Effects of a Real Exposure Class XC4 Mediterranean Climate Environment in the Behavior of Mortars Made Using Ternary Binders with Addition of Slag, Fly Ash and Limestone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Environmental Exposure Condition
2.3. Mercury Intrusion Porosimetry
2.4. Electrical Resistivity
2.5. Water Absorption
2.6. Steady-State Chloride Diffusion Coefficient
2.7. Carbonation Depth
2.8. Mechanical Strengths
2.9. Ultrasonic Pulse Velocity
3. Results
3.1. Mercury Intrusion Porosimetry
3.2. Electrical Resistivity
3.3. Water Absorption
3.4. Steady-State Chloride Diffusion Coefficient
3.5. Carbonation Front Depth
3.6. Mechanical Strengths
3.7. Ultrasonic Pulse Velocity
4. Discussion
4.1. Microstructure Characterization
4.2. Durability and Mechanical Parameters
5. Conclusions
- The relative mild and humid environmental conditions during the first weeks of the exposure period improved the microstructure and the properties of the studied mortars, facilitating the development of clinker and slag hydration, as well as the pozzolanic reactions of fly ash at early ages;
- The studied binders generally showed an increase in total porosity, a loss of pore refinement, a rise of the carbonation front depths, and a reduction in their mechanical strengths with time. This could be due to the long-term effects of the warm environmental conditions in the exposure site, which would produce a progressive drying of the material, making more difficult the development of hydration and pozzolanic reactions and probably producing the formation shrinkage microcracking. This would give, as a result, the worsening with the time of the performance of the mortars, to which the development of carbonation would also contribute, although to a lesser extent. In addition, these harmful effects would also lead to the worst long-term behavior of the mortars exposed to the studied real environment, compared to their performance under an optimum laboratory condition pointed out in previous work;
- The electrical resistivity showed a progressive rise with age for all the studied binders, which would be due to the reduction in the amount of the electrolyte that fills the microstructure of the material, mainly produced by the drying process as a consequence of the exposure to the real environment. However, this increase with time of the resistivity could also be related to a different microstructure development in the internal and external parts of the samples used for measuring this parameter due to their higher size and volume than those tested with the other techniques. This would produce a denser microstructure of the material in the samples’ core part, influencing the resistivity. In addition, the reduction with the age of the steady-state chloride diffusion coefficient observed would be in keeping with the increase in electrical resistivity, which would also point out the abovementioned possible differences between the internal and external parts of the specimens;
- The results of the water absorption after immersion would be affected by the drying in an oven at 100°C established in the experimental procedure performed, masking and notably removing the influence of the environmental conditions in this parameter. Despite that, the binary binders with slag and fly ash (S and F series) and the ternary binder, which incorporated both additions (SF series), showed lower water absorption values than other analyzed mortars;
- The differences in relation to the carbonation front depths between the binders studied were not high, although in general, they were greater for binders with only fly ash as active addition (FL and F series). This result may be due to their lower portlandite content as a consequence of the development of the pozzolanic reactions of fly ash;
