Evolution of the Study of Phase Diagram of Binary and Ternary Mixtures Involving Fatty Acid Esters
Abstract
:1. Introduction
2. Review on Published Literature Concerning Phase Diagrams of Mixtures of Fatty Acid Esters
- Mixtures in which there is no formation of eutectic points due to the chemical behavior of the materials in the mixture are not reported.
- When eutectic temperatures are not specified by the authors, the lowest melting temperature is considered as the temperature of the eutectic because of the very definition of the eutectic point.
- When temperatures are reported originally in Celsius, they are here reported in Kelvin (considering that 0 °C = 273.15 K) to unify the style of the table and facilitate its use.
- Numbers extracted approximately from a graph because no numerical data are reported by the authors are marked with an indicator (*).
- Ternary mixtures are not reported.
- When the melting temperatures of the mixture’s materials is so high that the eutectic data correspond to the data of one of the pure materials, it is indicated in the “Comments” column of the table.
- The values of enthalpy are reported, when available, in the same units provided by the authors.
2.1. Mixtures of Fatty Acid Ethyl Esters
2.2. Mixtures of Fatty Acid Methyl Esters
2.3. Mixtures of Fatty Acid Ethyl Esters with Fatty Acid Methyl Esters
2.4. Mixtures of Fatty Acid Esters with Other Compounds
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CP | Cloud Point |
DC | Dodecylcyclohexane |
DSC | Differential Scanning Calorimetry |
ECa | Ethyl Caprate |
ECy | Ethyl Caprylate |
EL | Ethyl Laurate |
ELi | Ethyl Linoleate |
EM | Ethyl Myristate |
EO | Ethyl Oleate |
EP | Ethyl Palmitate |
ES | Ethyl Stearate |
FAE | Fatty Acid Esters |
FAEE | Fatty Acid Ethyl Esters |
FAME | Fatty Acid Methyl Esters |
FTIR | Fourier-Transform Infrared |
LA | Lauric Acid |
LTES | Latent Thermal Energy Storage |
ME | Methyl Eicosanoate |
MH | Methyl Heptadecanoate |
ML | Methyl Laurate |
MLi | Methyl Linoleate |
MM | Methyl Myristate |
MN | Methyl Nonadecanoate |
MO | Methyl Oleate |
MP | Methyl Palmitate |
MS | Methyl Stearate |
NRTL | Non-Random Two-Liquid model |
PCM | Phase Change Material |
SLE | Solid–Liquid Equilibrium |
TES | Thermal Energy Storage |
UNIFAC | UNIQUAC Functional-group Activity Coefficients model |
UNIQUAC | Universal Quasichemical model |
References
- European Commission. European Commision Horizon Europe-the Next Research and Innovation Framework Programme. Available online: https://ec.europa.eu/info/horizon-europe-next-research-and-innovation-framework-programme_en (accessed on 10 October 2020).
