Use of Steel Slag as an Alternative to Aggregate and Filler in Road Pavements
Abstract
:1. Introduction
- (1)
- Materials deriving from the recovery cycle of CDM (CER 17.01.01-17.09.04-17.05.04-17.03.02) and artificial aggregate (CER 10.02.02) deriving from the recovery cycle of steel mill slag for the production of cement mixes for the foundation layers.
- (2)
- Artificial grit deriving from the recovery cycle of steel mill slag (CER 10.02.02) for the production of bituminous conglomerates for the construction of high load road pavements. Steel mill slag recovery materials are waste from the smelting of ferrous metal alloys in second smelting cast iron and steel foundries, ferroalloy production and the steel industry.
2. Materials
2.1. Slag in Foundation Layer
2.2. Steel Slag in Asphalt Layer
3. Experimental Plan
- (1)
- Size distribution (EN 10343);
- (2)
- Voids of dry compacted filler (EN 1097-5);
- (3)
- Proctor compaction (EN 13286-2);
- (4)
- Gyratory compaction (ASTM D6925, EN 12697/31);
- (5)
- Marshall (EN 12697-34);
- (6)
- Indirect tensile strength (EN 12390-6, EN 13286-42, EN 12697-23);
- (7)
- Unconfined compressive strength (EN 13286-41);
- (8)
- Indirect tensile stiffness modulus (EN 12697-26).
4. Results
4.1. Cement Bound Mixture Analysis
4.1.1. Size Distribution
4.1.2. Studies of the Maximum Dry Density
4.1.3. ITS and UCS Results Analysis after Proctor Compaction
4.1.4. ITS Results Analysis after Gyratory Compaction
4.1.5. Indirect Tensile Stiffness Modulus Results
4.2. Asphalt Mixture Analysis
4.2.1. Size Distribution
4.2.2. Marshall Analysis
4.2.3. Gyratory Compaction Study
4.2.4. ITS results Analysis after Gyratory Compaction
4.2.5. Indirect Tensile Stiffness Modulus Analysis
5. Conclusions
- (1)
- Regarding the cement bound mixture, static mechanical characterization tests (ITS, UCS) highlight that results are not far from those obtained with the virgin mixture and satisfy the principal requirement imposed by the technical specifications. Additionally, the ITSM results confirm what is found in the literature: there is a consistent difference in stiffness between the mixture analyzed. The mixture containing steel slag has a higher stiffness modulus even if compared to the reference virgin mixture;
- (2)
- The asphalt mixture that contains a higher percentage of slugs in weight of aggregate is characterized by higher stability and stiffness. The optimum mixture was obtained using 4.5% bitumen and 30% slag.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ossa, A.; García, J.L.; Botero, E. Use of recycled construction and demolition waste (CDW) aggregates: A sustainable alternative for the pavement construction industry. J. Clean. Prod. 2016, 135, 379–386. [Google Scholar] [CrossRef]
- Sangiorgi, C.; Tataranni, P.; Simone, A.; Vignali, V.; Lantieri, C.; Dondi, G. A laboratory and filed evaluation of Cold Recycled Mixture for base layer entirely made with Reclaimed Asphalt Pavement. Constr. Build. Mater. 2017, 138, 232–239. [Google Scholar] [CrossRef]
- Dondi, G.; Sangiorgi, C.; Lantieri, C.; Simone, A.; Vignali, V.; Lamperti, R. Performance evaluation of Construction and Demolition and other waste materials. In Sustainability. Eco-Efficiency and Conservation in Transportation Infrastructure Asset Management; Losa, M., Papagiannakis, T., Eds.; CRC Press: London, UK, 2014. [Google Scholar]
- Arabani, M.; Tahami, S.A.; Taghipoor, M. Laboratory investigation of hot mix asphalt containing waste materials. Road Mater. Pavement Des. 2017. [Google Scholar] [CrossRef]
