and histomorphometric evaluation. J. Periodontal Implant. Sci. 2019, 49, 382–396. [Google Scholar] [CrossRef] [PubMed]
- Buser, D.; Mericske-Stern, R.; Bernard, J.P.P.; Behneke, A.; Behneke, N.; Hirt, H.P.; Belser, U.C.; Lang, N.P. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants. Clin. Oral Implant. Res. 1997, 8, 161–172. [Google Scholar] [CrossRef]
- Cochran, D.L.; Buser, D.; Bruggenkate, C.M.T.; Weingart, D.; Taylor, T.M.; Bernard, J.-P.; Peters, F.; Simpson, J.P. The use of reduced healing times on ITI® implants with a sandblasted and acid-etched (SLA) surface: Early results from clinical trials on ITI SLA implants. Clin. Oral Implant. Res. 2002, 13, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Krennmair, G.; Krainhöfner, M.; Schmid-Schwap, M.; Piehslinger, E. Maxillary sinus lift for single implant-supported restorations: A clinical study. Int. J. Oral Maxillofac. Implant. 2007, 22, 351–358. [Google Scholar]
- Romero-Millán, J.; Martorell-Calatayud, L.; Peñarrocha, M.; García-Mira, B. Indirect Osteotome Maxillary Sinus Floor Elevation: An Update. J. Oral Implant. 2012, 38, 799–804. [Google Scholar] [CrossRef]
- Ting, M.; Rice, J.G.; Braid, S.M.; Lee, C.Y.S.; Suzuki, J.B. Maxillary Sinus Augmentation for Dental Implant Rehabilitation of the Edentulous Ridge: A comprehensive overview of systematic reviews. Implant. Dent. 2017, 26, 438–464. [Google Scholar] [CrossRef]
- Silva, L.D.; de Lima, V.; Faverani, L.; de Mendonça, M.; Okamoto, R.; Pellizzer, E. Maxillary sinus lift surgery—with or without graft material? A systematic review. Int. J. Oral Maxillofac. Surg. 2016, 45, 1570–1576. [Google Scholar] [CrossRef] [Green Version]
- Starch-Jensen, T.; Jensen, J.D. Maxillary Sinus Floor Augmentation: A Review of Selected Treatment Modalities. J. Oral Maxillofac. Res. 2017, 8, e1. [Google Scholar] [CrossRef]
- Doi, Y.; Shibutani, T.; Moriwaki, Y.; Kajimoto, T.; Iwayama, Y. Sintered carbonate apatites as bioresorbable bone substitutes. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. 1998, 39, 603–610. [Google Scholar] [CrossRef]
- Ishikawa, K.; Miyamoto, Y.; Tsuchiya, A.; Hayashi, K.; Tsuru, K.; Ohe, G. Physical and Histological Comparison of Hydroxyapatite, Carbonate Apatite, and β-Tricalcium Phosphate Bone Substitutes. Materials 2018, 11, 1993. [Google Scholar] [CrossRef] [Green Version]
- Klinge, B. Peri-implant marginal bone loss: An academic controversy or a clinical challenge? Eur. J. Oral Implant. 2012, 5, S13–S19. [Google Scholar]
- Firme, C.T.; Vettore, M.V.; Melo, M.; Vidigal, G.M., Jr. Peri-implant Bone Loss Around Single and Multiple Prostheses: Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Implant. 2014, 29, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bruyn, H.; Christiaens, V.; Doornewaard, R.; Jacobsson, M.; Cosyn, J.; Jacquet, W.; Vervaeke, S. Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontol 2000 2017, 73, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Ogino, Y.; Matsushita, Y.; Sasaki, M.; Ayukawa, Y.; Koyano, K. A 3-Year Prospective Study on Radiographic Marginal Bone Evaluation Around Platform-Shifting Implants with Internal Conical Connections. Int. J. Oral Maxillofac. Implant. 2021, 36, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Zarb, G.; Worthington, P.; Eriksson, A.R. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int. J. Oral Maxillofac. Implant. 1986, 1, 11–25. [Google Scholar]