- After 250 days, the binary binders with slag and fly ash (S and F mortars) and the ternary binder, which incorporated both additions (SF series) overall, showed higher pore refinement and similar or even better mechanical performance than reference mortars without additions. This would be due to the effects of the hydration of slag and the pozzolanic reactions of fly ash, as well as by the synergetic effect of combining both additions in the ternary binder;
- The incorporation of limestone in the ternary binders (FL and SL mortars) would entail a lower pore structure refinement and a reduction in the mechanical strengths, compared to the other binders with slag and/or fly ash (S, F, and SF series). This may be explained in relation to the lack of hydraulic or pozzolanic activity of limestone addition, so its effects are limited in comparison with slag and fly ash, acting only as a filler material.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benhelal, E.; Shamsaei, E.; Rashid, M.I. Challenges against CO2 abatement strategies in cement industry: A review. J. Environ. Sci. 2021, 104, 84–101. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Yu, B.; Chen, J.-M.; Wei, Y.-M. Green transition pathways for cement industry in China. Resour. Conserv. Recycl. 2021, 166. [Google Scholar] [CrossRef]
- Rodríguez, G.; Medina, C.; Alegre, F.J.; Asensio, E.; Sánchez de Rojas, M.I. Assessment of Construction and Demolition Waste plant management in Spain: In pursuit of sustainability and eco-efficiency. J. Clean. Prod. 2015, 90, 16–24. [Google Scholar] [CrossRef]
- Coppola, L.; Bellezze, T.; Belli, A.; Bignozzi, M.C.; Bolzoni, F.; Brenna, A.; Cabrini, M.; Candamano, S.; Cappai, M.; Caputo, D.; et al. Binders alternative to Portland cement and waste management for sustainable construction—part 1. J. Appl. Biomater. Funct. Mater. 2018, 16, 186–202. [Google Scholar] [CrossRef] [Green Version]
- Valipour, M.; Shekarchi, M.; Arezoumandi, M. Chlorine diffusion resistivity of sustainable green concrete in harsh marine environments. J. Clean. Prod. 2017, 142, 4092–4100. [Google Scholar] [CrossRef]
- Demirboğa, R. Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Build. Environ. 2007, 42, 2467–2471. [Google Scholar] [CrossRef]
- Ganjian, E.; Pouya, H.S. Effect of magnesium and sulfate ions on durability of silica fume blended mixes exposed to the seawater tidal zone. Cem. Concr. Res. 2005, 35, 1332–1343. [Google Scholar] [CrossRef]
- Ponikiewski, T.; Gołaszewski, J. The effect of high-calcium fly ash on selected properties of self-compacting concrete. Arch. Civ. Mech. Eng. 2014, 14, 455–465. [Google Scholar] [CrossRef]
- Tremiño, R.M.; Real-Herraiz, T.; Letelier, V.; Branco, F.G.; Ortega, J.M. Effects after 1500 hardening days on the microstructure and durability-related parameters of mortars produced by the incorporation of waste glass powder as a clinker replacement. Sustainability 2021, 13, 3979. [Google Scholar] [CrossRef]
- Bijen, J. Benefits of slag and fly ash. Constr. Build. Mater. 1996, 10, 309–314. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Cui, K.; Fu, T.; Gao, J.; Hussain, S.; AlGarni, T.S. Pyrometallurgical recovery of zinc and valuable metals from electric arc furnace dust—A review. J. Clean. Prod. 2021, 298. [Google Scholar] [CrossRef]
- Cui, K.; Zhang, Y.; Fu, T.; Hussain, S.; Algarni, T.S.; Wang, J.; Zhang, X.; Ali, S. Effects of Cr2O3 content on microstructure and mechanical properties of Al2O3 matrix composites. Coatings 2021, 11, 234. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, C.; Sun, W. Fly ash effects. Cem. Concr. Res. 2004, 34, 2057–2060. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Kroehong, W.; Damrongwiriyanupap, N.; Suriyo, W.; Jaturapitakkul, C. Mechanical properties, chloride resistance and microstructure of Portland fly ash cement concrete containing high volume bagasse ash. J. Build. Eng. 2020, 31. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford Publishing: London, UK, 1997; ISBN 978-0727725929. [Google Scholar]
