Effects of Boron Carbide on Coking Behavior and Chemical Structure of High Volatile Coking Coal during Carbonization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Carbonization Experiments of Coke
2.2. TG Measurements
2.3. Carbonization Experiments of Semi-Coke
2.4. Preparation of Demineralized Samples
2.5. FTIR Measurements
2.6. HRTEM Measurements
3. Results and Discussion
3.1. Coke Quality Analysis
3.2. Ultimate Analyses
3.3. TG Analysis
3.4. FTIR Analysis
3.5. HRTEM Analysis
3.6. Role of the B4C in the Improvement of Coke Quality
4. Conclusions
- (1)
- HVC contains large quantities of oxygen-containing functional groups, aliphatic side chains, and small molecular weight aromatic molecules, resulting in the coke derived from HVC with a high CRI index and low CSR index.
- (2)
- B4C can considerably improve the quality of low-strength coke prepared from HVC. Regarding optimal thermal strength indexes, the CRI index of coke decreases by 29.8%, while the CSR index of coke enhances by 23.1% when adding 0.5 wt.% B4C into HVC.
- (3)
- The reaction between B4C and active oxygen derived from oxygen-containing compounds during HVC carbonization leads to reduced condensation and crosslinking reactions and increased secondary cracking reactions, which result in phenomena—increasing size of the aromatic layer and anisotropic degree in the modified coke structure—that are responsible for significantly improvements of the coke quality.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diez, M.A.; Alvarez, R.; Melendi, S.; Barriocanal, C. Feedstock recycling of plastic wastes/oil mixtures in cokemaking. Fuel 2009, 88, 1937–1944. [Google Scholar] [CrossRef]
- Fernández, A.M.; Barriocanal, C.; Díez, M.A.; Alvarez, R. Influence of additives of various origins on thermoplastic properties of coal. Fuel 2009, 88, 2365–2372. [Google Scholar] [CrossRef]
- Melendi, S.; Diez, M.A.; Alvarez, R.; Barriocanal, C. Plastic wastes, lube oils and carbochemical products as secondary feedstocks for blast-furnace coke production. Fuel Process. Technol. 2011, 92, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.C.; Bai, Z.Q.; Bai, J.; Guo, Z.X.; Li, W. Effects of organic solvent treatment on the chemical structure and pyrolysis reactivity of brown coal. Fuel 2014, 128, 39–45. [Google Scholar] [CrossRef]
- Mollah, M.M.; Marshall, M.; Qi, Y.; Knowles, G.P.; Taghavimoghaddam, J.; Jackson, W.R.; Chaffee, A.L. Attempts to produce blast furnace coke from Victorian brown coal. 4. Low surface area char from alkali treated brown coal. Fuel 2016, 186, 320–327. [Google Scholar] [CrossRef]
- Nomura, S.; Arima, T. Influence of binder (coal tar and pitch) addition on coal caking property and coke strength. Fuel Process. Technol. 2017, 159, 369–375. [Google Scholar] [CrossRef]
- Mochizuki, Y.K.; Kubota, Y.; Uebo, K.; Tsubouchi, N. Influence of tarry material deposition on low-strength cokes or pyrolyzed chars of low rank coals on the strength. Fuel 2018, 232, 780–790. [Google Scholar] [CrossRef]
- Krzesińska, M.; Szeluga, U.; Czajkowska, S.; Muszyński, J.; Zachariasz, J.; Pusz, S.; Kwiecińska, B.; Koszorek, A.; Pilawa, B. The thermal decomposition studies of three Polish bituminous coking coals and their blends. Int. J. Coal Geol. 2009, 77, 350–355. [Google Scholar] [CrossRef]
