Effect of Hole Arrangement on Failure Mechanism of Multiple-Hole Fiber Metal Laminate under On-Axis and Off-Axis Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Configurations
3. Finite Element Model
3.1. Materials Models
3.2. Modeling Methods
4. Results and Discussions
4.1. Stress Distribution
4.2. Notched Strength
4.3. Damage Behavior
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Awerbuch, J.; Madhukar, M.S. Notched strength of composite laminates: Predictions and experiments—A review. J. Reinf. Plast. Compos. 1985, 4, 3–159. [Google Scholar] [CrossRef]
- Ridha, M.; Wang, C.H.; Chen, B.Y.; Tay, T.E. Modelling complex progressive failure in notched composite laminates with varying sizes and stacking sequences. Compos. Part A 2014, 58, 16–23. [Google Scholar] [CrossRef]
- Xu, X.D.; Wisnom, M.R.; Chang, K.; Hallett, S.R. Unification of strength scaling between unidirectional, quasi-isotropic, and notched carbon/epoxy laminates. Compos. Part A 2016, 90, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Green, B.G.; Wisnom, M.R.; Hallett, S.R. An experimental investigation into the tensile strength scaling of notched composites. Compos. Part A 2007, 38, 867–878. [Google Scholar] [CrossRef]
- Hallett, S.R.; Green, B.G.; Jiang, W.G.; Wisnom, M.R. An experimental and numerical investigation into the damage mechanisms in notched composites. Compos. Part A 2009, 40, 613–624. [Google Scholar] [CrossRef]
- Yoon, D.; Kim, S.; Kim, J.; Doh, Y. Development and evaluation of crack band model implemented progressive failure analysis method for notched composite laminate. Appl. Sci. 2019, 9, 5572. [Google Scholar] [CrossRef] [Green Version]
- Divse, V.; Marla, D.; Joshi, S.S. Finite element analysis of tensile notched strength of composite laminates. Compos. Struct. 2021, 255, 112880. [Google Scholar] [CrossRef]
- Volt, A.; Gunnink, J.W. Fiber Metal Laminates: An Introduction, 1st ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 1–79. [Google Scholar]
- Vermeeren, C.A.J.R. The Residual Strength of Fiber Metal Laminates. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1995. [Google Scholar]
- Sadeghpour, E.; Sadighi, M.; Dariushi, S. An investigation on blunt notch behavior of fiber metal laminates containing notch with different shapes. J. Reinf. Plast. Compos. 2013, 32, 1143–1152. [Google Scholar] [CrossRef]
- Wu, G.C.; Tan, Y.; Yang, J.M. Evaluation of residual strength of notched fiber metal laminates. Mater. Sci. Eng. A 2007, 457, 338–349. [Google Scholar] [CrossRef]
- He, W.T.; Wang, C.Z.; Wang, S.Q.; Yao, L.; Xie, D. Characterizing and predicting the tensile mechanical behavior and failure mechanisms of notched FMLs-combined with DIC and numerical techniques. Compos. Struct. 2020, 254, 112893. [Google Scholar] [CrossRef]
- Wang, C.Z.; Yao, L.; He, W.T.; Cui, X.F.; Wu, J.; Xie, D. Effect of elliptical notches on mechanical response and progressive damage of FMLs under tensile loading. Thin-Walled Struct. 2020, 154, 106866. [Google Scholar] [CrossRef]
- Wang, C.Z.; Yao, L.; He, W.T.; Cui, X.F.; Xie, D.; Lu, S.J. Mechanical response and critical failure mechanism characterization of notch carbon fiber reinforced polymer laminate subject to tensile loading. Polym. Compos. 2020, 41, 4221–4242. [Google Scholar] [CrossRef]
- Zhong, W.H.; Chen, C.Q.; Li, H.Y.; Hu, H.J.; Qiang, W.; Wang, Y.Y.; Zheng, R.Q. Investigation on notch sensitivity of ARALL. Mater. Sci. Eng. 1994, 12, 23–27. [Google Scholar]
- De Vries, T.J. Blunt and Sharp Notch Behavior of Glare Laminates. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2001. [Google Scholar]
- Tong, A.S.; Xie, L.Y.; Liu, J.Z.; Zhang, X.C. Residual strength of notched fiber metal laminates. J. Northeast. Univ. Nat. Sci. 2017, 38, 375–378. [Google Scholar]
- Lawcock, G.D.; Ye, L.; Mai, Y.W.; Sun, C.T. Effect of fiber/matrix adhesion on carbon-fiber-reinforced metal laminates-I. Residual strength. Compos. Sci. Technol. 1998, 57, 1609–1619. [Google Scholar] [CrossRef]
