Microstructure, Mechanical Properties, and Corrosion Behavior of Ultra-Low Carbon Bainite Steel with Different Niobium Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Microstructure of Four Types of Experimental Steels
3.2. Mechanical Properties of Four Types of Experimental Steels
3.3. The Initial Corrosion Behavior and Corrosion Resistance of Four Experimental Steels in 3.5 wt.% NaCl Aqueous Solution
3.4. Electrochemical Impedance Spectroscopy of Four Types of ULCB Steels in 3.5 wt.% NaCl Solution
3.5. Corrosion Rate Curves and Surface Corrosion Morphology of Four Experimental Steels
4. Discussion
4.1. Correlation between Microstructure, Mechanical Properties, Corrosion Behavior of ULCB Steel, and Nb Content
4.2. Relationship between Corrosion Behavior of the Four Types ULCB Steels with Different Nb Content and the Evolution of the Corrosion Product Layer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Yang, S.; Gao, K.; Shen, X.; He, X. Corrosion Behavior and Variation of Apparent Mechanical Property of One Newly-Developed Low Carbon Bainitic Steel in Environment Containing Chloride Ion. Acta Metall. Sin. 2008, 44, 1116–1124. [Google Scholar]
- Wang, S.C.; Kao, P.W. The Effect of Alloying Elements On the Structure and Mechanical Properties of Ultra Low Carbon Bainitic Steels. J. Mater. Sci. 1993, 28, 5169–5175. [Google Scholar] [CrossRef]
- He, X.L.; Shang, C.J.; Yang, S.W.; Wang, X.M.; Guo, H. (Eds.) High Performance Low-Carbon Bainite Steel: Composition, Process, Organization, Performance and Application; Metallurgical Industry Press: Beijing, China, 2008; pp. 8–18. [Google Scholar]
- Lan, L.; Qiu, C.; Zhao, D.; Gao, X.; Du, L. Microstructural Characteristics and Toughness of the Simulated Coarse Grained Heat Affected Zone of High Strength Low Carbon Bainitic Steel. Mater. Sci. Eng. A 2011, 529, 192–200. [Google Scholar] [CrossRef]
- Song, F.Y.; Zhang, P.Y.; Wang, P.; Zhu, F.X. Effects of the Small Amount of Ferrite in Bainite Laths on the Strength and Toughness of High Strength Steels. J. Northeast. Univ. Nat. Sci. 2014, 35, 686–689. [Google Scholar] [CrossRef]
- Li, D.Z.; Cui, T.X.; Wang, Y.T.; Fu, P.M.; Meng, C.F. Status and Development of Low Carbon Microalloying Bainitic High Strength Steel. J. Iron Steel Res. 2013, 25, 1–5. [Google Scholar]
- Citti, P.; Giorgetti, A.; Millefanti, U. Mechanical Characterization of a New Low Carbon Bainitic Steel for High Performance Crankshaft. Procedia Struct. Integr. 2018, 12, 438–447. [Google Scholar] [CrossRef]
- He, X.L.; Shang, C.J. Microstructure Fining Theory of Low-carbon Bainitic Steel. In Ultra-Fine Grained Steels; Weng, Y.Q., Ed.; Metallurgical Industry Press: Beijing, China, 2009; pp. 235–299. [Google Scholar] [CrossRef]
- Apostolopoulos, C.A.; Demis, S.; Papadakis, V.G. Chloride-Induced Corrosion of Steel Reinforcement–Mechanical Performance and Pit Depth Analysis. Constr. Build. Mater. 2013, 38, 139–146. [Google Scholar] [CrossRef]
- Cui, Z.; Patel, J.; Palmiere, E.J. Thermomechanical processing of structural steels with dilute niobium additions. In HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015; Springer: Cham, Switzerland, 2016; pp. 281–287. [Google Scholar] [CrossRef]
- Cizek, P.; Wynne, B.P.; Davies, C.H.J.; Hodgson, P.D. The effect of simulated thermomechanical processing on the transformation behavior and microstructure of a low-carbon Mo-Nb linepipe steel. Metall. Mate. Trans. A 2015, 46, 407–425. [Google Scholar] [CrossRef]
- Yan-Lei, Z.; Jun, C.; Zhen-Yu, L. Corrosion Behavior of Rusted 550 MPa Grade Offshore Platform Steel. J. Iron. Steel. Res. Int. (Engl. Lett.) 2013, 020, 66–73. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Zhou, X.; Zhao, Y.; Zha, X.; Zhu, F. Effect of Continuous Cooling Rate on Transformation Characteristic in Microalloyed Low Carbon Bainite Cryogenic Pressure Vessel Steel. Trans. Indian Inst. Met. 2016, 69, 817–821. [Google Scholar] [CrossRef]
