Binary Self-Assembly of Nanocolloidal Arrays using Concurrent and Sequential Spin Coating Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Concurrent Spin Coating
2.4. Sequential Spin Coating
2.5. Characterization of Self-Assembled Binary Arrays
3. Results and Discussion
3.1. Concurrent Spin Coating of Binary Nanosphere Arrays
3.2. Sequential Spin Coating of Binary Nanosphere Arrays
3.3. Self-Assembled Arrays using Optimum Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, L.; Luo, D.; Liu, Y. Effect of the Nano/Microscale Structure of Biomaterial Scaffolds on Bone Regeneration. Int. J. Oral Sci. 2020, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.D.; Amirthalingam, S.; Kim, S.L.; Lee, S.S.; Rangasamy, J.; Hwang, N.S. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Adv. Healthc. Mater. 2017, 6, 201700612. [Google Scholar] [CrossRef]
- Chung, B.H.; Kang, L.; Khademhosseini, A. Micro-And Nanoscale Technologies for Tissue Engineering and Drug Discovery Applications. Expert Opin. Drug Discov. 2007, 2, 1653–1668. [Google Scholar] [CrossRef]
- Smith, I.O.; Liu, X.H.; Smith, L.A.; Ma, P.X. Nano-Structured Polymer Scaffolds for Tissue Engineering and Regenerative Medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009, 1, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Sola, A.; Bertacchini, J.; D’Avella, D.; Anselmi, L.; Maraldi, T.; Marmiroli, S.; Messori, M. Development of Solvent-Casting Particulate Leaching (SCPL) Polymer Scaffolds as Improved Three-Dimensional Supports to Mimic the Bone Marrow Niche. Mater. Sci. Eng. C 2019, 96, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Akbarzadeh, R.; Yousefi, A.-M. Effects of Processing Parameters in Thermally Induced Phase Separation Technique on Porous Architecture of Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2014, 102, 1304–1315. [Google Scholar] [CrossRef]
- Kazimierczak, P.; Palka, K.; Przekora, A. Development and Optimization of the Novel Fabrication Method of Highly Macroporous Chi-Tosan/Agarose/Nanohydroxyapatite Bone Scaffold for Potential Regenerative Medicine Applications. Biomolecules 2019, 9, 434. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, W.; Cheng, S.; Dong, B.; Li, C.Y. Mimicking Bone Nanostructure by Combining Block Copolymer Self-Assembly and 1D Crystal Nucleation. ACS Nano 2013, 7, 8251–8257. [Google Scholar] [CrossRef]
- Inzana, J.A.; Olvera, D.; Fuller, S.M.; Kelly, J.P.; Graeve, O.A.; Schwarz, E.M.; Kates, S.L.; Awad, H. 3D Printing of Composite Calcium Phosphate and Collagen Scaffolds for Bone Regeneration. Biomaterials 2014, 35, 4026–4034. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Accounts Chem. Res. 2017, 50, 1976–1987. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Mathias, J.P.; Seto, C.T. Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures. Science 1991, 254, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Sahu, N.; Parija, B.; Panigrahi, S. Fundamental Understanding and Modeling of Spin Coating Process: A Review. Indian J. Phys. 2009, 83, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.J.; Chen, W.A. Nanofeatured Anti-Reflective Films Manufactured Using Hot Roller Imprinting and Self-Assembly Nanosphere Lithography. Opt. Laser Technol. 2013, 48, 226–234. [Google Scholar] [CrossRef]
- Liu, L.; Sun, L.; Qi, L.; Guo, R.; Li, K.; Yin, Z.; Wu, D.; Zou, H. A Low-Cost Fabrication Method of Nanostructures by Ultraviolet Proximity Exposing Lithography. AIP Adv. 2020, 10, 045221. [Google Scholar] [CrossRef]