- Mukherjee, D.K.; Sengupta, A.N.; Choudhury, D.P.; Sanyal, P.K.; Rudra, S.R. Effect of hydrothermal treatment on caking propensity of coal. Fuel 1996, 75, 477–482. [Google Scholar] [CrossRef]
- Sarkar, N.B.; Sarkar, P.; Choudhury, A. Effect of hydrothermal treatment of coal on the oxidation susceptibility and electrical resistivity of HTT coke. Fuel Process. Technol. 2005, 86, 487–497. [Google Scholar] [CrossRef]
- Graff, R.A.; Brandes, S.D. Modification of Coal by Subcritical Steam—Pyrolysis and Extraction Yields. Energy Fuels 1987, 1, 84–88. [Google Scholar] [CrossRef]
- Shui, H.F.; Li, H.P.; Chang, H.T.; Wang, Z.C.; Gao, Z.; Lei, Z.P.; Ren, S.B. Modification of sub-bituminous coal by steam treatment: Caking and coking properties. Fuel Process. Technol. 2011, 92, 2299–2304. [Google Scholar] [CrossRef]
- Soncini, R.M.; Means, N.C.; Weiland, N.T. Co-pyrolysis of low rank coals and biomass: Product distributions. Fuel 2013, 112, 74–82. [Google Scholar] [CrossRef]
- Flores, B.D.; Flores, I.V.; Guerrero, A.; Orellana, D.R.; Pohlmann, J.G.; Diez, M.A.; Borrego, A.G.; Osorio, E.; Vilela, A.C.F. Effect of charcoal blending with a vitrinite rich coking coal on coke reactivity. Fuel Process. Technol. 2017, 155, 97–105. [Google Scholar] [CrossRef]
- Wu, Z.Q.; Zhang, J.; Zhang, B.; Guo, W.; Yang, G.D.; Yang, B.L. Synergistic effects from co-pyrolysis of lignocellulosic biomass main component with low-rank coal: Online and offline analysis on products distribution and kinetic characteristics. Appl. Energy 2020, 276, 115461. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Q.Y.; Guo, X.J.; Wu, W.Z.; Liu, Z.Y. Pyrolysis behavior and bonding information of coal—A TGA study. Fuel Process. Technol. 2013, 108, 125–132. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.F.; Wang, Y.; Zhang, G.J.; Chen, L. Gas evolution characteristics of lignite during low-temperature pyrolysis. J. Anal. Appl. Pyrolysis 2013, 104, 625–631. [Google Scholar] [CrossRef]
- He, W.J.; Liu, Z.Y.; Liu, Q.Y.; Ci, D.H.; Lievens, C.; Guo, X.F. Behaviors of radical fragments in tar generated from pyrolysis of 4 coals. Fuel 2014, 134, 375–380. [Google Scholar] [CrossRef]
- Vega, M.F.; Fernández, A.M.; Díaz-Faes, E.; Barriocanal, C. Improving the properties of high volatile coking coals by controlled mild oxidation. Fuel 2017, 191, 574–582. [Google Scholar] [CrossRef]
- Qian, Z.; Marsh, H. The Co-Carbonization Behavior of Chinese Coals with Pitch Additives. J. Mater. Sci. 1984, 19, 3311–3318. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Wang, J.G.; Duan, Z.C.; Li, F. Study on the microstructure evolution of phenol-formadehyde resin modified by ceramic additive. Chin. J. Mater. Res. 2006, 20, 203–207. [Google Scholar]
- Wang, J.G.; Jiang, N.; Guo, Q.G.; Liu, L.; Song, J.R. Study on the structural evolution of modified phenol–formaldehyde resin adhesive for the high-temperature bonding of graphite. J. Nucl. Mater. 2006, 348, 108–113. [Google Scholar] [CrossRef]
- Wu, D.; Liu, G.J.; Sun, R.Y.; Fan, X. Investigation of Structural Characteristics of Thermally Metamorphosed Coal by FTIR Spectroscopy and X-ray Diffraction. Energy Fuels 2013, 27, 5823–5830. [Google Scholar]