- Balart, M.J.; Davis, C.L.; Strangwood, M. Cleavage Initiation in Ti–V–N and V–N Microalloyed Ferritic–Pearlitic Forging Steels. Mater. Sci. Eng. A 2000, 284, 1–13. [Google Scholar] [CrossRef]
- Katiyar, P.K.; Misra, S.; Mondal, K. Corrosion Behavior of Annealed Steels with Different Carbon Contents (0.002, 0.17, 0.43 and 0.7% C) in Freely Aerated 3.5% NaCl Solution. J. Mater. Eng. Perform. 2019, 28, 4041–4052. [Google Scholar] [CrossRef]
- Sun, F.; Li, X.; Cheng, X. Effects of Carbon Content and Microstructure on Corrosion Property of New Developed Steels in Acidic Salt Solutions. Acta Metall. Sin. (Engl. Lett.) 2014, 27, 115–123. [Google Scholar] [CrossRef]
- Cleary, H.J.; Greene, N.D. Corrosion Properties of Iron and Steel. Corros. Sci. 1967, 7, 821–831. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, X.; Su, G.; Du, L.; Liu, Z.; Hu, J. Corrosion Behavior of Low-C Medium-Mn Steel in Simulated Marine Immersion and Splash Zone Environment. J. Mater. Eng. Perform. 2017, 26, 2599–2607. [Google Scholar] [CrossRef]
- Chen, X.; Dong, J.; Han, E.; Ke, W. Effect of Ni On the Ion-Selectivity of Rust Layer On Low Alloy Steel. Mater. Lett. 2007, 61, 4050–4053. [Google Scholar] [CrossRef]
- Suzuki, S.; Wang, H.X. Niobium in structural steel. World Iron Steel (Chin. Lett.) 2012, 12, 27–41. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Zhang, H.Q.; Jin-Fu, L.I.; Liu, W.M. Effect of Heat Input on Microstructure and Toughness of Coarse Grain Heat Affected Zone in Nb Microalloyed HSLA Steels. J. Iron Steel Res. Int. 2009, 16, 73–80. [Google Scholar] [CrossRef]
- Hausmann, K.; Krizan, D.; Spiradek-Hahn, K.; Pichler, A.; Werner, E. The Influence of Nb On Transformation Behavior and Mechanical Properties of TRIP-assisted Bainitic–Ferritic Sheet Steels. Mater. Sci. Eng. A 2013, 588, 142–150. [Google Scholar] [CrossRef]
- Hannula, J.; Kömi, J.; Porter, D.A.; Somani, M.C.; Kaijalainen, A.; Suikkanen, P.; Yang, J.; Tsai, S. Effect of Boron on the Strength and Toughness of Direct-Quenched Low-Carbon Niobium Bearing Ultra-High-Strength Martensitic Steel. Metall. Mate. Trans. A 2017, 48, 5344–5356. [Google Scholar] [CrossRef]
- Misra, D.; Jansto, S.G. Niobium-based alloy design for structural applications: Processing-structure-property paradigm. In HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015; Springer: Cham, Switzerland, 2016; pp. 261–266. [Google Scholar] [CrossRef]
- Katiyar, P.K.; Misra, S.; Mondal, K. Comparative Corrosion Behavior of Five Microstructures (Pearlite, Bainite, Spheroidized, Martensite, and Tempered Martensite) Made from a High Carbon Steel. Metall. Mate. Trans. A 2019, 50, 1489–1501. [Google Scholar] [CrossRef]
- Souza, E.C.D.; Rossitti, S.M.; Fortulan, C.A.; Rollo, J.M.D.D. Influence of Ferrite Phase Content on the Electrochemical Properties of Duplex Stainless Steels. Mat. Res. 2017, 20, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Chen, J.; Xu, Y.; Liu, Z. Effects of Cr, Ni and Cu on the Corrosion Behavior of Low Carbon Microalloying Steel in a CF- Containing Environment. J. Mater. Sci. Technol. (Engl. Lett.) 2013, 29, 168–174. [Google Scholar] [CrossRef]
- ASTM E2298-18. Standard Test Method for Instrumented Impact Testing of Metallic Materials; ASTM International, West Conshohocken: Montgomery County, PA, USA, 2018. [Google Scholar]
- ASTM E384-17. Standard Test Method for Microindentation Hardness of Materials; ASTM International, West Conshohocken: Montgomery County, PA, USA, 2017. [Google Scholar]
- Saleem Khan, M.; Xu, D.; Liu, D.; Lekbach, Y.; Yang, K.; Yang, C. Corrosion Inhibition of X80 Steel in Simulated Marine Environment with Marinobacter aquaeolei. Acta Metall. Sin. (Engl. Lett.) 2019, 32, 1373–1384. [Google Scholar] [CrossRef]