- Colson, P.; Henrist, C.; Cloots, R. Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials. J. Nanomater. 2013, 2013, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Domonkos, M.; Demo, P.; Kromka, A. Nanosphere Lithography for Structuring Polycrystalline Diamond Films. Crystal 2020, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Wei, X. Recent Developments in the Fabrication of Ordered Nanostructure Arrays Based on Nanosphere Lithography. Recent Patents Nanotechnol. 2010, 4, 194–204. [Google Scholar] [CrossRef]
- Wang, D.; Möhwald, H. Rapid Fabrication of Binary Colloidal Crystals by Stepwise Spin-Coating. Adv. Mater. 2004, 16, 244–247. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Al-Hanbali, O.; Pillai, S.; Hemmersam, A.G.; Meyer, R.L.; Hunter, A.C.; Rutt, K.J.; Besenbacher, F.; Moghimi, S.M.; Kingshott, P. Ordering of Binary Polymeric Nanoparticles on Hydrophobic Surfaces Assembled from Low Volume Fraction Dispersions. J. Am. Chem. Soc. 2007, 129, 13390–13391. [Google Scholar] [CrossRef]
- Singh, G.; Griesser, H.J.; Bremmell, K.E.; Kingshott, P. Highly Ordered Nanometer-Scale Chemical and Protein Patterns by Binary Colloidal Crystal Lithography Combined with Plasma Polymerization. Adv. Funct. Mater. 2010, 21, 540–546. [Google Scholar] [CrossRef]
- Kitaev, V.; Ozin, G.A. Self-Assembled Surface Patterns of Binary Colloidal Crystals. Adv. Mater. 2003, 15, 75–78. [Google Scholar] [CrossRef]
- Singh, G.; Gohri, V.; Pillai, S.; Arpanaei, A.; Foss, M.; Kingshott, P. Large-Area Protein Patterns Generated by Ordered Binary Colloidal as-Semblies as Templates. ACS Nano 2011, 5, 3542–3551. [Google Scholar] [CrossRef] [PubMed]
Test No. | Surfactant:Solvent | Spin Speed (Spin Time) Unit: rpm (s) |
---|---|---|
1 | TX-100:Methanol = 1:300 | 500(5)/1500(30)/2000(300) |
2 | 500(30)/1500(60)/2000(60) | |
3 | 500(30)/1500(60)/2000(300) | |
4 | 500(30)/1500(60)/2000(100) | |
5 | TX-100:Methanol = 1:300 | 500(5)/1500(30)/2000(300) |
6 | 500(5)/1000(30)/1500(300) | |
7 | 500(5)/1000(30)/2000(300) | |
8 | 500(5)/1500(30)/3000(300) | |
9 | TX-100:Methanol = 1:300 | 500(5)/1500(30)/2000(300) |
10 | TX-100:Methanol = 1:400 | |
11 | DI water:Ethanol = 1:1 |
Test No. | First Coating: 900 nm 900 nm: Surfactant = 0.7:1 | Second Coating: 100 nm 100 nm: Surfactant = 0.3:1 |
---|---|---|
Spin Speed (Spin Time) rpm (s) | Spin Speed (Spin Time) rpm (s) | |
1 | 500(30)/1500(30)/2000(60) | 500(5)/1500(30)/2000(300) |
2 | 500(30)/1500(30)/2000(60) | 500(30)/1500(30)/2000(60) |
3 | 500(30)/1500(30)/2000(60) | 500(30)/3000(60)/1000(60) |
4 | 500(5)/1500(30)/2000(300) | 500(5)/1500(30)/2000(300) |
5 | 500(5)/1500(30)/2000(300) | 500(30)/3000(60)/1000(60) |
6 | 500(30)/3000(60)/1000(60) | 500(30)/3000(60)/1000(60) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, S.-J.; Lee, D.; Wu, Y.-C.; Liu, S.-J. Binary Self-Assembly of Nanocolloidal Arrays using Concurrent and Sequential Spin Coating Techniques. Materials 2021, 14, 274. https://doi.org/10.3390/ma14020274
Shen S-J, Lee D, Wu Y-C, Liu S-J. Binary Self-Assembly of Nanocolloidal Arrays using Concurrent and Sequential Spin Coating Techniques. Materials. 2021; 14(2):274. https://doi.org/10.3390/ma14020274
Chicago/Turabian StyleShen, Shih-Jyun, Demei Lee, Yu-Chen Wu, and Shih-Jung Liu. 2021. "Binary Self-Assembly of Nanocolloidal Arrays using Concurrent and Sequential Spin Coating Techniques" Materials 14, no. 2: 274. https://doi.org/10.3390/ma14020274
APA StyleShen, S. -J., Lee, D., Wu, Y. -C., & Liu, S. -J. (2021). Binary Self-Assembly of Nanocolloidal Arrays using Concurrent and Sequential Spin Coating Techniques. Materials, 14(2), 274. https://doi.org/10.3390/ma14020274