- Calderón, A.; Barreneche, C.; Hernández-Valle, K.; Galindo, E.; Segarra, M.; Fernández, A.I. Where is thermal energy storage (TES) research going?–A bibliometric analysis. Sol. Energy 2019. [Google Scholar] [CrossRef]
- Jouhara, H.; Żabnieńska-Góra, A.; Khordehgah, N.; Ahmad, D.; Lipinski, T. Latent thermal energy storage technologies and applications: A review. Int. J. Thermofluids 2020. [Google Scholar] [CrossRef]
- Elias, C.N.; Stathopoulos, V.N. A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage. Energy Procedia 2019, 161, 385–394. [Google Scholar] [CrossRef]
- Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew. Sustain. Energy Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- Kenisarin, M.M. High-temperature phase change materials for thermal energy storage. Renew. Sustain. Energy Rev. 2010, 14, 955–970. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, S. Medium- and high-temperature latent heat thermal energy storage: Material database, system review, and corrosivity assessment. Int. J. Energy Res. 2019, 43, 621–661. [Google Scholar] [CrossRef]
- Feng, D.; Feng, Y.; Qiu, L.; Li, P.; Zang, Y.; Zou, H.; Yu, Z.; Zhang, X. Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation. Renew. Sustain. Energy Rev. 2019, 109, 578–605. [Google Scholar] [CrossRef]
- Hua, J.; Wu, C.; Zou, L.; Chen, S.; Lu, H.; Xu, Y.; Peng, X. Preparation and thermal reliability of N-Butyl stearate/Methyl palmitate composite phase change material. J. Therm. Anal. Calorim. 2017, 128, 1273–1278. [Google Scholar] [CrossRef]
- Kang, Y.; Jeong, S.-G.; Wi, S.; Kim, S. Energy efficient bio-based PCM with silica fume composites to apply in concrete for energy saving in buildings. Sol. Energy Mater. Sol. Cells 2015, 143, 430–434. [Google Scholar] [CrossRef]
- Fabiani, C.; Pisello, A.; Barbanera, M.; Cabeza, L.; Cotana, F. Assessing the potentiality of animal fat based-bio phase change materials (PCM) for building applications: An innovative multipurpose thermal investigation. Energies 2019. [Google Scholar] [CrossRef] [Green Version]
- Mathis, D.; Blanchet, P.; Landry, V.; Lagière, P. Thermal characterization of bio-based phase changing materials in decorative wood-based panels for thermal energy storage. Green Energy Environ. 2019, 4, 56–65. [Google Scholar] [CrossRef]
- Navarro, L.; Solé, A.; Martín, M.; Barreneche, C.; Olivieri, L.; Tenorio, J.A.; Cabeza, L.F. Benchmarking of useful phase change materials for a building application. Energy Build. 2019, 182, 45–50. [Google Scholar] [CrossRef]
- Barreneche, C.; Pisello, A.L.; Fernández, A.I.; Cabeza, L.F. Experimental methods for the characterization of materials for latent thermal energy storage. In Recent Advancements in Materials and Systems for Thermal Energy Storage; Frazzica, A., Cabeza, L.F., Eds.; Springer: Cham, Switzerland, 2019; pp. 89–101. ISBN 978-3-319-96639-7. [Google Scholar]
- Salunkhe, P.B.; Krishna, D.J. Investigations on latent heat storage materials for solar water and space heating applications. J. Energy Storage 2017, 12, 243–260. [Google Scholar] [CrossRef]
- Souayfane, F.; Fardoun, F.; Biwole, P.-H. Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build. 2016, 129, 396–431. [Google Scholar] [CrossRef]
- Ravotti, R.; Fellmann, O.; Lardon, N.; Fischer, L.J.; Stamatiou, A.; Worlitschek, J. Analysis of bio-based fatty esters PCM’s thermal properties and investigation of trends in relation to chemical structures. Appl. Sci. 2019, 9, 225. [Google Scholar] [CrossRef] [Green Version]
