Diagnostics of Concrete and Steel in Elements of an Historic Reinforced Concrete Structure
Abstract
:1. Introduction
2. Materials and Methods
3. Assessment of Selected Elements of the Historic Water Tower Structure
3.1. The Research Methods and Used Materials
3.2. Tests Results
3.2.1. Reinforcement Location and Concrete Cover Thickness Measurement
3.2.2. Degree of Reinforcing Bar Corrosion
3.2.3. Laboratory Testing of Concrete Cover
4. Conclusions
- Non-destructive testing of the rebar location and layout performed using the Ferroscan gave accurate information on the location of reinforcing bars, their diameters and their cover thickness, all of which were positively verified after small pieces of concrete were removed.
- Concrete cover distress was due to sulphate attack attributed to the presence of gypsum in the paste.
- Non-destructive corrosion degree measurements of the reinforcing bars in the floor slab and in the load-bearing column determined the probability of corrosion in the examined areas, estimated corrosion activity in individual rebars, and predicted its pace over time. The results indicate a very poor state of the reinforcement in both the floor slab (high corrosion probability and locally high or moderate corrosion activity in the reinforcement) and column (high probability of corrosion and high corrosion activity in one of the two bars).
- The carbonation test for in situ concrete showed total depassivation across the cover depth.
- Material tests confirmed the information on the degree of concrete carbonation in the tested elements. Concrete carbonation was accelerated by the destruction of the concrete structure as a result of sulphate corrosion.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raczkiewicz, W. Building Diagnostics. Selected Methods of Materials As Well As Elements and Structures Test; Kielce University of Technology: Kielce, Poland, 2019. (In Polish) [Google Scholar]
- Szmygina, B. Adaptation of Historic Buildings to Contemporary Utility Functions; Lublin Scientific Society, Lublin University of Technology: Warsaw, Poland, 2009. (In Polish) [Google Scholar]
- Stawiski, B.; Kania, T. Building diagnostics versus effectiveness of repairs. MATEC Web Conf. 2018, 174, 03005. [Google Scholar] [CrossRef]
- Act of 7 July 1994 (as Amended); Journal of Laws 1994 No. 89 Item 414. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU19940890414. (accessed on 8 January 2021).
- Ślusarek, J.; Szymanowska-Gwiżdż, A.; Krause, P. Damage to historical balconies in view of building physics. In Proceedings of the 3rd World Multidisciplinary Civil Engineering, Architecture, Urban Planning Symposium (WMCAUS), Prague, Czech, 18–22 June 2018; Volume 471. [Google Scholar] [CrossRef]
- Orłowski, Z.; Szklennik, N. The scope of building modernization—As a result of the diagnostic analysis of the object. Civil Environ. Eng. 2011, 2, 353–360. (In Polish) [Google Scholar]
- Chybiński, M.; Kurzawa, Z.; Polus, Ł. Problems with Buildings Lacking Basic Design Documentation. Procedia Eng. 2017, 195, 24–31. [Google Scholar] [CrossRef]
- Schabowicz, K. Non-destructive testing of materials in civil engineering. Materials 2019, 12, 3237. [Google Scholar] [CrossRef] [Green Version]