- Neville, A.M. Properties of concrete, 4th ed.; Pearson Education Limited: Harlow, UK, 1995. [Google Scholar]
- Papadakis, V.G. Effect of fly ash on Portland cement systems. Cem. Concr. Res. 1999, 29, 1727–1736. [Google Scholar] [CrossRef]
- Wedding, P.; Manmohan, D.; Mehta, P. Influence of Pozzolanic, Slag, and Chemical Admixtures on Pore Size Distribution and Permeability of Hardened Cement Pastes. Cem. Concr. Aggreg. 1981, 3, 63. [Google Scholar] [CrossRef]
- Bouikni, A.; Swamy, R.N.; Bali, A. Durability properties of concrete containing 50% and 65% slag. Constr. Build. Mater. 2009, 23, 2836–2845. [Google Scholar] [CrossRef]
- Ortega, J.M.; Sánchez, I.; Climent, M.A. Durability related transport properties of OPC and slag cement mortars hardened under different environmental conditions. Constr. Build. Mater. 2012, 27, 176–183. [Google Scholar] [CrossRef]
- Dhandapani, Y.; Santhanam, M.; Kaladharan, G.; Ramanathan, S. Towards ternary binders involving limestone additions—A review. Cem. Concr. Res. 2021, 143. [Google Scholar] [CrossRef]
- Hadji, T.; Guettala, S.; Quéneudec, M. Mix design of high performance concrete with different mineral additions. World J. Eng. 2021. [Google Scholar] [CrossRef]
- Marchetti, G.; Irassar, E.F.; Rahhal, V.F. Effects of packing density and water film thickness on fresh and hardened properties of ternary cement pastes. Adv. Cem. Res. 2020, 32, 444–455. [Google Scholar] [CrossRef]
- AENOR UNE-EN 197-1:2011. Composición, Especificaciones y Criterios de Conformidad de los Cementos Comunes; Asociación Española de Normalización y Certificación: Madrid, Spain, 2011. [Google Scholar]
- Dadsetan, S.; Bai, J. Mechanical and microstructural properties of self-compacting concrete blended with metakaolin, ground granulated blast-furnace slag and fly ash. Constr. Build. Mater. 2017, 146, 658–667. [Google Scholar] [CrossRef]
- Ban, C.C.; Sern, L.J.; Jasme, N. The mechanical strength and drying shrinkage behavior of high performance concrete with blended mineral admixture. J. Teknol. 2019, 81, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Radlinski, M.; Olek, J. Investigation into the synergistic effects in ternary cementitious systems containing portland cement, fly ash and silica fume. Cem. Concr. Compos. 2012, 34, 451–459. [Google Scholar] [CrossRef]
- De Weerdt, K.; Kjellsen, K.O.; Sellevold, E.; Justnes, H. Synergy between fly ash and limestone powder in ternary cements. Cem. Concr. Compos. 2011, 33, 30–38. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes. Constr. Build. Mater. 2012, 29, 641–646. [Google Scholar] [CrossRef]
- Radwan, M.K.H.; Onn, C.C.; Mo, K.H.; Yap, S.P.; Ng, C.G.; Yusoff, S. Eco-mechanical performance of binary and ternary cement blends containing fly ash and slag. Proc. Inst. Civ. Eng. Eng. Sustain. 2020, 174, 23–36. [Google Scholar] [CrossRef]
- Bumanis, G.; Zorica, J.; Bajare, D. Properties of foamed lightweight high-performance phosphogypsum-based ternary system binder. Appl. Sci. 2020, 10, 6222. [Google Scholar] [CrossRef]
- Detwiler, R.J.; Kjellsen, K.O.; Gjorv, O.E. Resistance to chloride intrusion of concrete cured at different temperatures. Mater. J. 1991, 88, 19–24. [Google Scholar]
- Çakır, Ö.; Aköz, F. Effect of curing conditions on the mortars with and without GGBFS. Constr. Build. Mater. 2008, 22, 308–314. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Malhotra, V.M. Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cem. Concr. Compos. 1995, 17, 125–133. [Google Scholar] [CrossRef]