- Aydn, A.A. Diesters of high-chain dicarboxylic acids with 1-tetradecanol as novel organic phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cells 2012, 104, 102–108. [Google Scholar] [CrossRef]
- Aydn, A.A.; Okutan, H. High-chain fatty acid esters of Myristyl alcohol with even carbon number: Novel organic phase change materials for thermal energy storage-1. Sol. Energy Mater. Sol. Cells 2011, 95, 2752–2762. [Google Scholar] [CrossRef]
- Gunasekara, S.N.; Martin, V.; Chiu, J.N. Phase equilibrium in the design of phase change materials for thermal energy storage: State-of-the-art. Renew. Sustain. Energy Rev. 2017, 73, 558–581. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A.I. Materials used as PCM in thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemestry and Physics, Internet Version 2005; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar]
- Kahwaji, S.; Johnson, M.B.; Kheirabadi, A.C.; Groulx, D.; White, M.A. Fatty acids and related phase change materials for reliable thermal energy storage at moderate temperatures. Sol. Energy Mater. Sol. Cells 2017, 167, 109–120. [Google Scholar] [CrossRef]
- Kahwaji, S.; White, M.A. Prediction of the properties of eutectic fatty acid phase change materials. Thermochim. Acta 2018, 660, 94–100. [Google Scholar] [CrossRef]
- Noshadi, S.; Sadeghi, R. Differential scanning calorimetry determination of solid−liquid equilibria phase diagrams for binary monocarboxylic acids solutions. Fluid Phase Equilibria 2019, 486, 1–10. [Google Scholar] [CrossRef]
- Lobbia, G.G.; Vitali, G.; Berchiesi, G. Free energy of interchange between COO and CH3 or CH2 groups. Thermochim. Acta 1982, 57, 5–11. [Google Scholar] [CrossRef]
- Lobbia, G.G.; Berchiesi, G.; Vitali, G. Crystallization curve of hexadecane in mixtures with Methyl nonadecanoate, Methyl octadecanoate, Ethyl octadecanoate, and Methyl hexadecanoate. A comparison of the experimental and calculated curves. Thermochim. Acta 1983, 65, 29–33. [Google Scholar] [CrossRef]
- Suppes, G.J.; Goff, M.J.; Lopes, S. Latent heat characteristics of fatty acid derivatives pursuant phase change material applications. Chem. Eng. Sci. 2003, 58, 1751–1763. [Google Scholar] [CrossRef]
- Collinet, E.; Gmehling, J. Activity coefficient at infinite dilution, azeotropic data, excess enthalpies and solid–liquid-equilibria for binary systems of alkanes and aromatics with esters. Fluid Phase Equilibria 2005, 230, 131–142. [Google Scholar] [CrossRef]
- Imahara, H.; Minami, E.; Saka, S. Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel 2006, 85, 1666–1670. [Google Scholar] [CrossRef]
- Lopes, J.C.A.; Boros, L.; Krähenbühl, M.A.; Meirelles, A.J.A.; Daridon, J.L.; Pauly, J.; Marrucho, I.M.; Coutinho, J.A.P. Prediction of cloud points of biodiesel. Energy Fuels 2008, 22, 747–752. [Google Scholar] [CrossRef]
- Rocha, S.A.; da Silva, L.K.; Boros, L.A.D.; Krahenbuhl, M.A.; Guirardello, R. Solid-liquid equilibrium calculation and parameters determination in thermodynamic models for binary and ternary fatty mixtures. Chem. Eng. Trans. 2014, 37, 535–540. [Google Scholar] [CrossRef]
- Boros, L.; Batista, M.L.S.; Vaz, R.V.; Figueiredo, B.R.; Fernandes, V.F.S.; Costa, M.C.; Krähenbühl, M.A.; Meirelles, A.J.A.; Coutinho, J.A.P. Crystallization behavior of mixtures of fatty acid Ethyl esters with Ethyl stearate. Energy Fuels 2009, 23, 4625–4629. [Google Scholar] [CrossRef]