- Ibarra, J.V.; Munoz, E.; Moliner, R. FTIR study of the evolution of coal structure during the coalification process. Org. Geochem. 1996, 24, 725–735. [Google Scholar] [CrossRef]
- Mathews, J.P.; Fernandez-Also, V.; Jones, A.D.; Schobert, H.H. Determining the molecular weight distribution of Pocahontas No. 3 low-volatile bituminous coal utilizing HRTEM and laser desorption ionization mass spectra data. Fuel 2010, 89, 1461–1469. [Google Scholar] [CrossRef]
- Song, H.J.; Liu, G.R.; Zhang, J.Z.; Wu, J.H. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method. Fuel Process. Technol. 2017, 156, 454–460. [Google Scholar] [CrossRef]
- Viricelle, J.P.; Goursat, P.; Bahloul-Hourlier, D. Oxidation behaviour of a boron carbide based material in dry and wet oxygen. J. Therm. Anal. Calorim. 2000, 63, 507–515. [Google Scholar] [CrossRef]
- Werheit, H.; Au, T.; Schmechel, R.; Shalamberidze, S.O.; Kalandadze, G.I.; Eristavi, A.M. IR-Active Phonons and Structure Elements of Isotope-Enriched Boron Carbide. J. Solid State Chem. 2000, 154, 79–86. [Google Scholar] [CrossRef]
- Khai, T.V.; Na, H.G.; Kwak, D.S.; Kwon, Y.J.; Ham, H.; Shim, K.B.; Kim, H.W. Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films. Chem. Eng. J. 2012, 211, 369–377. [Google Scholar] [CrossRef]
- Grint, A.; Mehani, S.; Trewhella, M.; Crook, M.J. Role and Composition of the Mobile Phase in Coal. Fuel 1985, 64, 1355–1361. [Google Scholar] [CrossRef]
- Orrego-Ruiz, J.A.; Cabanzo, R.; Mejia-Ospino, E. Study of Colombian coals using photoacoustic Fourier transform infrared spectroscopy. Int. J. Coal Geol. 2011, 85, 307–310. [Google Scholar] [CrossRef]
- Lin, X.C.; Wang, C.H.; Ideta, K.; Miyawaki, J.; Nishiyama, Y.; Wang, Y.G.; Yoon, S.; Mochida, I. Insights into the functional group transformation of a chinese brown coal during slow pyrolysis by combining various experiments. Fuel 2014, 118, 257–264. [Google Scholar] [CrossRef]
- He, X.Q.; Liu, X.F.; Nie, B.S.; Song, D.Z. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel 2017, 206, 555–563. [Google Scholar] [CrossRef]
- Painter, P.C.; Snyder, R.W.; Starsinic, M.; Coleman, M.M.; Kuehn, D.W.; Davis, A. Concerning the Application of Ft-Ir to the Study of Coal—A Critical-Assessment of Band Assignments and the Application of Spectral-Analysis Programs. Appl. Spectrosc. 1981, 35, 475–485. [Google Scholar] [CrossRef]
- Zhang, W.G.; Cheng, H.M.; Sano, H.; Uchiyama, Y.; Kobayashi, K.; Zhou, L.J.; Shen, Z.H.; Zhou, B.L. The effects of nanoparticulate SiC upon the oxidation behavior of C-SiC-B4C composites. Carbon 1998, 36, 1591–1595. [Google Scholar] [CrossRef]
- Rodriguez, M.G.; Kharissova, O.V.; Ortiz-Mendez, U. Formation of boron carbide nanofibers and nanobelts from heated by microwave. Rev. Adv. Mater. Sci. 2004, 7, 55–60. [Google Scholar]
- Sharma, A.; Kyotani, T.; Tomita, A. Quantitative evaluation of structural transformations in raw coals on heat-treatment using HRTEM technique. Fuel 2001, 80, 1467–1473. [Google Scholar] [CrossRef]
- Lievens, C.; Ci, D.H.; Bai, Y.; Ma, L.G.; Zhang, R.; Chen, J.Y.; Gai, Q.Q.; Long, Y.H.; Guo, X.F. A study of slow pyrolysis of one low rank coal via pyrolysis-GC/MS. Fuel Process. Technol. 2013, 116, 85–93. [Google Scholar] [CrossRef]
Samples | High Volatile Coking Coal (HVC) (wt.%) | B4C (wt.%) | Temperature (°C) |
---|---|---|---|
Scheme of Cokes | |||
