Direct Surface Modification of Polycaprolactone-Based Shape Memory Materials to Introduce Positive Charge Aiming to Enhance Cell Affinity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Preparation of Two-Branched and Four-Branched Polycaprolactone-co-α-bromo-ɤ-butyrolactone (2bPolyCL-co-BrBL-OH and 4bPolyCL-co-BrBL-OH, Respectively)
2.4. Preparation of Shape Memory Film with Two-Branched and Four-Branched PolyCL-co-BrBL-MA (2bPolyCL-co-BrBL-MA and 4bPolyCL-co-BrBL-MA, Respectively)
2.5. Direct Surface Modification of PolyCL-co-BrBL Film Using Amino Compound Solution
2.6. Contact Angle Measurement
2.7. Preparation of Stretched Modified PolyCL-co-BrBL Film
2.8. Cell Adhesion onto Modified PolyCL-co-BrBL Film
3. Results and Discussion
3.1. Preparation of Crosslinkable Poly(CL-co-BrBL) as a Starting Material
3.2. Preparation of Brominated PCL-Based Crosslinked Materials
3.3. Influence on Bulk Properties Based on Reaction Conditions
3.4. Evaluation of Surface Modification of Poly(CL-co-BrBL)-Based Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozkale, B.; Sakar, M.S.; Mooney, D.J. Active biomaterials or mechanobiology. Biomaterials 2021, 267, 120497. [Google Scholar] [CrossRef]
- Shi, H.; Wang, C.; Ma, Z. Stimuli-responsive biomaterials for cardiac tissue engineering and dynamic mechanobiology. APL Bioeng. 2021, 5, 011506. [Google Scholar] [CrossRef]
- Virdi, J.K.; Pethe, P. Biomaterials regulate mechanosensors YAP/TAZ in stem cell growth and differentiation. Tissue Eng. Regen. Med. 2021, 18, 199–215. [Google Scholar] [CrossRef]
- Naqvi, S.M.; McNamara, L.M. Stem cell mechanobiology and the role of biomaterials in governing mechanotransduction and matrix production for tissue regeneration. Front. Bioeng. Biotech. 2020, 8, 597661. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, G.; Xu, F. Engineering biomaterials and approaches for mechanical stretching of cells in three dimensions. Front. Bioeng. Biotech. 2020, 8, 589590. [Google Scholar] [CrossRef]
- Kang, P.H.; Kumar, S.; Schaffer, D.V. Novel biomaterials to study neural stem cell mechanobiology and improve cell-replacement therapies. Curr. Opin. Biomed. Eng. 2017, 4, 13–20. [Google Scholar] [CrossRef]
- Park, K.J.; Kim, P.; Helen, W.; Engler, A.J.; Levchenko, A.; Kim, D.H. Control of stem cell fate and function by engineering physical microenvironments. Integr. Biol. 2012, 4, 1008–1018. [Google Scholar]
- Chen, L.; Yan, C.; Zheng, Z. Functional polymer surfaces for controlling cell behaviors. Mater. Today 2018, 21, I38–59. [Google Scholar] [CrossRef]
- Jeon, H.; Koo, S.; Reese, W.M.; Loskil, P.; Grigoropoulos, C.P.; Healy, K.E. Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nature Mater. 2015, 14, 918–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aronin, P.; Cooper, J.A.; Sefcik, L.S.; Tholpady, S.S.; Ogle, R.C.; Botchwey, E.A. Osteogenic differentiation of dura mater stem cells cultured in vitro on three-dimensional porous scaffolds of poly(epsilon-caprolactone) fabricated via co-extrusion and gas foaming. Acta Biomater. 2008, 4, 1187–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Danmark, S.; Edlund, U.; Finne-Wistrand, A.; He, X.; Norgard, M.; Blomen, E.; Hultenby, K.; Andersson, G.; Lindgren, U. Resveratrol-conjugated poly-epsilon-caprolactone facilitates in vitro mineralization and in vivo bone regeneration. Acta Biomater. 2011, 7, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Delaey, J.; Dubruel, P.; Van, V.S. Shape-memory polymers for biomedical applications. Adv. Func. Mater. 2020, 30, 1909047. [Google Scholar] [CrossRef]