- Robustillo, M.D.; Barbosa, D.F.; de Almeida Meirelles, A.J.; de Alcântara Pessôa Filho, P. Solid–liquid equilibrium in ternary mixtures of Ethyl oleate, Ethyl laurate and Ethyl palmitate. Fluid Phase Equilibria 2013, 339, 58–66. [Google Scholar] [CrossRef]
- Branco, N.F.M.; Lobo Ferreira, A.I.M.C.; Ribeiro, J.C.; Santos, L.M.N.B.F.; Coutinho, J.A.P. Understanding the thermal behaviour of blends of biodiesel and diesel: Phase behaviour of binary mixtures of alkanes and FAMEs. Fuel 2020. [Google Scholar] [CrossRef]
- Carareto, N.D.D.; Costa, M.C.; Meirelles, A.J.A.; Pauly, J. High pressure solid–liquid equilibrium of fatty acid Ethyl esters binary systems. Fluid Phase Equilibria 2014, 382, 158–163. [Google Scholar] [CrossRef]
- Lutton, E.S.; Hugenberg, F.R. Bynary systems of fatty esters: Ethyl stearate-Methyl stearate. J. Chem. Eng. Data 1962, 7, 208–209. [Google Scholar] [CrossRef]
- Dörfler, H.-D.; Pietschmann, N. Phase and miscibility behavior of binary lipid systems. Colloid Polym. Sci. 1990, 268, 567–577. [Google Scholar] [CrossRef]
- Lockemann, C.A.; Schlünder, E.-U. Solid-liquid phase equilibria of mixtures of Methyl myristate and Methyl palmitate. J. Chem. Eng. Data 1993, 38, 432–433. [Google Scholar] [CrossRef]
- Costa, M.C.; Boros, L.A.D.; Coutinho, J.A.P.; Krähenbühl, M.A.; Meirelles, A.J.A. Low-temperature behavior of biodiesel: Solid–liquid phase diagrams of binary mixtures composed of fatty acid Methyl esters. Energy Fuels 2011, 25, 3244–3250. [Google Scholar] [CrossRef]
- Costa, M.C.; Boros, L.A.D.; Batista, M.L.S.; Coutinho, J.A.P.; Krähenbühl, M.A.; Meirelles, A.J.A. Phase diagrams of mixtures of Ethyl palmitate with fatty acid Ethyl esters. Fuel 2012, 91, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Benziane, M.; Khimeche, K.; Dahmani, A.; Nezar, S.; Trache, D. Experimental determination and prediction of (solid + liquid) phase equilibria for binary mixtures of heavy alkanes and fatty acids Methyl esters. J. Therm. Anal. Calorim. 2013, 112, 229–235. [Google Scholar] [CrossRef]
- Benziane, M.; Khimeche, K.; Trache, D.; Dahmani, A. Experimental determination and prediction of (solid + liquid) phase equilibria for binary mixtures of aromatic and fatty acids Methyl esters. J. Therm. Anal. Calorim. 2013, 114, 1383–1389. [Google Scholar] [CrossRef]
- Robustillo, M.D.; Barbosa, D.F.; de Almeida Meirelles, A.J.; de Alcântara Pessôa Filho, P. Solid–liquid equilibrium in ternary mixtures of Ethyl laurate, Ethyl palmitate and Ethyl stearate. Fluid Phase Equilibria 2013, 358, 272–281. [Google Scholar] [CrossRef]
- Robustillo, M.D.; Barbosa, D.F.; de Almeida Meirelles, A.J.; de Alcântara Pessôa Filho, P. Solid–liquid equilibrium in ternary mixtures of Ethyl laurate, Ethyl palmitate and Ethyl myristate. Fluid Phase Equilibria 2014, 361, 188–199. [Google Scholar] [CrossRef]
- Robustillo, M.D.; Barbosa, D.F.; de Almeida Meirelles, A.J.; de Alcântara Pessôa Filho, P. Solid–liquid equilibrium of binary and ternary mixtures containing Ethyl oleate, Ethyl myristate and Ethyl stearate. Fluid Phase Equilibria 2014, 370, 85–94. [Google Scholar] [CrossRef]
- Xu, S.; Zou, L.; Ling, X.; Wei, Y.; Zhang, S. Preparation and thermal reliability of Methyl palmitate/Methyl stearate mixture as a novel composite phase change material. Energy Build. 2014, 68, 372–375. [Google Scholar] [CrossRef]