- Schabowicz, K.; Sterniuk, A.; Kwiecińska, A.; Cerba, P. Comparative Analysis of Selected Non-Destructive Methods of Specific Diagnosis. Mater. Sci. Eng. 2018, 365, 032063. [Google Scholar] [CrossRef]
- Zybura, A.; Jaśniok, M.; Jaśniok, T. Diagnostics of Reinforced Concrete Structures. Tests on Reinforcement Corrosion and Concrete Protective Properties; PWN: Warsaw, Poland, 2011. [Google Scholar]
- Drobiec, Ł.; Jasiński, R.; Piekarczyk, A. Diagnostics of Reinforced Concrete Structures. Methodology, Field Tests, Laboratory Tests of Concrete and Steel; PWN: Warsaw, Poland, 2010. (In Polish) [Google Scholar]
- Zhou, Z.; Jin, H. Evaluation of the protection of historical buildings. In Proceedings of the Procedia Engineering, International Conference on Electric Technology and Civil Engineering (ICETCE), Lushan, China, 22–24 April 2011. [Google Scholar] [CrossRef]
- Raczkiewicz, W.; Wójcicki, A. Evaluation of effectiveness of concrete coat as a steel bars protection in the structure—Galvanostatic pulse method. In Proceedings of the 26th International Conference on Metallurgy and Materials, Brno, Czech, 24–26 May 2017; pp. 1425–1431. [Google Scholar]
- Brodnan, M.; Koteš, P.; Bahleda, F.; Šebök, M.; Kučera, M.; Kubissa, W. Using non-destructive methods for measurement of reinforcement corrosion in practice. Prot. Against Corros. 2017, 3, 55–58. [Google Scholar] [CrossRef]
- Tworzewski, P. Impact of concrete cover thickness deviations on the expected durability of reinforced concrete structures. Constr. Rev. 2017, 11, 52–55. (In Polish) [Google Scholar]
- Hulimka, J.; Kałuża, M. Basic Chemical Tests of Concrete during the Assessment of Structure Suitability—Discussion on Selected Industrial Structures. Appl. Sci. 2020, 10, 358. [Google Scholar] [CrossRef] [Green Version]
- Hoła, J.; Bień, J.; Sadowski, Ł.; Schabowicz, K. Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 87–96. [Google Scholar] [CrossRef]
- Otieno, M.; Ikotun, J.; Ballim, Y. Experimental investigations on the influence of cover depth and concrete quality on time to cover cracking due to carbonation-induced corrosion of steel in RC structures in an urban, inland environment. Constr. Build. Mater. 2019, 198, 172–181. [Google Scholar] [CrossRef]
- Anterrieu, O.; Giroux, B.; Gloaguen, E.; Carde, C. Non-destructive data assimilation as a tool to diagnose corrosion rate in reinforced concrete structures. J. Build. Eng. 2019, 23, 193–206. [Google Scholar] [CrossRef]
- Filipek, R.; Pasierb, P. New, nondestructing diagnostic method of corrosion for reinforced concrete structures. Corros. Prot. 2017, 12. [Google Scholar] [CrossRef]
- Kurdowski, W. Cement and Concrete Chemistry; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Qiu, Q. A state-of-the-art review on the carbonation process in cementitious materials: Fundamentals and characterization techniques. Constr. Build. Mater. 2020, 247. [Google Scholar] [CrossRef]
- Raczkiewicz, W.; Wójcicki, A. Selected aspects of forecasting the level of reinforcing steel corrosion in concrete by the electrochemical method. Weld. Rev. 2017, 11, 28–33. [Google Scholar]
- Jaśniok, M.; Jaśniok, T. Measurements on Corrosion Rate of Reinforcing Steel under various Environmental Conditions, Using an Insulator to Delimit the Polarized Area. Procedia Eng. 2017, 193, 431–438. [Google Scholar] [CrossRef]