- Wang, F.P.; Jing, H.M.; Xin, C.M. Corrosive Electrochemistry, 2nd ed.; Chemical Industry Press: Beijing, China, 2017; p. 133. [Google Scholar]
- Yao, S.; Liu, S.; Zeng, G.; Li, X.; Lei, T.; Li, Y.; Du, Y. Effect of Manganese on Microstructure and Corrosion Behavior of the Mg-3Al Alloys. Metals 2019, 9, 460. [Google Scholar] [CrossRef] [Green Version]
- Nady, H.; El-Rabiei, M.M.; Samy, M. Corrosion Behavior and Electrochemical Properties of Carbon Steel, Commercial Pure Titanium, Copper and Copper–Aluminum–Nickel Alloy in 3.5% Sodium Chloride Containing Sulfide Ions. Egypt J. Petrol. 2016, 26, 79–94. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.J.; Song, D.; Jiang, J.Y.; Jiang, J.H.; Xiao-Long, M.A.; You, K.; Ai-Bin, M.A. Microstructure Characteristic and Electrochemical Corrosion Behavior of Surface Nano-Crystallization Modified Carbon Steel. J. Iron Steel Res. Int. 2016, 23, 1281–1289. [Google Scholar] [CrossRef]
- Seikh, A.H.; Halfa, H.; Baig, M. Microstructure Characterization and Corrosion Resistance Behavior of New Cobalt-Free Maraging Steel Produced through ESR Techniques. J. Mater. Eng. Perform. 2017, 26, 1589–1597. [Google Scholar] [CrossRef]
- Dong, Z.H.; Liu, T.; Liu, H.F. Influence of EPS Isolated From Thermophilic Sulphate-Reducing Bacteria On Carbon Steel Corrosion. Biofouling 2011, 27, 487–495. [Google Scholar] [CrossRef]
- Palmiere, E.J.; Garcia, C.I.; Ardo, A.J.D. Compositional and Microstructural Changes Which Attend Reheating and Grain Coarsening in Steels Containing Niobium. Metall. Mate. Trans. A 1994, 25, 277–286. [Google Scholar] [CrossRef]
- API SPEC 5L-2012. Specification for line pipe FORTY-FIFTH EDITION; American Petroleum Institute: Washington, DC, USA, 2012. [Google Scholar]
- Melchers, R.E. Effect On Marine Immersion Corrosion of Carbon Content of Low Alloy Steels. Corros. Sci. 2003, 45, 2609–2625. [Google Scholar] [CrossRef]
- Melchers, R.E. Effect of Small Compositional Changes on Marine Immersion Corrosion of Low Alloy Steels. Corros. Sci. 2004, 46, 1669–1691. [Google Scholar] [CrossRef]
Steel | C | Si | Mn | P | S | Nb | Ni | Cr | Mo | Ti | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|
No.8 | 0.047 | 0.20 | 1.59 | 0.009 | 0.006 | 0.035 | 0.615 | 0.413 | 0.249 | 0.015 | 0.29 |
No.9 | 0.05 | 0.21 | 1.55 | 0.008 | 0.006 | 0.069 | 0.596 | 0.410 | 0.252 | 0.014 | 0.30 |
No.10 | 0.05 | 0.19 | 1.54 | 0.008 | 0.007 | 0.084 | 0.600 | 0.430 | 0.240 | 0.011 | 0.343 |
No.11 | 0.05 | 0.197 | 1.56 | 0.009 | 0.007 | 0.107 | 0.582 | 0.450 | 0.241 | 0.013 | 0.336 |
Steel No. | No.8 | No.9 | No.10 | No.11 |
---|---|---|---|---|
I0 (Amp/cm2) | 2.32 × 10−5 | 1.57 × 10−5 | 1.71 × 10−5 | 2.28 × 10−5 |
E0 (V) | −0.4578 | −0.6084 | −0.645 | −0.665 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, Y.; Liu, C.-M. Microstructure, Mechanical Properties, and Corrosion Behavior of Ultra-Low Carbon Bainite Steel with Different Niobium Content. Materials 2021, 14, 311. https://doi.org/10.3390/ma14020311
Zong Y, Liu C-M. Microstructure, Mechanical Properties, and Corrosion Behavior of Ultra-Low Carbon Bainite Steel with Different Niobium Content. Materials. 2021; 14(2):311. https://doi.org/10.3390/ma14020311
Chicago/Turabian StyleZong, Yun, and Chun-Ming Liu. 2021. "Microstructure, Mechanical Properties, and Corrosion Behavior of Ultra-Low Carbon Bainite Steel with Different Niobium Content" Materials 14, no. 2: 311. https://doi.org/10.3390/ma14020311
APA StyleZong, Y., & Liu, C. -M. (2021). Microstructure, Mechanical Properties, and Corrosion Behavior of Ultra-Low Carbon Bainite Steel with Different Niobium Content. Materials, 14(2), 311. https://doi.org/10.3390/ma14020311