- Thomas, M.D.A.; Scott, A.; Bremner, T.; Bilodeau, A.; Day, D. Performance of slag concrete in marine environment. ACI Mater. J. 2008, 105, 628–634. [Google Scholar]
- Geiseler, J.; Kollo, H.; Lang, E. Influence of blast furnace cements on durability of concrete structures. ACI Mater. J. 1995, 92, 252–257. [Google Scholar]
- Shattaf, N.R.; Alshamsi, A.M.; Swamy, R.N. Curing/environment effect on pore structure of blended cement concrete. J. Mater. Civ. Eng. 2001, 13, 380–388. [Google Scholar] [CrossRef]
- Polder, R.B.; De Rooij, M.R. Durability of marine concrete structures-Field investigations and modelling. Heron 2005, 50, 133–154. [Google Scholar]
- Thomas, M.D.; Matthews, J. Performance of pfa concrete in a marine environment––10-year results. Cem. Concr. Compos. 2004, 26, 5–20. [Google Scholar] [CrossRef]
- Chalee, W.; Jaturapitakkul, C.; Chindaprasirt, P. Predicting the chloride penetration of fly ash concrete in seawater. Mar. Struct. 2009, 22, 341–353. [Google Scholar] [CrossRef]
- European Committee for Standardization. EN 1992-1-1 Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings; Committee European Normalization (CEN): Brussels, Belgium, 2004. [Google Scholar]
- Ibáñez-Gosálvez, J.; Real-Herraiz, T.; Ortega, J.M. Microstructure, durability and mechanical properties of mortars prepared using ternary binders with addition of slag, fly ash and limestone. Appl. Sci. 2021, 11, 6388. [Google Scholar] [CrossRef]
- AENOR UNE-EN 196-1:2005. Métodos de Ensayo de Cementos. Parte 1: Determinación de Resistencias Mecánicas; Asociación Española de Normalización y Certificación: Madrid, Spain, 2005. [Google Scholar]
- Ortega, J.M.; Sánchez, I.; Cabeza, M.; Climent, M.A. Short-Term Behavior of Slag Concretes Exposed to a Real In Situ Mediterranean Climate Environment. Materials 2017, 10, 915. [Google Scholar] [CrossRef] [Green Version]
- Diamond, S. Mercury porosimetry. Cem. Concr. Res. 2000, 30, 1517–1525. [Google Scholar] [CrossRef]
- Ouellet, S.; Bussière, B.; Aubertin, M.; Benzaazoua, M. Microstructural evolution of cemented paste backfill: Mercury intrusion porosimetry test results. Miner. Eng. 2007, 37, 1654–1665. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Rachan, R.; Chinkulkijniwat, A.; Raksachon, Y.; Suddeepong, A. Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Constr. Build. Mater. 2010, 24, 2011–2021. [Google Scholar] [CrossRef]
- Pedeferri, P.; Bertolini, L. La Durabilità del Calcestruzzo Armato; Mc Graw-Hill Education: Milano, Italy, 2000; ISBN 9788838608452. [Google Scholar]
- Ho, L.S.; Nakarai, K.; Duc, M.; Kouby, A.L.; Maachi, A.; Sasaki, T. Analysis of strength development in cement-treated soils under different curing conditions through microstructural and chemical investigations. Constr. Build. Mater. 2018, 166, 634–646. [Google Scholar] [CrossRef]
- Polder, R.; Andrade, C.; Elsener, B.; Vennesland, Ø.; Gulikers, J.; Weidert, R.; Raupach, M. Test methods for on site measurement of resistivity of concrete. Mater. Struct. 2000, 33, 603–611. [Google Scholar] [CrossRef]
- Lübeck, A.; Gastaldini, A.L.G.; Barin, D.S.; Siqueira, H.C. Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag. Cem. Concr. Compos. 2012, 34, 392–399. [Google Scholar] [CrossRef]
- AENOR UNE 83988-2:2014. Durabilidad del Hormigón. Métodos de Ensayo. Determinación de la Resistividad Eléctrica. Parte 2: Método de las Cuatro Puntas o de Wenner; Asociación Española de Normalización y Certificación: Madrid, Spain, 2014. [Google Scholar]
- Andrade, C.; Climent, M.A. Recomendaciones sobre determinación de la resistividad eléctrica del hormigón in situ mediante el método de las cuatro puntas y del disco; ALCONPAT Internacional: Mérida, Yucatán, Mexico, 2020; p. 11. [Google Scholar] [CrossRef]
- ASTM C642-06. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete; ASTM International: West Conshohocken, PA, USA, 2006; p. 3. [Google Scholar]