- Raczkiewicz, W. Influence of the Air-Entraining Agent in the Concrete Coating on the Reinforcement Corrosion Process in Case of Simultaneous Action of Chlorides and Frost. Adv. Mater. Sci. 2018, 1, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Bogas, J.A.; Real, S. A Review on the Carbonation and Chloride Penetration Resistance of Structural Lightweight Aggregate Concrete. Materials 2019, 12, 3456. [Google Scholar] [CrossRef] [Green Version]
- Melchers, R. Long-Term Durability of Marine Reinforced Concrete Structures. Mar. Sci. Eng. 2020, 8, 290. [Google Scholar] [CrossRef] [Green Version]
- Czapik, P.; Owsiak, Z. Chemical corrosion of external stairs—Case study. In Proceedings of the MATBUD’2018—8th Scientific-Technical Conference on Material Problems in Civil Engineering, Cracow, Poland, 25–27 June 2018; Volume 163, pp. 1–7. [Google Scholar] [CrossRef]
- Bacharz, K.; Raczkiewicz, W.; Bacharz, M.; Grzmil, W. Manufacturing Errors of Concrete Cover as a Reason of Reinforcement Corrosion in a Precast Element—Case Study. Coatings 2019, 9, 702. [Google Scholar] [CrossRef] [Green Version]
- Tworzewski, P.; Raczkiewicz, W.; Grzmil, W.; Czapik, P. Condition assessment of selected reinforced concrete structural elements of the bus station in Kielce. MATEC Web Conf. 2019, 284. [Google Scholar] [CrossRef]
- Bednarz, L.; Górski, A.; Jasieńko, J.; Rusiński, E. Simulations and analyses of arched brick structures. Autom. Constr. 2011, 20, 741–754. [Google Scholar] [CrossRef]
- Lourenço, P.B. Computations on historic masonry structures. Prog. Struct. Eng. Mater. 2002, 4, 301–319. [Google Scholar] [CrossRef]
- Navrátil, J.; Drahorád, M.; Ševčík, P. Assessment of Load-Bearing Capacity of Bridges. Solid State Phenom. 2017, 259, 113–118. [Google Scholar] [CrossRef]
- Ferreira, D.R.; Araújo, A.; Fonseca, E.M.; Piloto, P.A.; Pinto, J. Behaviour of non-loadbearing tabique wall subjected to fire—Experimental and numerical analysis. J. Build. Eng. 2017, 9, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.H.; Ly, H.B.; Tran, V.Q.; Nguyen, T.A.; Phan, V.H.; Le, T.T.; Pham, B.T. A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular Concrete-Filled Steel Tube Columns. Molecules 2020, 25, 5348. [Google Scholar] [CrossRef]
- Nikoo, M.; Sadowski, Ł.; Nikoo, M. Prediction of the Corrosion Current Density in Reinforced Concrete Using a Self-Organizing Feature Map. Coatings 2017, 7, 160. [Google Scholar] [CrossRef] [Green Version]
- Runkiewicz, L. The use of non-destructive methods to assess the technical condition of large-panel buildings. Weld. Rev. 2014, 86, 51–59. (In Polish) [Google Scholar]
- Drobiec, Ł.; Jasiński, R.; Piekarczyk, A. Ways of locating reinforcing steel in reinforced concrete structures. Radiological method, Part II. Build. Rev. 2007, 12, 31–37. (In Polish) [Google Scholar]
- Drobiec, Ł.; Jasiński, R.; Piekarczyk, A. Ways of locating reinforcing steel in reinforced concrete structures. Radiological method, Part I. Build. Rev. 2007, 11, 34–39. [Google Scholar]
- Redmer, B.; Weise, F.; Ewert, U.; Likhatchev, A. Location of Reinforcement in Structures by Different Methods of Gamma-Radiography, International Symposium (NDT-CE 2003). Non-Destructive Testing in Civil Engineering. 2003. Available online: https://www.ndt.net/article/ndtce03/papers/v020/v020.htm. (accessed on 8 January 2021).