Coke-0 | 100.00 | 0 | 1000 |
Coke-1 | 99.75 | 0.25 | 1000 |
Coke-2 | 99.50 | 0.50 | 1000 |
Coke-3 | 99.25 | 0.75 | 1000 |
Coke-4 | 99.00 | 1.00 | 1000 |
Scheme of Semi-Cokes | |||
C450 | 100.00 | 0 | 450 |
C450M | 99.50 | 0.50 | 450 |
C750 | 100.00 | 0 | 750 |
C750M | 99.50 | 0.50 | 750 |
Sample | H | C | N | S | O a | H/C |
---|---|---|---|---|---|---|
Raw coal | 4.83 | 76.93 | 1.32 | 0.51 | 16.41 | 0.753 |
C450 | 4.00 | 81.41 | 1.35 | 0.54 | 12.69 | 0.590 |
C450M | 4.12 | 80.32 | 1.31 | 0.55 | 13.70 | 0.616 |
C750 | 1.75 | 86.47 | 1.53 | 0.47 | 9.78 | 0.243 |
C750M | 1.71 | 86.83 | 1.51 | 0.48 | 9.47 | 0.236 |
Band Position (cm−1) | Assignments |
---|---|
3415–3350 | –OH stretching vibration |
2975−2955 | Aliphatic CH3 asymmetric stretching vibration |
2925−2919 | Aliphatic CH2 asymmetric stretching vibration |
2855−2850 | Aliphatic CH2 symmetric stretching vibration |
1705-1695 | Aromatic (carbonyl/carboxyl groups) (C=O) |
1640–1605 | Aromatic ring stretching C=O or C=C |
1470−1450 | aliphatic chains CH3–, CH2– |
1274−1260 | C–O stretching vibration in aryl ethers |
1165−1155 | C–O stretching vibration in phenols, ethers |
1098−1095 | C–O stretching vibration in alcohols or aromatic ring C–H bending vibration |
1035−1030 | Aromatic ring stretching vibration or C–O stretching vibration |
1010 | C–O stretching vibration |
876–872 | Aromatic nucleus CH, one adjacent H deformation |
810–801 | Aromatic nucleus CH, two adjacent H deformation |
750 | Aromatic nucleus CH, four adjacent H deformation |
Aromatic Fringe Assignments | Distribution Frequency of Aromatic Fringes (%) | |||||
---|---|---|---|---|---|---|
Aromatic Sheet | Grouping (Å) | Raw Coal | C450 | C450M | C750 | C750M |
Benzene | 2.5–2.9 | 17.16 | 13.57 | 16.05 | 14.20 | 13.06 |
1 × 1 | 3.0–5.4 | 52.65 | 41.92 | 50.16 | 40.16 | 39.27 |
2 × 2 | 5.5–7.4 | 14.66 | 16.32 | 16.01 | 15.45 | 15.84 |
3 × 3 | 7.5–11.4 | 12.78 | 15.11 | 13.34 | 14.51 | 13.14 |
4 × 4 | 11.5–14.4 | 2.14 | 4.44 | 2.08 | 5.49 | 6.39 |
5 × 5 | 14.5–17.4 | 0.31 | 2.58 | 0.88 | 3.45 | 3.59 |
6 × 6 | 17.5–20.4 | 0.20 | 1.62 | 0.88 | 1.57 | 2.37 |
7 × 7 | 20.5–24.4 | 0.10 | 1.94 | 0.24 | 1.73 | 1.55 |
8 × 8 | 24.5–28.4 | 0 | 0.73 | 0.16 | 1.10 | 1.55 |
>8 × 8 | >28.5 | 0 | 1.78 | 0.16 | 2.35 | 3.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Sun, C.; Zhu, Z.-Z.; Wang, Y.-D.; Zhang, C.-Y. Effects of Boron Carbide on Coking Behavior and Chemical Structure of High Volatile Coking Coal during Carbonization. Materials 2021, 14, 302. https://doi.org/10.3390/ma14020302
Wu Q, Sun C, Zhu Z-Z, Wang Y-D, Zhang C-Y. Effects of Boron Carbide on Coking Behavior and Chemical Structure of High Volatile Coking Coal during Carbonization. Materials. 2021; 14(2):302. https://doi.org/10.3390/ma14020302
Chicago/Turabian StyleWu, Qiang, Can Sun, Zi-Zong Zhu, Ying-Dong Wang, and Chong-Yuan Zhang. 2021. "Effects of Boron Carbide on Coking Behavior and Chemical Structure of High Volatile Coking Coal during Carbonization" Materials 14, no. 2: 302. https://doi.org/10.3390/ma14020302
APA StyleWu, Q., Sun, C., Zhu, Z. -Z., Wang, Y. -D., & Zhang, C. -Y. (2021). Effects of Boron Carbide on Coking Behavior and Chemical Structure of High Volatile Coking Coal during Carbonization. Materials, 14(2), 302. https://doi.org/10.3390/ma14020302