- ASTM C1202-12. Standard Test Method for Electrical Indication of Concretes Ability to Resist Chloride Ion Penetration; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Andrade, C.; Alonso, C.; Arteaga, A.; Tanner, P. Methodology based on the electrical resistivity for the calculation of reinforcement service life. In Proceedings of the 5th CANMET/ACI International Conference on Durability of Concrete, Supplementary Papers; Malhotra, V.M., Ed.; American Concrete Institute: Barcelona, Spain, 4–9 June 2000; pp. 899–915. [Google Scholar]
- RILEM CPC-18. Measurement of hardened concrete carbonation depth. Mater. Struct. 1988, 21, 453–455. [Google Scholar] [CrossRef]
- AENOR UNE-EN 1015-11:1999. Métodos de Ensayo de los Morteros Para Albañilería. Parte 11: Determinación de la Resistencia a Flexión y a Compresión del Mortero Endurecido; Asociación Española de Normalización y Certificación: Madrid, Spain, 1999. [Google Scholar]
- AENOR UNE-EN 12504-4:2006. Ensayos de Hormigón en Estructuras. Parte 4: Determinación de la Velocidad de los Impulsos Ultrasónicos; Asociación Española de Normalización y Certificación: Madrid, Spain, 2006. [Google Scholar]
- Ortega, J.M.; Sánchez, I.; Climent, M.A. Impedance spectroscopy study of the effect of environmental conditions in the microstructure development of OPC and slag cement mortars. Arch. Civ. Mech. Eng. 2015, 15. [Google Scholar] [CrossRef]
- Ortega, J.M.; Sánchez, I.; Climent, M.A. Impedance spectroscopy study of the effect of environmental conditions on the microstructure development of sustainable fly ash cement mortars. Materials 2017, 10, 1130. [Google Scholar] [CrossRef] [Green Version]
- Barnett, S.J.; Soutsos, M.N.; Millard, S.G.; Bungey, J.H. Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies. Cem. Concr. Res. 2006, 36, 434–440. [Google Scholar] [CrossRef]
- Escalante-García, J.I.; Sharp, J.H. Effect of temperature on the hydration of the main clinker phasesin Portland cements: Part II, blended cements. Cem. Concr. Res. 1998, 28, 1259–1274. [Google Scholar] [CrossRef]
- Hale, W.M.; Freyne, S.F.; Bush, T.D., Jr.; Russell, B.W. Properties of concrete mixtures containing slag cement and fly ash for use in transportation structures. Constr. Build. Mater. 2008, 22, 1990–2000. [Google Scholar] [CrossRef]
- Meddah, M.S.; Lmbachiya, M.C.; Dhir, R.K. Potential use of binary and composite limestone cements in concrete production. Constr. Build. Mater. 2014, 58, 193–205. [Google Scholar] [CrossRef]
- Ma, B.-G.; Wen, X.-D.; Wang, M.-Y.; YAN, J.-J.; Gao, X.-J. Drying Shrinkage of Cement-Based Materials Under Conditions of Constant Temperature and Varying Humidity. J. China Univ. Min. Technol. 2007, 17, 428–431. [Google Scholar] [CrossRef]
- Kanna, V.; Olson, R.A.; Jennings, H.M. Effect of shrinkage and moisture content on the physical characteristics of blended cement mortars. Cem. Concr. Res. 1998, 28, 1467–1477. [Google Scholar] [CrossRef]
- Anstice, D.J.; Page, C.L.; Page, M.M. The pore solution phase of carbonated cement pastes. Cem. Concr. Res. 2005, 35, 377–383. [Google Scholar] [CrossRef]
- Ngala, V.T.; Page, C.L. Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cem. Concr. Res. 1997, 27, 995–1007. [Google Scholar] [CrossRef]
- Díaz, B.; Freire, L.; Nóvoa, X.R.; Pérez, M.C. Chloride and CO2 transport in cement paste containing red mud. Cem. Concr. Compos. 2015, 62, 178–186. [Google Scholar] [CrossRef]
- Aldea, C.-M.; Young, F.; Wang, K.; Shah, S.P. Effects of curing conditions on properties of concrete using slag replacement. Cem. Concr. Res. 2000, 30, 465–472. [Google Scholar] [CrossRef]
- De Grazia, M.T.; Deda, H.; Sanchez, L.F.M. The influence of the binder type & aggregate nature on the electrical resistivity of conventional concrete. J. Build. Eng. 2021, 43. [Google Scholar] [CrossRef]