- De Alcantara, N.P.; Costa, D.C.; Guedes, D.S.; Sartori, R.V.; Bastos, P.S.S. A Non-Destructive Testing Based on Electromagnetic Measurements and Neural Networks for the Inspection of Concrete Structures. Adv. Mater. Res. 2011, 301, 597–602. [Google Scholar] [CrossRef]
- Helal, J.; Sofi, M.; Mendis, P. Non-destructive testing of concrete: A review of methods. Electron. J. Struct. Eng. 2015, 14.1, 97–105. [Google Scholar]
- Wiwatrojanagul, P.; Sahamitmongkol, R.; Tangtermsirikul, S. A method to detect lap splice in reinforced concrete using a combination of cover meter and GPR. Constr. Build. Mater. 2018, 173, 481–494. [Google Scholar] [CrossRef]
- Salman, A.A. Non-Destructive Test of Concrete Structures Using: FERROSCAN. Eng. Technol. J. 2011, 29, 2933–2941. [Google Scholar]
- Mishra, M.; Grande, C. Probabilistic NDT Data Fusion of Ferroscan Test Data Using Bayesian Inference; Structural Analysis of Historical Constructions: Leuven, Belgium, 2016. [Google Scholar] [CrossRef]
- Shaw, M.R.; Millard, S.G.; Molyneaux, T.C.K.; Taylor, M.J.; Bungey, J.H. Location of steel reinforcement in concrete using ground penetrating radar and neural networks. NDT E Int. 2005, 38, 203–212. [Google Scholar] [CrossRef]
- Lachowicz, J.; Rucka, M. Application of GPR method in diagnostics of reinforced concrete structures. Diagnostics 2015, 16, 31–36. [Google Scholar]
- Tosti, F.; Ferrante, C. Using Ground Penetrating Radar Methods to Investigate Reinforced Concrete Structures. Surv. Geophys. 2019, 41, 485–530. [Google Scholar] [CrossRef]
- Rucka, M.; Wojtczak, E.; Zielińska, M. Interpolation methods in GPR tomographic imaging of linear and volume anomalies for cultural heritage diagnostics. Measurement 2020, 154, 107494. [Google Scholar] [CrossRef]
- Lachowicz, J.; Rucka, M. Diagnostics of pillars in St. Mary’s Church (Gdańsk, Poland) using the GPR method. Int. J. Arch. Heritage 2019, 13, 1223–1233. [Google Scholar] [CrossRef]
- Hlaváč, Z.; Anton, O.; Garbacz, A. Hlav Detection of Steel Bars in Concrete by Impact-Echo. Trans. Transp. Sci. 2009, 2, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Moczko, A.; Rybak, J. Impulse response– nowoczesna metoda nieniszczącej defektoskopii konstrukcji betonowych. Bud. Technol. Archit. 2010, 1, 46–50. [Google Scholar]
- Logoń, D.; Schabowicz, K. The Recognition of the Micro-Events in Cement Composites and the Identification of the Destruction Process Using Acoustic Emission and Sound Spectrum. Materials 2020, 13, 2988. [Google Scholar] [CrossRef] [PubMed]
- Trąmpczyński, W.; Goszczyńska, B.; Bacharz, M. Acoustic Emission for Determining Early Age Concrete Damage as an Important Indicator of Concrete Quality/Condition before Loading. Materials 2020, 13, 3523. [Google Scholar] [CrossRef] [PubMed]
- Świt, G. Acoustic Emission Method for Locating and Identifying Active Destructive Processes in Operating Facilities. Appl. Sci. 2018, 8, 1295. [Google Scholar] [CrossRef] [Green Version]
- Tworzewski, P.; Goszczyńska, B. An Application of an Optical Measuring System to Reinforced Concrete Beams Analysis. In Proceedings of the 2016 Prognostics and System Health Management Conference (PHM-Chengdu), Chengdu, China, 19–21 October 2016. [Google Scholar] [CrossRef]