- Sangiorgi, C.; Tataranni, P.; Mazzotta, F.; Simone, A.; Vignali, V.; Lantieri, C. Alternative fillers for the production of bituminous mixtures: A screening investigation on waste powders. Coatings 2017, 7, 76. [Google Scholar] [CrossRef] [Green Version]
- Mazzotta, F.; Sangiorgi, C.; Vignali, V.; Lantieri, C.; Dondi, G. Rheological characterization of bituminous mastics containing waste bleaching clays. In 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials; RILEM Bookseries; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Vignali, V.; Mazzotta, F.; Sangiorgi, C.; Simone, A.; Lantieri, C.; Dondi, G. Incorporation of Rubber Powder as Filler in a New Dry-Hybrid Technology: Rheological and 3D DEM Mastic Performances Evaluation. Materials 2016, 9, 842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simone, A.; Mazzotta, F.; Eskandarsefat, S.; Sangiorgi, C.; Vignali, V.; Lantieri, C.; Dondi, G. Experimental application of waste glass powder filler in recycled dense-graded asphalt mixtures. Road Mater. Pavement Des. 2019, 20, 592–607. [Google Scholar] [CrossRef] [Green Version]
- Maw, K.J. Steel Slag—Its Use and Development in the United Kingdom by the Slag Reduction Company Ltd. In International Seminar on Slag; The Material of Choice, Australasian Slag Association: Port Kembla, Australia, 1991. [Google Scholar]
- Iacobescu, R.I.; Pontikes, Y.; Koumpouri, D.; Angelopoulos, G.N. Synthesis, characterization and properties of calcium ferroaluminate belite cements produced with electric arc furnace steel slag as raw material. Cem. Concr. Compos. 2013. [Google Scholar] [CrossRef]
- Kriskova, L.; Pontikes, Y.; Cizer, Ö.; Mertens, G.; Veulemans, W.; Geysen, D.; Jones, P.T.; Vandewalle, L.; van Balen, K.; Blanpain, B. Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cem. Concr. Res. 2012. [Google Scholar] [CrossRef]
- Huaiwei, Z.; Xin, H. An overview for the utilization of wastes from stainless steel industries. Resour. Conserv. Recycl. 2011. [Google Scholar] [CrossRef]
- Amelian, S.; Manian, M.; Abtahi, S.M.; Goli, A. Moisture sensitivity and mechanical performance assessment of warm mix asphalt containing by-product steel slag. J. Clean. Prod. 2018, 176, 329–337. [Google Scholar] [CrossRef]
- Martinho, F.C.G.; Picado-Santos, L.G.; Capitão, S.D. Influence of recycled concrete and steel slag aggregates on warm-mix asphalt properties. Constr. Build. Mater. 2018, 185, 684–696. [Google Scholar] [CrossRef]
- Shen, D.H.; Wu, C.M.; Du, J.C. Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Constr. Build. Mater. 2009, 23, 453–461. [Google Scholar] [CrossRef]
- Kim, K.; Jo, S.H.; Kim, N.; Kim, H. Characteristics of hot mix asphalt containing steel slag aggregate according to temperature and void percentage. Constr. Build. Mater. 2018, 188, 1128–1136. [Google Scholar] [CrossRef]
- Chen, J.S.; Wei, S.H. Engineering properties and performance of asphalt mixtures incorporating steel slag. Constr. Build. Mater. 2016, 128, 148–153. [Google Scholar] [CrossRef]
- Mahieux, P.Y.; Aubert, J.E.; Escadeillas, G. Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders. Constr. Build. Mater. 2009, 23, 742–747. [Google Scholar] [CrossRef]
- Abu-Eishah, S.I.; El-Dieb, A.S.; Bedir, M.S. Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region. Constr. Build. Mater. 2012, 34, 249–256. [Google Scholar] [CrossRef]