- Andrade, M.C.; Bolzoni, F.; Fullea, J. Analysis of the relation between water and resistivity isotherms in concrete. Mater. Corros. 2011, 62, 130–138. [Google Scholar] [CrossRef]
- Martínez-Molina, W.; Torres-Acosta, A.A.; Jáuregui, J.C.; Chávez-García, H.L.; Alonso-Guzmán, E.M.; Graff, M.; Arteaga-Arcos, J.C. Predicting concrete compressive strength and modulus of rupture using different NDT techniques. Adv. Mater. Sci. Eng. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, H.; Ilica, T.; Sengul, O. Effect of cement type on the resistance of concrete against chloride penetration. Constr. Build. Mater. 2011, 25, 1282–1288. [Google Scholar] [CrossRef]
- Nokken, M.; Boddy, A.; Wu, X.; Hooton, R.D. Effects of temperature, chemical, and mineral admixtures on the electrical conductivity of concrete. J. ASTM Int. 2008, 5. [Google Scholar] [CrossRef]
- Bouzoubaâ, N.; Zhang, M.-H.; Malhotra, V.M.; Golden, D.M. Blended fly ash cements—A review. ACI Mater. J. 1999, 96, 641–650. [Google Scholar]
- Ortega, J.M.; Pastor, J.L.; Albaladejo, A.; Sánchez, I.; Climent, M.A. Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications. Mater. Constr. 2014, 64. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.M.; Tremiño, R.M.; Sánchez, I.; Climent, M.Á. Effects of environment in the microstructure and properties of sustainable mortars with fly ash and slag after a 5-year exposure period. Sustainability 2018, 10, 663. [Google Scholar] [CrossRef] [Green Version]
- Atiş, C.D. Accelerated carbonation and testing of concrete made with fly ash. Constr. Build. Mater. 2003, 17, 147–152. [Google Scholar] [CrossRef]
- Khan, M.I.; Lynsdale, C.J. Strength, permeability, and carbonation of high-performance concrete. Cem. Concr. Res. 2002, 32, 123–131. [Google Scholar] [CrossRef]
Designation | CEM I 42.5 R | Limestone | Blast-Furnace Slag | Fly Ash |
---|---|---|---|---|
REF | 100% | - | - | - |
L | 70% | 30% | - | - |
S | 70% | - | 30% | - |
F | 70% | - | - | 30% |
SL | 70% | 15% | 15% | - |
SF | 70% | - | 15% | 15% |
FL | 70% | 15% | - | 15% |
Components | Blast-Furnace Slag | Fly Ash | Limestone |
---|---|---|---|
MgO | 6.98% | 1.40% | 0.47% |
Al2O3 | 10.10% | 27.70% | 1.22% |
SiO2 | 31.50% | 54.40% | 2.85% |
SO3 | 1.94% | 0.53% | 0.10% |
K2O | 0.52% | 3.12% | 0.18% |
CaO | 46.80% | 2.55% | 94.40% |
TiO2 | 0.94% | 1.05% | 0.11% |
MnO | 0.17% | 0.06% | - |
Fe2O3 | 0.37% | 8.06% | 0.54% |
P2O5 | 0.02% | 0.46% | 0.02% |
Na2O | 0.30% | - | - |
ZnO | - | 0.11% | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibáñez-Gosálvez, J.; Real-Herraiz, T.; Ortega, J.M. Effects of a Real Exposure Class XC4 Mediterranean Climate Environment in the Behavior of Mortars Made Using Ternary Binders with Addition of Slag, Fly Ash and Limestone. Materials 2021, 14, 5848. https://doi.org/10.3390/ma14195848
Ibáñez-Gosálvez J, Real-Herraiz T, Ortega JM. Effects of a Real Exposure Class XC4 Mediterranean Climate Environment in the Behavior of Mortars Made Using Ternary Binders with Addition of Slag, Fly Ash and Limestone. Materials. 2021; 14(19):5848. https://doi.org/10.3390/ma14195848
Chicago/Turabian StyleIbáñez-Gosálvez, Javier, Teresa Real-Herraiz, and José Marcos Ortega. 2021. "Effects of a Real Exposure Class XC4 Mediterranean Climate Environment in the Behavior of Mortars Made Using Ternary Binders with Addition of Slag, Fly Ash and Limestone" Materials 14, no. 19: 5848. https://doi.org/10.3390/ma14195848
APA StyleIbáñez-Gosálvez, J., Real-Herraiz, T., & Ortega, J. M. (2021). Effects of a Real Exposure Class XC4 Mediterranean Climate Environment in the Behavior of Mortars Made Using Ternary Binders with Addition of Slag, Fly Ash and Limestone. Materials, 14(19), 5848. https://doi.org/10.3390/ma14195848