- Raczkiewicz, W.; Wójcicki, A.; Grzmil, W.; Zapała-Sławeta, J. Impact of Environment Conditions on the Degradation Process of Selected Reinforced Concrete Elements. Mater. Sci. Eng. 2019, 471, 032048. [Google Scholar] [CrossRef]
- Czapik, P. Microstructure and Degradation of Mortar Containing Waste Glass Aggregate as Evaluated by Various Microscopic Techniques. Materials 2020, 13, 2186. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.E.; Dai, M.X. A Discuss on Basing Half-Cell Potential Method for Estimating Steel Corrosion Rate in Concrete. Appl. Mech. Mater. 2012, 166, 1926–1930. [Google Scholar] [CrossRef]
- Frølund, T.; Jensen, F.; Bäßler, R. Determination of reinforcement corrosion rate by means of the galvanostatic pulse technique. In Proceedings of the First International Conference on Bridge Maintenance, Safety and Management IABMAS 2002, Barcelona, Spain, 14–17 July 2002. [Google Scholar]
- Pacheco, A.R.; Schokker, A.J.; Volz, J.S.; Hamilton, H.R. Linear Polarization Resistance Tests on Corrosion Protection Degree of Post-Tensioning Grouts. ACI Mater. J. 2011, 108, 365–370. [Google Scholar]
- Jaśniok, M.; Jaśniok, T. Evaluation of Maximum and Minimum Corrosion Rate of Steel Rebars in Concrete Structures, Based on Laboratory Measurements on Drilled Cores. Procedia Eng. 2017, 193, 486–493. [Google Scholar] [CrossRef]
- Rengaraju, S.; Neelakantan, L.; Pillai, R.G. Investigation on the polarization resistance of steel embedded in highly resistive cementitious systems—An attempt and challenges. Electrochim. Acta 2019, 308, 131–141. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Z.; Zhao, Y.; Zhou, H.; Wang, X.; Zhou, H.J.; Xing, F.; Li, S.; Zhu, J.-H.; Liu, W. Chloride distribution and steel corrosion in a concrete bridge after a long-term exposure to natural marine environment. Materials 2020, 13, 3900. [Google Scholar] [CrossRef]
- GalvaPulse. Available online: http://www.germann.org/TestSystems/GalvaPulse/GalvaPulse.pdf (accessed on 20 March 2014).
- Steiner, S.; Lothenbach, B.; Proske, T.; Borgschulte, A.; Winnefeld, F. Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite. Cem. Concr. Res. 2020, 135, 106116. [Google Scholar] [CrossRef]
- Liu, E.; Ghandehari, M.; Brückner, C.; Khalil, G.; Worlinsky, J.; Jin, W.; Sidelev, A.; Hyland, M.A. Mapping high pH levels in hydrated calcium silicates. Cem. Concr. Res. 2017, 95, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Jasieńko, J.; Moczko, M.; Moczko, A.; Dżugar, R. Testing the mechanical and physical properties of concrete in the bottom perimeter ring of the dome of the Centennial Hall in Wrocław. Conserv. News 2010, 27, 21–34. [Google Scholar]
- Runkiewicz, L.; Hoła, J. Technical diagnostics of reinforced concrete structures. Eng. Constr. 2018, 7, 397–405. (In Polish) [Google Scholar]
- Han, J.; Sun, W.; Pan, G.; Caihui, W. Monitoring the Evolution of Accelerated Carbonation of Hardened Cement Pastes by X-Ray Computed Tomography. J. Mater. Civ. Eng. 2013, 25, 347–354. [Google Scholar] [CrossRef]
- Šavija, B.; Luković, M. Carbonation of cement paste: Understanding, challenges, and opportunities. Constr. Build. Mater. 2016, 117, 285–301. [Google Scholar] [CrossRef] [Green Version]
- Tomasin, P.; Mondin, G.; Zuena, M.; El Habra, N.; Nodari, L.; Moretto, L.M. Calcium alkoxides for stone consolidation: Investigating the carbonation process. Powder Technol. 2019, 344, 260–269. [Google Scholar] [CrossRef]