Inclusion Criteria |
|
Exclusion Criteria |
|
Age and Gender | Site | Pre-SFE Bone Height (mm) | CO3AP Amount (cm3) | Pre-Implant Placement Bone Height (mm) | Histomorphometrical Analyses (%) | ||
---|---|---|---|---|---|---|---|
Mature Bone | Osteoid | CO3AP | |||||
71, Female | 16 | 5.0 | 1.2 | 8.8 | 10.7 | 0.7 | 23.1 |
17 | 3.8 | 14.5 | |||||
64, Male | 26 | 5.0 | 1.5 | 8.1 | 58.2 | 1.6 | 14.0 |
69, Female | 25 | 4.4 | 0.8 | 13.3 | 24.6 | 0.6 | 1.3 |
43, Female | 26 | 5.0 | 0.7 | 13.3 | 23.1 | 1.5 | 34.8 |
64, Female | 25 | 2.6 | 1.9 | 13.0 | 55.7 | 1.9 | 24.8 |
77, Female | 27 | 3.6 | 1.0 | 7.5 | 47.5 | 1.4 | 9.2 |
56, Male | 16 | 3.3 | 1.5 | 11.2 | 48.5 | 3.0 | 13.6 |
67, Female | 25 | 5.0 | 1.4 | 9.0 | 35.7 | 2.4 | 4.8 |
26 | 2.0 | 10.3 | |||||
71, Male | 26 | 4.0 | 1.4 | 12.0 | 30.1 | 0.6 | 7.5 |
60, Female | 25 | 4.1 | 1.8 | 9.3 | 49.8 | 0.6 | 18.3 |
37, Female | 15 | 3.6 | 0.4 | 12.7 | 24.6 | 3.6 | 12.7 |
64, Male | 26 | 2.0 | 0.8 | 8.4 | 59.1 | 5.2 | 15.0 |
50, Female | 14 | 3.0 | 2.5 | 8.9 | 11.1 | 3.4 | 31.6 |
15 | 1.4 | 9.8 | |||||
16 | 1.0 | 11.1 | |||||
Mean ± SD | 3.5 ± 1.3 | 1.3 ± 0.6 | 10.7 ± 2.1 | 36.8 ± 17.3 | 2.0 ± 1.4 | 16.2 ± 10.1 |
Age and Gender | Site | ITV (Ncm) | Implant | ||
---|---|---|---|---|---|
Company | Diameter (mm) | Length (mm) | |||
64, Male | 26 | 30 | SM | 4.8 | 8.0 |
71, Female | 16 | 14 | SM | 4.1 | 8.0 |
17 | 15 | SM | 4.1 | 10.0 | |
69, Female | 25 | 15 | NB | 4.0 | 10.0 |
43, Female | 26 | 22 | DP | 4.5 | 9.0 |
64, Female | 25 | 14 | NB | 3.8 | 10.0 |
77, Female | 27 | 20 | GC | 4.4 | 8.0 |
56, Male | 16 | 49 | SM | 4.1 | 8.0 |
67, Female | 25 | 12 | NB | 4.3 | 8.5 |
26 | 13 | NB | 4.3 | 11.5 | |
71, Male | 26 | 50 | GC | 4.4 | 10.0 |
60, Female | 25 | 36 | SM | 4.1 | 8.0 |
37, Female | 15 | 37 | GC | 3.8 | 8.0 |
64, Male | 26 | 25 | SM | 4.8 | 8.0 |
50, Female | 14 | NR | GC | 3.8 | 10.0 |
15 | NR | GC | 3.8 | 10.0 | |
16 | NR | GC | 3.8 | 8.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogino, Y.; Ayukawa, Y.; Tachikawa, N.; Shimogishi, M.; Miyamoto, Y.; Kudoh, K.; Fukuda, N.; Ishikawa, K.; Koyano, K. Staged Sinus Floor Elevation Using Novel Low-Crystalline Carbonate Apatite Granules: Prospective Results after 3-Year Functional Loading. Materials 2021, 14, 5760. https://doi.org/10.3390/ma14195760
Ogino Y, Ayukawa Y, Tachikawa N, Shimogishi M, Miyamoto Y, Kudoh K, Fukuda N, Ishikawa K, Koyano K. Staged Sinus Floor Elevation Using Novel Low-Crystalline Carbonate Apatite Granules: Prospective Results after 3-Year Functional Loading. Materials. 2021; 14(19):5760. https://doi.org/10.3390/ma14195760
Chicago/Turabian StyleOgino, Yoichiro, Yasunori Ayukawa, Noriko Tachikawa, Masahiro Shimogishi, Youji Miyamoto, Keiko Kudoh, Naoyuki Fukuda, Kunio Ishikawa, and Kiyoshi Koyano. 2021. "Staged Sinus Floor Elevation Using Novel Low-Crystalline Carbonate Apatite Granules: Prospective Results after 3-Year Functional Loading" Materials 14, no. 19: 5760. https://doi.org/10.3390/ma14195760
APA StyleOgino, Y., Ayukawa, Y., Tachikawa, N., Shimogishi, M., Miyamoto, Y., Kudoh, K., Fukuda, N., Ishikawa, K., & Koyano, K. (2021). Staged Sinus Floor Elevation Using Novel Low-Crystalline Carbonate Apatite Granules: Prospective Results after 3-Year Functional Loading. Materials, 14(19), 5760. https://doi.org/10.3390/ma14195760