- Oluwasola, E.A.; Hainin, M.R.; Aziz, M.M.A. Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction. Transp. Geotech. 2015, 2, 47–55. [Google Scholar] [CrossRef]
- Pellegrino, C.; Gaddo, V. Mechanical and durability characteristics of concrete containing EAF slag as aggregate. Cem. Concr. Compos. 2009, 31, 663–671. [Google Scholar] [CrossRef]
- Faleschini, F.; Fernández-Ruíz, M.A.; Zanini, M.A.; Brunelli, K.; Pellegrino, C.; Hernández-Montes, E. Hernández-Montes, High performance concrete with electric arc furnace slag as aggregate: Mechanical and durability properties. Constr. Build. Mater. 2015, 101, 113–121. [Google Scholar] [CrossRef]
- Rondi, L.; Bregoli, G.; Sorlini, S.; Cominoli, L.; Collivignarelli, C.; Plizzari, G. Concrete with EAF steel slag as aggregate: A comprehensive technical and environmental characterisation. Compos. Part B Eng. 2016, 90, 195–202. [Google Scholar] [CrossRef]
- Coppola, L.; Buoso, A.; Coffetti, D.; De Maeijer, P.K.; Lorenzi, S. Electric arc furnace granulated slag for sustainable concrete. Constr. Build. Mater. 2016, 123, 115–119. [Google Scholar] [CrossRef]
- Skaf, M.; Manso, J.M.; Aragón, Á.; Fuente-Alonso, J.A.; Ortega-López, V. EAF slag in asphalt mixes: A brief review of its possible re-use. Resour. Conserv. Recycl. 2017, 120, 176–185. [Google Scholar] [CrossRef]
- Maharaj, C.; White, D.; Maharaj, R.; Morin, C.; Pratico, F.G. Re-use of steel slag as an aggregate to asphaltic road pavement surface. Cogent Eng. 2017, 4, 1–12. [Google Scholar] [CrossRef]
- Manso, J.M.; Ortega-López, V.; Polanco, J.A.; Setién, J. The use of ladle furnace slag in soil stabilization. Constr. Build. Mater. 2013, 40, 126–134. [Google Scholar] [CrossRef]
- Manso, J.; Losáñez, M.; Polanco, J.A.; González, J.J. Ladle Furnace Slag in Construction. J. Mater. Civ. Eng. 2005, 17, 513–518. [Google Scholar] [CrossRef]
- Sideris, K.K.; Tassos, C.; Chatzopoulos, A. Production of Durable Self-compacting Concrete Using Ladle Furnace Slag (LFS) as Filler Material. Procedia Eng. 2015, 108, 592–597. [Google Scholar] [CrossRef] [Green Version]
- Skaf, M.; López, V.O.; Alonso, J.A.D.L.F.; Santamaría, A.; Manso, J. Ladle furnace slag in asphalt mixes. Constr. Build. Mater. 2016, 122, 488–495. [Google Scholar] [CrossRef] [Green Version]
- UN Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 12 January 2021).
- Pasetto, M.; Baldo, N. Recycling of waste aggregate in cement bound mixtures for road pavement bases and sub-bases. Constr. Build. Mater. 2016, 108, 112–118. [Google Scholar] [CrossRef]
Mixture | Water Content during Compaction (%) | Wet Density (g/cm3) | Dry Density (g/cm3) | Optimum Water Content (%) | Max Dry Density (g/cm3) |
---|---|---|---|---|---|
M040 | 5.0 | 2.276 | 2.167 | 6.0 | 2.198 |
M040 | 5.9 | 2.278 | 2.151 | ||
M040 | 6.7 | 2.332 | 2.185 | ||
FM040 | 1.5 | 2.419 | 2.384 | 5.6 | 2.573 |
FM040 | 3.6 | 2.549 | 2.460 | ||
FM040 | 8.2 | 2.703 | 2.498 | ||
FM040 | 4.0 | 2.709 | 2.604 |
Name | Height (mm) | Ø (mm) | Load (daN) | Displacement (mm) | Rt (MPa) | Average (MPa) |
---|---|---|---|---|---|---|
M040 | 177.8 | 150 | 1665 | 0.46 | 0.40 | 0.32 |
M040 | 177.8 | 150 | 920 | 0.94 | 0.22 | |
M040 | 177.8 | 150 | 1380 | 0.74 | 0.33 | |
FM040 | 177.8 | 150 | 2500 | 1.1 | 0.60 | 0.57 |
FM040 | 177.8 | 150 | 2285 | 0.74 | 0.55 |
Name | Height (mm) | Ø (mm) | Load (daN) | Rc (MPa) | Average (MPa) |
---|---|---|---|---|---|
M040 | 177.8 | 150 | 5530 | 3.13 | 2.90 |
M040 | 177.8 | 150 | 3055 | 1.73 | |
M040 | 177.8 | 150 | 6765 | 3.83 | |
FM040 | 177.8 | 150 | 6245 | 3.53 | 3.84 |