- Tracz, T.; Zdeb, T. Effect of Hydration and Carbonation Progress on the Porosity and Permeability of Cement Pastes. Materials 2019, 12, 192. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Peng, L.; Zhiwu, Y. Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength. Materials 2018, 11, 2167. [Google Scholar] [CrossRef] [Green Version]
- Grzmil, W.; Owsiak, Z. The Influence of carbonation of self-compacting concrete with granulated blast furnace slag addition on its chosen properties. Cem. Lime Concr. 2013, 18, 137–143. [Google Scholar]
- Stepkowska, E.T. Simultaneous IR/TG study of calcium carbonate in two aged cement pastes. J. Therm. Anal. Calorim. 2006, 84, 175–180. [Google Scholar] [CrossRef]
- Czapik, P.; Wolniewicz, M. Microstructure of cement paste containing large amount of silica fume. Monografie Technologii Betonu. Proceedings of 10th Dni Betonu Conference, Wisła, Poland, 8–10 November 2018; Kijowski, P., Ed.; Polish Cement Association: Krakow, Poland, 2018; pp. 571–583. [Google Scholar]
- Rimmele, G.; Barlet-Gouédard, V.; Porcherie, O.; Goffé, B.; Brunet, F. Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids. Cem. Concr. Res. 2008, 38, 1038–1048. [Google Scholar] [CrossRef]
- Dong, B.-Q.; Qiu, Q.-W.; Xiang, J.-Q.; Huang, C.-J.; Xing, F.; Han, N.; Lu, Y.-Y. Electrochemical impedance measurement and modeling analysis of the carbonation behavior for cementititous materials. Constr. Build. Mater. 2014, 54, 558–565. [Google Scholar] [CrossRef]
- Talakokula, V.; Bhalla, S.; Ball, R.J.; Bowen, C.R.; Pesce, G.L.; Kurchania, R.; Bhattacharjee, B.; Gupta, A.; Paine, K. Diagnosis of carbonation induced corrosion initiation and progression in reinforced concrete structures using piezo-impedance transducers. Sens. Actuators A Phys. 2016, 242, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Villain, G.; Thiery, M.; Platret, G. Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cem. Concr. Res. 2007, 37, 1182–1192. [Google Scholar] [CrossRef]
- Urbanowicz, D.; Warzocha, M. The use of ferromagnetic devices in the diagnostics of building structures. Constr. Rev. 2015, 5, 32–35. (In Polish) [Google Scholar]
- PN-EN 13295:2005. Products and Systems for the Protection and Repair of Concrete Structures. Test Methods. Determination of Carbonation Depth in Hardened Concrete by Phenolphthalein Method. Polish Committee for Standardization: Warsaw, Poland, 2005. [Google Scholar]
- Krzywobłocka-Laurów, R. Instruction 357/98. Concrete Phase Composition Tests; Building Research Institute: Warsaw, Poland, 1998. [Google Scholar]
- Awoyera, P.; Britto, B.F. Foamed concrete incorporating mineral admixtures and pulverized ceramics: Effect of phase change and mineralogy on strength characteristics. Constr. Build. Mater. 2020, 234, 117434. [Google Scholar] [CrossRef]
- Liu, S.; Dou, Z.; Zhang, S.; Zhang, H.; Guan, X.; Feng, C.; Zhang, J. Effect of sodium hydroxide on the carbonation behavior of β-dicalcium silicate. Constr. Build. Mater. 2017, 150, 591–594. [Google Scholar] [CrossRef]
- Pelovski, Y.; Dombalov, I.; Petkova, V. Mechano-chemical Activation of Dolomite. J. Therm. Anal. Calorim. 2001, 64, 1257–1263. [Google Scholar] [CrossRef]
- Chernykh, T.N.; Nosov, A.V.; Kramar, L.Y. Dolomite magnesium oxychloride cement properties control method during its production. IOP Conf. Ser. Mater. Sci. Eng. 2015, 71, 012045. [Google Scholar] [CrossRef] [Green Version]