- Lapczyk, I.; Hurtado, J.A. Progressive damage modeling in fiber-reinforced materials. Compos. Part A 2007, 38, 2333–2341. [Google Scholar] [CrossRef]
- Du, D.D.; Hu, Y.B.; Li, H.G.; Liu, C.; Tao, J. Open-hole tensile progressive damage and failure prediction of carbon fiber-reinforced PEEK-titanium laminates. Compos. Part B 2016, 91, 65–74. [Google Scholar] [CrossRef]
- Zhang, J.P.; Wang, Y.; Zhang, J.Z.; Zhou, Z.G.; Fang, G.D.; Zhao, Y. Characterizing the off-axis dependence of failure mechanism in notched fiber metal laminates. Compos. Struct. 2018, 185, 148–160. [Google Scholar] [CrossRef]
- Zhang, J.P.; Wang, Y.; Fang, G.D.; Zhao, Y.; Zhang, J.Z.; Zhou, Z.G. Application of energy dissipation approach for notched behavior of fiber metal laminates. Compos. Struct. 2017, 180, 809–820. [Google Scholar] [CrossRef]
- Lawcock, G.; Ye, L.; Mai, Y.W. Progressive damage and residual strength of a carbon fiber reinforced metal laminate. J. Compos. Mater. 1997, 31, 762–787. [Google Scholar] [CrossRef]
- Afaghi-Khatibi, A.; Ye, L. Residual strength simulation of fiber reinforced metal laminates containing a circular hole. J. Compos. Mater. 1997, 31, 1884–1904. [Google Scholar] [CrossRef]
- Hagenbeek, M.; Van Hengel, C.; Bosker, O.J.; Vermeeren, C.A.J.R. Static properties of fiber metal laminates. Appl. Compos. Mater. 2003, 10, 207–222. [Google Scholar] [CrossRef]
- Kawai, M.; Arai, Y. Off-axis notched strength of fiber-metal laminates and a formula for predicting anisotropic size effect. Compos. Part A 2009, 40, 1900–1910. [Google Scholar] [CrossRef]
- Savin, G.N. Stress Concentration around Holes; Pergamon Press: Elmsford, NY, USA, 1961; pp. 60–387. [Google Scholar]
- Pilkey, W.D.; Pilkey, D.F. Peterson’s Stress Concentration Factors, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 176–250. [Google Scholar]
- Fan, W.X.; Wu, J.G. Stress concentration of a laminate weakened by multiple holes. Compos. Struct. 1988, 10, 303–319. [Google Scholar] [CrossRef]
- Yeh, H.Y.; Le, M.D. Mutual influence about stress concentration of holes in composite plates. J. Reinf. Plast. Compos. 1993, 12, 38–47. [Google Scholar] [CrossRef]
- Xu, X.W.; Sun, L.G.; Fan, X.Q. Stress concentration of finite composite laminates weakened by multiple elliptical holes. Int. J. Solids Struct. 1995, 32, 3001–3014. [Google Scholar]
- Khoshravan, M.R.; Samaei, M.; Paykani, A. Numerical investigation on the position of holes for reducing stress concentration in composite plates with bolted and riveted joints. Theor. Appl. Mech. Lett. 2011, 1, 041005. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.A.; Rajesh, R.; Pugazhendhi, S. A review of stress concentration studies on fiber composite panels with holes/cutouts. Proc. IMechE Part L J. Mater. Des. Appl. 2020, 234, 1461–1472. [Google Scholar]
- Xu, X.W.; Man, H.C.; Yue, T.M. Strength prediction of composite laminates with multiple elliptical holes. Int. J. Solids Struct. 2000, 37, 2887–2900. [Google Scholar] [CrossRef]
- Cunningham, D.; Harries, K.A.; Bell, A.J. Open-hole tension capacity of pultruded GFRP having staggered hole arrangement. Eng. Struct. 2015, 95, 8–15. [Google Scholar] [CrossRef]
- Kazemahvazi, S.; Kiele, J.; Zenkert, D. Tensile strength of UD-composite laminates with multiple holes. Compos. Sci. Technol. 2010, 70, 1280–1287. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.F.; Morozov, E.; Shankar, K. Progressive failure analysis of perforated aluminum/CFRP fibre metal laminates using a combined elastoplastic damage model and including delamination effects. Compos. Struct. 2014, 114, 64–79. [Google Scholar] [CrossRef]
- He, W.T.; Wang, C.Z.; Wang, S.Q.; Yao, L.; Wu, J.; Xie, D. Tensile mechanical behavior and failure mechanisms of multiple fiber metal laminates-Experimental characterization and numerical prediction. J. Reinf. Plast. Compos. 2020, 39, 499–519. [Google Scholar] [CrossRef]
- Xie, J.M. Joints for Composite Materials, 1st ed.; Shanghai Jiaotong University Press: Shanghai, China, 2016; pp. 196–204. [Google Scholar]
- Abaqus Analysis User’s Manual; Version 6.13; Dassault Systems: Vélizy-Villacoublay, France, 2013.