FM040 | 177.8 | 150 | 7340 | 4.15 |
Name | Height (mm) | Ø (mm) | Load (daN) | Displacement (mm) | Rt (MPa) | Average (MPa) |
---|---|---|---|---|---|---|
M040_1 | 57.03 | 150 | 790 | 0.52 | 0.59 | 0.49 |
M040_2 | 63.39 | 150 | 745 | 0.54 | 0.50 | |
M040_3 | 64.2 | 150 | 660 | 0.44 | 0.44 | |
M040_4 | 59.21 | 150 | 600 | 0.48 | 0.43 | |
M040_5 | 62.73 | 150 | 680 | 0.56 | 0.46 | |
M040_6 | 58.57 | 150 | 725 | 0.54 | 0.53 | |
FM040_1 | 53.29 | 150 | 780 | 0.30 | 0.62 | 0.65 |
FM040_2 | 48.75 | 150 | 740 | 0.48 | 0.64 | |
FM040_3 | 48.68 | 150 | 600 | 0.42 | 0.52 | |
FM040_4 | 51.87 | 150 | 845 | 0.52 | 0.69 | |
FM040_5 | 49.17 | 150 | 680 | 0.38 | 0.59 | |
FM040_6 | 52.72 | 150 | 1000 | 0.58 | 0.81 |
Mixture | Average Height (mm) | Temperature (°C) | D1 (MPa) | D2 (MPa) | Average (MPa) | Total (MPa) |
---|---|---|---|---|---|---|
M040_1 | 62.73 | 19 | 15,895 | 15,620 | 15,757.5 | 12,430 |
M040_2 | 58.57 | 19 | 7642 | 7652 | 7647 | |
M040_3 | 57.033 | 18 | 14,741 | 15,155 | 14,948 | |
M040_4 | 63.39 | 18 | 18,551 | 20,391 | 19,471 | |
M040_5 | 64.2 | 19 | 8173 | 8034 | 8103.5 | |
M040_6 | 59.21 | 19 | 8847 | 8462 | 8654.5 | |
FM040_1 | 52.29 | 18 | 20,438 | 17,009 | 18,723.5 | 16,440 |
FM040_2 | 48.75 | 18 | 14,131 | 13,543 | 13,837 | |
FM040_3 | 48.68 | 17 | 14,083 | 13,051 | 13,567 | |
FM040_4 | 51.87 | 17 | 15,898 | 15,877 | 15,887.5 | |
FM040_5 | 49.17 | 17 | 16,976 | 17,135 | 17,055.5 | |
FM040_6 | 52.726 | 17 | 18,983 | 20,155 | 19,569 |
Bitumen (%) | Stability (kg) | Displacement (mm) | Stiffness (kg/mm) | Weight/Volume (g/cm3) | Void (%) |
---|---|---|---|---|---|
6 | 1255.00 | 2.85 | 445.86 | 2.62 | 3.82 |
5 | 1289.00 | 2.58 | 499.30 | 2.60 | 6.40 |
4 | 1346.33 | 1.93 | 697.42 | 2.59 | 7.99 |
3 | 1536.00 | 2.21 | 709.36 | 2.54 | 11.40 |
Mixture | Bitumen (%) | Stability (kg) | Displacement (mm) | Stiffness (kg/mm) | Weight/Volume (g/cm3) | Void (%) |
---|---|---|---|---|---|---|
M0 | 5.5 | 1334.00 | 2.28 | 585.46 | 2.48 | 4.88 |
M1 | 4.5 | 1391.00 | 2.38 | 537.39 | 2.56 | 8.31 |
Name | ITS (MPa) | CTI (MPa) | Average ITS (MPa) |
---|---|---|---|
M0 | 0.90 | 70.90 | 0.94 |
M0 | 0.95 | 79.03 | |
M0 | 0.97 | 81.32 | |
M1 | 0.92 | 81.26 | 0.92 |
M1 | 0.87 | 77.38 | |
M1 | 0.98 | 92.46 |
Sample | ITSM (MPa) @ 10 °C | ITSM (MPa) @ 20 °C | ITSM (MPa) @ 30 °C |
---|---|---|---|
M0 | 11641 | 4573 | 1575 |
11251 | 5470 | 1841 | |
11232 | 5261 | 1810 | |
M1 | 11129 | 5165 | 1980 |
12616 | 6263 | 1902 | |
13907 | 7017 | 2200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dondi, G.; Mazzotta, F.; Lantieri, C.; Cuppi, F.; Vignali, V.; Sangiovanni, C. Use of Steel Slag as an Alternative to Aggregate and Filler in Road Pavements. Materials 2021, 14, 345. https://doi.org/10.3390/ma14020345
Dondi G, Mazzotta F, Lantieri C, Cuppi F, Vignali V, Sangiovanni C. Use of Steel Slag as an Alternative to Aggregate and Filler in Road Pavements. Materials. 2021; 14(2):345. https://doi.org/10.3390/ma14020345
Chicago/Turabian StyleDondi, Giulio, Francesco Mazzotta, Claudio Lantieri, Federico Cuppi, Valeria Vignali, and Celestino Sangiovanni. 2021. "Use of Steel Slag as an Alternative to Aggregate and Filler in Road Pavements" Materials 14, no. 2: 345. https://doi.org/10.3390/ma14020345
APA StyleDondi, G., Mazzotta, F., Lantieri, C., Cuppi, F., Vignali, V., & Sangiovanni, C. (2021). Use of Steel Slag as an Alternative to Aggregate and Filler in Road Pavements. Materials, 14(2), 345. https://doi.org/10.3390/ma14020345