Criteria for Assessing the Degree of Reinforcement Corrosion Risk by Use the Galvanostatic Pulse Method | ||||
---|---|---|---|---|
Corrosion Current Density | icor [μA·cm−2] | Reinforcement corrosion activity | Corrosion pace; [mm·year−1] | |
<0.5 | not forecasted corrosion activity | <0.006 | ||
0.5–2.0 | Irrelevant corrosion activity | 0.006–0.023 | ||
2.0–5.0 | Low corrosion activity | 0.023–0.058 | ||
5.0–15.0 | Moderate corrosion activity | 0.058–0.174 | ||
>15.0 | high corrosion activity | >0.174 | ||
Reinforcement Stationary Potential | Est [mV] | <−350 | 95% of corrosion probability | |
−350–−200 | 50% of corrosion probability | |||
>−200 | 5% of corrosion probability | |||
Concrete Cover Resistivity | Θ [kΩ·cm] | ≤10 | high corrosion probability | |
10–20 | medium corrosion probability | |||
≥20 | small corrosion probability |
Average Value c [mm] | Maximum Value cmax [mm] | Minimum Value cmin [mm] | Standard Deviation s [mm] | Coefficient of Variation V [%] |
---|---|---|---|---|
Slab | ||||
21.3 | 26 | 18 | 2.5 | 12 |
Column | ||||
38 | 50 | 38 | 8 | 21 |
Meas. Points | Values | Meas. Points | Values | Meas. Points | Values | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Est | icor | Θ | Est | icor | Θ | Est | icor | Θ | |||
(2, 1) | −376.06 | 3.53 | 4.90 | (3, 1) | −307.06 | 12.23 | 2.10 | (4, 1) | −324.14 | 15.71 | 2.00 |
(2, 2) | −242.30 | 2.98 | 4.00 | (3, 2) | −327.65 | 8.82 | 4.70 | (4, 2) | −362.29 | 12.02 | 2.60 |
(2, 3) | −256.27 | 3.65 | 3.10 | (3, 3) | −346.85 | 6.07 | 4.10 | (4, 3) | −384.76 | 6.83 | 5.10 |
(2, 4) | −304.25 | 2.81 | 6.40 | (3, 4) | −575.50 | 3.66 | 6.40 | (4, 4) | −422.67 | 6.50 | 6.30 |
(2, 5) | −421.74 | 4.23 | 2.30 | (3, 5) | −596.33 | 3.44 | 6.60 | (4, 5) | −508.80 | 5.84 | 6.80 |
(2, 6) | −453.80 | 4.92 | 8.00 | (3, 6) | −533.84 | 13.19 | 5.90 | (4, 6) | −535.95 | 10.74 | 2.00 |
Meas. Points | Values | Meas. Points | Values | ||||
---|---|---|---|---|---|---|---|
Est | icor | Θ | Est | icor | Θ | ||
(1, 1) | −18372 | 0.19 | 27.50 | (2, 1) | −316.19 | 17.53 | 4.30 |
(1, 2) | −173.89 | 1.55 | 13.30 | (2, 2) | −568.48 | 6.71 | 9.90 |
(1, 3) | −169.44 | 2.47 | 14.20 | (2, 3) | −467.14 | 8.19 | 6.80 |
(1, 4) | −142.76 | 2.59 | 8.80 | (2, 4) | −437.42 | 7.28 | 6.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tworzewski, P.; Raczkiewicz, W.; Czapik, P.; Tworzewska, J. Diagnostics of Concrete and Steel in Elements of an Historic Reinforced Concrete Structure. Materials 2021, 14, 306. https://doi.org/10.3390/ma14020306
Tworzewski P, Raczkiewicz W, Czapik P, Tworzewska J. Diagnostics of Concrete and Steel in Elements of an Historic Reinforced Concrete Structure. Materials. 2021; 14(2):306. https://doi.org/10.3390/ma14020306
Chicago/Turabian StyleTworzewski, Paweł, Wioletta Raczkiewicz, Przemysław Czapik, and Justyna Tworzewska. 2021. "Diagnostics of Concrete and Steel in Elements of an Historic Reinforced Concrete Structure" Materials 14, no. 2: 306. https://doi.org/10.3390/ma14020306
APA StyleTworzewski, P., Raczkiewicz, W., Czapik, P., & Tworzewska, J. (2021). Diagnostics of Concrete and Steel in Elements of an Historic Reinforced Concrete Structure. Materials, 14(2), 306. https://doi.org/10.3390/ma14020306