- Hashin, Z.; Rotem, A. A fatigue criterion for fiber-reinforced materials. J. Compos. Mater. 1973, 7, 448–464. [Google Scholar] [CrossRef] [Green Version]
- Hashin, Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980, 47, 329–334. [Google Scholar] [CrossRef]
- Vieille, B.; Aucher, J.; Taleb, L. Overstress accommodation in notched woven-ply thermoplastic laminates at high-temperature: Numerical modeling and validation by Digital Image Correlation. Compos. Part B 2013, 45, 290–302. [Google Scholar] [CrossRef]
- Liu, G.Y.; Tang, K.L. Study on stress concentration in notched cross-ply laminates under tension loading. J. Compos. Mater. 2016, 50, 283–296. [Google Scholar] [CrossRef]
- Yang, Q.; Cox, B. Cohesive models for damage evolution in laminated composites. Int. J. Fract. 2005, 133, 107–137. [Google Scholar] [CrossRef]
- Falk, M.L.; Needleman, A.; Rice, J.R. A critical evaluation of cohesive zone models of dynamic fracture. J. Phys. IV 2001, 11, 43–50. [Google Scholar]
- Harper, P.W.; Hallett, S.R. Cohesive zone length in numerical simulations of composite delamination. Eng. Fract. Mech. 2008, 75, 4774–4792. [Google Scholar] [CrossRef] [Green Version]
Young’s Modulus (GPa) | Poisson’s Ratio | Yield Stress (MPa) | Plastic Strain | Yield Stress (MPa) | Plastic Strain |
---|---|---|---|---|---|
70.42 | 0.33 | 321.88 | 0 | 450.01 | 0.04295 |
340.09 | 0.00011 | 470.05 | 0.05551 | ||
360.05 | 0.00308 | 490.01 | 0.07028 | ||
380.06 | 0.01002 | 510.00 | 0.08771 | ||
400.05 | 0.01813 | 530.02 | 0.10928 | ||
420.04 | 0.02721 | 542.85 | 0.12518 | ||
430.00 | 0.03207 |
Parameter | Value | Unit |
---|---|---|
Longitudinal stiffness | 54.6 | GPa |
Transverse stiffness | 10.5 | GPa |
Shear stiffness | 5.5 | GPa |
Shear stiffness | 3.9 | GPa |
Poisson’s ratio | 0.33 | - |
Longitudinal tensile strength | 1850 | MPa |
Longitudinal compressive strength | 1037 | MPa |
Transverse tensile strength | 62.2 | MPa |
Transverse compressive strength | 144 | MPa |
Longitudinal shear strength | 129 | MPa |
Transverse shear strength | 76.1 | MPa |
Parameter | S/D | P/D | Sw/D |
---|---|---|---|
Value | ≥5 | ≥4 | ≥2.5 |
Parameter | L (mm) | W (mm) | D (mm) | S (mm) | P (mm) | Sw (mm) | S/D | P/D | Sw/D |
---|---|---|---|---|---|---|---|---|---|
Value | 150 | 25 | 5 | 25 | 20 | 12.5 | 5 | 4 | 2.5 |
Specimen | Wtot (mm) | Wnet (mm) | Pon-axis (kN) | Poff-axis (kN) |
---|---|---|---|---|
H2R2P | 25 | 20 | 7.60 | 6.46 |
H3R2S | 15 | 7.54 | 6.50 | |
H4R2P | 50 | 40 | 15.27 | 12.77 |
H5R2S | 30 | 15.03 | 13.08 |
Notched Specimens | Types of Damage | Schematics of Critical Fracture Path | |||
---|---|---|---|---|---|
PEEQAl | FTG0 | MTG0 | DelAl/G0 | ||
H1R1 [21] | |||||
H2R1 | |||||
H2R2P | |||||
H4R2P | |||||
H3R2S | |||||
H5R2S |
Notched Specimens | Types of Damage | Schematics of Critical Fracture Path | |||
---|---|---|---|---|---|
PEEQAl | FTG0 | MTG0 | DelAl/G0 | ||
H1R1 [21] | |||||
H2R1 | |||||
H2R2P | |||||
H4R2P | |||||
H3R2S | |||||
H5R2S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, Y.; Yang, W.; Zhao, Y. Effect of Hole Arrangement on Failure Mechanism of Multiple-Hole Fiber Metal Laminate under On-Axis and Off-Axis Loading. Materials 2021, 14, 5771. https://doi.org/10.3390/ma14195771
Zhang J, Wang Y, Yang W, Zhao Y. Effect of Hole Arrangement on Failure Mechanism of Multiple-Hole Fiber Metal Laminate under On-Axis and Off-Axis Loading. Materials. 2021; 14(19):5771. https://doi.org/10.3390/ma14195771
Chicago/Turabian StyleZhang, Jipeng, Yue Wang, Wen Yang, and Yuan Zhao. 2021. "Effect of Hole Arrangement on Failure Mechanism of Multiple-Hole Fiber Metal Laminate under On-Axis and Off-Axis Loading" Materials 14, no. 19: 5771. https://doi.org/10.3390/ma14195771
APA StyleZhang, J., Wang, Y., Yang, W., & Zhao, Y. (2021). Effect of Hole Arrangement on Failure Mechanism of Multiple-Hole Fiber Metal Laminate under On-Axis and Off-Axis Loading. Materials, 14(19), 5771. https://doi.org/10.3390/ma14195771