- Izraylit, V.; Gould, O.E.C.; Lendlein, A. Controlling actuation performance in physically cross-linked polylactone blends using polylactide stereocomplexation. Biomacromolecules 2020, 21, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Ramaraju, H.; Akman, R.E.; Safranski, D.L.; Hollistar, S.J. Designing biodegradable shape memory polymers for tissue repair. Adv. Func. Mater. 2020, 30, 2002014. [Google Scholar] [CrossRef]
- Wilson, J.A.; Ates, Z.; Pfughaupt, R.L.; Dove, A.P.; Heise, A. Polymers from macrolactones: From pheromones to functional materials. Prog. Plym. Sci. 2019, 91, 29–50. [Google Scholar] [CrossRef]
- Yang, W.G.; Lu, H.B.; Huang, W.M.; Qi, H.J.; Wu, X.L.; Sun, K.Y. Advanced shape memory technology to reshape product design, manufacturing and recycling. Polymers 2014, 6, 2287–2308. [Google Scholar] [CrossRef]
- Uto, K.; Aoyagi, T.; Kim, D.H.; Ebara, M. Free-standing nanopatterned poly(ε-caprolactone) thin films as a multifunctional scaffold. IEEE Trans. Nanotech. 2017, 17, 389–392. [Google Scholar] [CrossRef]
- Uto, K.; Aoyagi, T.; DeForest, C.A.; Hoffman, A.S.; Ebara, M. A combinational effect of “bulk” and “surface” shape-memory transitions on the regulation of cell alignment. Adv. Healthc. Mater. 2017, 6, 1601439. [Google Scholar] [CrossRef]
- Ebara, M.; Uto, K.; Idota, N.; Hoffman, J.M.; Aoyagi, T. Shape-memory surface with dynamically tunable nano-geometry activated by body heat. Adv. Mater. 2012, 24, 273–278. [Google Scholar] [CrossRef]
- Ebara, M.; Uto, K.; Idota, N.; Aoyagi, T. The taming of the cell: Shape-memory nanopatterns direct cell orientation. Int. J. Nanomed. 2014, 9, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Aoyagi, T.; Miyata, F.; Nagase, Y. Preparation of cross-linked aliphatic polyester and application to thermo-responsive material. J. Contr. Rel. 1994, 32, 87–96. [Google Scholar]
- Uto, K.; Yamamoto, K.; Hirase, S.; Aoyagi, T. Temperature-responsive cross-linked poly(ε-caprolactone) membrane that functions near body temperature. J. Contr. Rel. 2006, 110, 408–413. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, Y.; Zhang, P. A rapid quantitation of cell attachment and spreading based on digital image analysis: Application for cell affinity and compatibility assessment of synthetic polymers. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 128, 112267. [Google Scholar] [CrossRef]
- Guo, R.; Li, K.; Tian, B.; Wang, C.; Chen, X.; Jiang, X.; He, H.; Hong, W. Elaboration on the architecture of pH-sensitive surface charge-adaptive micelles with enhanced penetration and bactericidal activity in biofilms. J. Nanobio. Tech. 2021, 9, 232. [Google Scholar] [CrossRef] [PubMed]
- Haladjova, E.; Chrysostomou, V.; Petrova, M.; Ugrinova, I.; Pispas, S.; Rangelov, S. Physicochemical properties and biological performance of polymethacrylate based gene delivery vector systems: Influence of amino functionalities. Macromol. Biosci. 2021, 21, 2000352. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ayon, M.; Licea-Claverie, A.; Sanudo-Barajas, J.A. Different strategies for the preparation of galactose-functionalized thermo-responsive nanogels with potential as smart drug delivery systems. Polymers 2020, 12, 2150. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Fan, Q.Q.; Wang, H.; Cheng, Y.Y. Polymer for cytosolic protein delivery. Biomaterials 2019, 218, 119358. [Google Scholar] [CrossRef]
