Structure-Property Relationships of Polyamide 12 Grades Exposed to Rapid Crack Extension
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
- Those with low critical pressures of ~3.2 bar: these include neat PA12-0 as well as C2-im-pgm;
- Those with slightly higher pc,0°C values of 4.1–4.4 bar: C4-im-nc and C5-im-pgm; and
- C3-nc, having the remarkably high pc,0°C of ~8 bar.
- (1)
- (2)
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Standards Organisation (ISO). Thermoplastics Pipes for the Conveyance of Fluids—Determination of Resistance to Rapid Crack Propagation (RCP)—Small-Scale Steady-State Test (S4 Test); International Standards Organisation (ISO): Geneva, Switzerland, 2008. [Google Scholar]
- Yayla, P. Rapid Crack Propagation in Polyethylene Gas Pipes. Ph.D. Thesis, Imperial College of Science, Technology and Medicine, London, UK, January 1991. [Google Scholar]
- Argyrakis, C. Models for designing pipe-grade polyethylenes to resist rapid crack propagation, Ph.D. Thesis, Imperial College London, London, UK, March 2010. [Google Scholar]
- Krishnaswamy, R.K.; Leevers, P.S.; Lamborn, M.J.; Refister, D.F.; Sukhadia, A.M. Rapid Crack Propagation (RCP) Failures in HDPE Pipes: Structure-Property Investigations. Polym. Eng. Sci. 2005, 10, 3152–3156. [Google Scholar] [CrossRef]
- Perkins, W.G. Polymer toughness and impact resistance. Polym. Eng. Sci. 1999, 39, 2445–2460. [Google Scholar] [CrossRef]
- Walker, I.; Collyer, A.A. Rubber toughening mechanisms in polymeric materials. In Rubber Toughened Engineering Plastics; Collyer, A.A., Ed.; Springer: The Netherlands, Dordrecht, 1994; pp. 29–56. [Google Scholar] [CrossRef]
- Fond, C.; Schirrer, R. Influence of crack speed on fracture energy in amorphous and rubber toughened amorphous polymers. Plast. Rubber Compos. 2001, 30, 116–124. [Google Scholar] [CrossRef]
- Fond, C.; Schirrer, R. Dynamic fracture surface energy values and branching instabilities during rapid crack propagation in rubber toughened PMMA. Comptes Rendus de l’Académie des Sciences—Series IIB—Mechanics 2001, 329, 195–200. [Google Scholar] [CrossRef]
- Kopp, J.-B.; Schmittbuhl, J.; Noel, O.; Lin, J.; Fond, C. Fluctuations of the dynamic fracture energy values related to the amount of created fracture surface. Eng. Fract. Mech. 2014, 126, 178–189. [Google Scholar] [CrossRef]
- Kopp, J.-B.; Fond, C.; Hochstetter, G. Rapid crack propagation in PA11: An application to pipe structure. Eng. Fract. Mech. 2018, 202, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Siviour, C.R.; Jordan, J.L. High Strain Rate Mechanics of Polymers: A Review. J. Dyn. Behav. Mater. 2016, 2, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Leevers, P.S.; Godart, M.-A. Adiabatic decohesion in a thermoplastic craze thickening at constant or increasing rate. J. Mech. Phys. Solids 2008, 56, 2149–2170. [Google Scholar] [CrossRef] [Green Version]
- Buchar, J. The Effect of Strain Rate Sensitivity on Crack Initiation under Dynamic Loading, in Macro- and Micro-Mechanics of High Velocity Deformation and Fracture. In IUTAM Symposium on MMMHVDF Tokyo, Japan, 12–15 August 1985; Kawata, K., Shioiri, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1987; pp. 231–241. [Google Scholar]
- Aboushelib, M.N.; de Jager, N.; Kleverlaan, C.J.; Feilzer, A.J. The influence of pigments on the slow crack growth in dental zirconia. Dent. Mater. 2012, 28, 410–415. [Google Scholar] [CrossRef]
- Lodeiro, M.J.; Tomlins, P.E.; Pearce, A. The Influence of Pigments on the Mechanical Properties of High Density Polythylene (HDPE); NPL Report; NPL: Teddington, UK, 2000; CMMT(A)258. [Google Scholar]
- Janostik, V.; Senkerik, V. Effect of Pigment Concentration on Mechanical Properties of Polycarbonate. MATEC Web Conf. 2017, 125, 2052. [Google Scholar] [CrossRef] [Green Version]
- Kanu, R.; Chesebrough, M.; Spotts, T. The effects of some organic and inorganic pigments on the tensile and impact properties of injection-molded polypropylene. J. Mod. Eng. 2001, 2, 1. [Google Scholar]
- Hull, D. Fractography: Observing, Measuring and Interpreting Fracture Surface Topography; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Moreno, L.; Leevers, P. Effect of axial surface scores on rapid crack propagation in polyethylene pipe. Plast. Rubber Compos. 2004, 33, 149–154. [Google Scholar] [CrossRef] [Green Version]