- Bu, Y.; Ma, J.; Bei, J.; Wang, S. Surface modification of aliphatic polyester to enhance biocompatibility. Front. Bioeng. Biotech. 2019, 7, 98. [Google Scholar] [CrossRef] [PubMed]
- Iwamatsu, K.; Uto, K.; Takeuchi, Y.; Hoshi, T.; Aoyagi, T. Preparation of temperature-responsive, cationized, poly(ε-caprolactone)-based, cross-linked materials by a macromonomer design and positive charge control on the surface. Polym. J. 2018, 50, 447–454. [Google Scholar] [CrossRef]
- Olsén, P.P.; Undin, J.; Odelius, K.; Albertsson, A.C. Establishing α-bromo-γ-butyrolactone as a platform for synthesis of functional aliphatic polyesters – bridging the gap between ROP and SET-LRP. Polym. Chem. 2014, 5, 3847–3854. [Google Scholar] [CrossRef] [Green Version]
- Capaccio, G.; Ward, I.M. Shrinkage, shrinkage force and the structure of ultra high modulus polyethylenes. Colloid Polym. Sci. 1982, 260, 46–55. [Google Scholar] [CrossRef]
- Song, X.; Liu, F.; Wang, H.; Wang, C.; Yu, S.; Liu, S. Methanolysis of microbial polyester poly(3-hydroxybutyrate) catalyzed by Brønsted-Lewis acidic ionic liquids as a new method towards sustainable development. Polym. Degrad. Stabil. 2018, 147, 215–221. [Google Scholar] [CrossRef]
Sample | Feed Ratio [BrBL/CL] | Composition Ratio [BrBL/CL] | Yield [%] | Introduction Ratio of MA [%] |
---|---|---|---|---|
2-Poly(CL-co-BrBL)-OH | 0.25 | 0.04 | 94.1 | - |
2-Poly(CL-co-BrBL)-OH | 0.50 | 0.07 | 34.1 | - |
4-Poly(CL-co-BrBL)-OH | 0.13 | 0.02 | 40.5 | - |
4-Poly(CL-co-BrBL)-OH * | 0.25 | - | - | - |
2-Poly(CL-co-BrBL)-MA | 0.25 | 0.04 | 64.3 | 82.6 |
4-Poly(CL-co-BrBL)-MA | 0.13 | 0.02 | 34.4 | 72.3 |
Sample | Tm (°C) | DHm (mJ/mg) |
---|---|---|
Before reaction | 41.2 | 49.7 |
Am10-1 h | 41.3 | 50.3 |
Am10-1 h | 40.9 | 49.5 |
Am10-1 h | 41.4 | 53.0 |
Am10-1 h | 41.1 | 57.3 |
Sample | Reaction Time (h) | Contact Angle * (°) |
---|---|---|
Before reaction | - | 57.9 ± 6.0 |
Am10-1 h | 1 | 42.4 ± 5.5 |
Am10-3 h | 3 | 44.9 ± 9.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zako, T.; Matsushita, S.; Hoshi, T.; Aoyagi, T. Direct Surface Modification of Polycaprolactone-Based Shape Memory Materials to Introduce Positive Charge Aiming to Enhance Cell Affinity. Materials 2021, 14, 5797. https://doi.org/10.3390/ma14195797
Zako T, Matsushita S, Hoshi T, Aoyagi T. Direct Surface Modification of Polycaprolactone-Based Shape Memory Materials to Introduce Positive Charge Aiming to Enhance Cell Affinity. Materials. 2021; 14(19):5797. https://doi.org/10.3390/ma14195797
Chicago/Turabian StyleZako, Takafumi, Shoko Matsushita, Toru Hoshi, and Takao Aoyagi. 2021. "Direct Surface Modification of Polycaprolactone-Based Shape Memory Materials to Introduce Positive Charge Aiming to Enhance Cell Affinity" Materials 14, no. 19: 5797. https://doi.org/10.3390/ma14195797
APA StyleZako, T., Matsushita, S., Hoshi, T., & Aoyagi, T. (2021). Direct Surface Modification of Polycaprolactone-Based Shape Memory Materials to Introduce Positive Charge Aiming to Enhance Cell Affinity. Materials, 14(19), 5797. https://doi.org/10.3390/ma14195797