- González-Velázquez, J.L. Fractography and Failure Analysis; Springer International Publishing: Cham, 2018. [Google Scholar]
- Hayes, M.D.; Shah, A.R.; Edwards, D.B. Fractography in Failure Analysis of Polymers; William Andrew an imprint of Elsevier: Kidlington, Oxford, UK, 2015. [Google Scholar]
- Donald, A.M.; Kramer, E.J. The competition between shear deformation and crazing in glassy polymers. J. Mater. Sci. 1982, 17, 1871–1879. [Google Scholar] [CrossRef]
- Donald, A.M. The effect of temperature on crazing mechanisms in polystyrene. J. Mater. Sci. 1985, 20, 2630–2638. [Google Scholar] [CrossRef]
- Plummer, C.J.G.; Kausch, H.H. Semicrystalline Polymers: Fracture Properties. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Deblieck, R.A.; van Beek, D.; Remerie, K.; Ward, I.M. Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network. Polymer 2011, 52, 2979–2990. [Google Scholar] [CrossRef] [Green Version]
- Brown, N. A fundamental theory for slow crack growth in polyethylene. Polymer 1995, 36, 543–548. [Google Scholar] [CrossRef]
- Pinter, G. Rißwachstumsverhalten von PE-HD unter statischer Belastung, Ph.D. Thesis, University of Leoben, Leoben, Austria, 1999. [Google Scholar]
- Arbeiter, F.; Schrittesser, B.; Frank, A.; Berer, M.; Pinter, G. Cyclic tests on cracked round bars as a quick tool to assess the long term behaviour of thermoplastics and elastomers. Polym. Test. 2015, 45, 83–92. [Google Scholar] [CrossRef]
- Frank, A.; Arbeiter, F.J.; Berger, I.J.; Hutař, P.; Náhlík, L.; Pinter, G. Fracture Mechanics Lifetime Prediction of Polyethylene Pipes. J. Pipeline Syst. Eng. Pr. 2019, 10, 04018030. [Google Scholar] [CrossRef]
- Leevers, P.S. Impact and dynamic fracture of tough polymers by thermal decohesion in a Dugdale zone. Int. J. Fract. 1995, 73, 109–127. [Google Scholar] [CrossRef]
- Leevers, P. Modelling Impact Fracture and RCP Resistance of Thermoplastics from Cohesive Properties. In Proceedings of the Society of Plastics Engineers 2004—Proceedings ANTEC, Chicago, IL, USA, 16–20 May 2004. [Google Scholar]
- Leevers, P.; Morgan, R. Impact fracture of polyethylene: A non-linear-elastic thermal decohesion model. Eng. Fract. Mech. 1995, 52, 999–1014. [Google Scholar] [CrossRef]
- Narayan, R.; Tandaiya, P.; Narasimhan, R.; Ramamurty, U. Wallner lines, crack velocity and mechanisms of crack nucleation and growth in a brittle bulk metallic glass. Acta Mater. 2014, 80, 407–420. [Google Scholar] [CrossRef]
- Leevers, P.S.; (Former Researcher at Department of Mechanical Engineering at Imperial College London, London, UK); Messiha, M.; (Researcher at Polymer Competence Center Leoben GmbH, Leoben, Austria). Personal communication, 2020.
Material | IM | PGM | MW,rel |
---|---|---|---|
PA12-0 | − | − | 1.0 |
C2-im-pgm | + | + | 1.2 |
C3-nc | − | − | 1.4 |
C4-im-nc | + | − | 1.5 |
C5-im-pgm | + | + | 1.6 |
ISO 13477 | Modified S4 Evaluation | |||||
---|---|---|---|---|---|---|
Material | pc,0°C (bar) | Tc,5bar (°C) | Tc,12bar (°C) | pc,0°C (bar) | Tc,5bar (°C) | Tc,12bar (°C) |
PA12-0 | 3.16 | 22.5 | * | 3.24 | 22 | * |
C2-im-pgm | 3.15 | 20.5 | 27.5 | 2.84 | 19 | 26 |
C3-nc | 8.01 | * | 22–29.5 | 8.21 | −44.5 | 23 |
C4-im-nc | 4.08 | 22.5 | 23 | 4.22 | 15.5 | 21.5 |
C5-im-pgm | 4.41 | * | * | 4.45 | 4.5 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messiha, M.; Frank, A.; Heimink, J.; Arbeiter, F.; Pinter, G. Structure-Property Relationships of Polyamide 12 Grades Exposed to Rapid Crack Extension. Materials 2021, 14, 5899. https://doi.org/10.3390/ma14195899
Messiha M, Frank A, Heimink J, Arbeiter F, Pinter G. Structure-Property Relationships of Polyamide 12 Grades Exposed to Rapid Crack Extension. Materials. 2021; 14(19):5899. https://doi.org/10.3390/ma14195899
Chicago/Turabian StyleMessiha, Mario, Andreas Frank, Jan Heimink, Florian Arbeiter, and Gerald Pinter. 2021. "Structure-Property Relationships of Polyamide 12 Grades Exposed to Rapid Crack Extension" Materials 14, no. 19: 5899. https://doi.org/10.3390/ma14195899
APA StyleMessiha, M., Frank, A., Heimink, J., Arbeiter, F., & Pinter, G. (2021). Structure-Property Relationships of Polyamide 12 Grades Exposed to Rapid Crack Extension. Materials, 14(19), 5899. https://doi.org/10.3390/ma14195899