- Boros, L.A.D.; Batista, M.L.S.; Coutinho, J.A.P.; Krähenbühl, M.A.; Meirelles, A.J.A.; Costa, M.C. Binary mixtures of fatty acid Ethyl esters: Solid-liquid equilibrium. Fluid Phase Equilibria 2016, 427, 1–8. [Google Scholar] [CrossRef]
- Liston, L.C.; Farnam, Y.; Krafcik, M.; Weiss, J.; Erk, K.; Tao, B.Y. Binary mixtures of fatty acid methyl esters as phase change materials for low temperature applications. Appl. Therm. Eng. 2016, 96, 501–507. [Google Scholar] [CrossRef]
- Moura-Nickel, C.D.; Contarti da Cruz, L.C.; Igarashi-Mafra, L.; Yamamoto, C.I.; Rolemberg, M.P.; Mafra, M.R. Determination of cloud point in binary and ternary mixtures containing biodiesel and diesel constituents. Part I–Ethyl palmitate, Ethyl stearate and n -hexadecane. Fuel 2016, 180, 442–447. [Google Scholar] [CrossRef]
- Robustillo, M.D.; de Almeida Meirelles, A.J.; de Alcântara Pessôa Filho, P. Solid-liquid equilibrium of binary and ternary systems formed by Ethyl laurate, Ethyl palmitate and dodecylcylohexane: Experimental data and thermodynamic modeling. Fluid Phase Equilibria 2016, 409, 157–170. [Google Scholar] [CrossRef]
- Robustillo, M.D.; Parra, D.F.; de Almeida Meirelles, A.J.; de Alcântara Pessôa Filho, P. Solid–liquid equilibrium of binary and ternary systems formed by Ethyl laurate, Ethyl palmitate and n-decane: Experimental data and thermodynamic modeling. Fluid Phase Equilibria 2016, 426, 83–94. [Google Scholar] [CrossRef]
- Saeed, R.M.; Schlegel, J.P.; Castano, C.; Sawafta, R.; Kuturu, V. Preparation and thermal performance of Methyl palmitate and lauric acid eutectic mixture as phase change material (PCM). J. Energy Storage 2017, 13, 418–424. [Google Scholar] [CrossRef]
- Chabane, S.; Benziane, M.; Khimeche, K.; Trache, D.; Didaoui, S.; Yagoubi, N. Low-temperature behavior of diesel/biodiesel blends. J. Therm. Anal. Calorim. 2018, 131, 1615–1624. [Google Scholar] [CrossRef]
- Maximo, G.J.; Magalhães, A.M.S.; Gonçalves, M.M.; Esperança, E.S.; Costa, M.C.; Meirelles, A.J.A.; Coutinho, J.A.P. Improving the cold flow behavior of Methyl biodiesel by blending it with Ethyl esters. Fuel 2018, 226, 87–92. [Google Scholar] [CrossRef]
- Robustillo, M.D.; Bessa, L.C.B.A.; de Almeida Meirelles, A.J.; de Alcântara Pessôa Filho, P. Experimental data and thermodynamic modeling of solid-liquid equilibrium of binary systems containing representative compounds of biodiesel and fossil fuels: Ethyl esters and n-hexadecane. Fuel 2018, 220, 303–317. [Google Scholar] [CrossRef]
- Bessa, L.C.B.A.; Robustillo, M.D.; Marques, B.C.; Tadini, C.C.; de Alcântara Pessôa Filho, P. Experimental determination and thermodynamic modeling of solid-liquid equilibrium of binary systems containing representative compounds of biodiesel and fossil fuels: Ethyl esters and n-dodecane. Fuel 2019, 237, 1132–1140. [Google Scholar] [CrossRef]
- Bessa, L.C.B.A.; Robustillo, M.D.; de Almeida Meirelles, A.J.; de Alcântara Pessôa Filho, P. (Solid + liquid) Equilibrium of binary mixtures containing Ethyl esters and p-xylene by differential scanning calorimetry. J. Therm. Anal. Calorim. 2019. [Google Scholar] [CrossRef]
- Pauly, J.; Daridon, J.L.; Coutinho, J.A.P.; Dirand, M. Crystallisation of a multiparaffinic wax in normal tetradecane under high pressure. Fuel 2005, 84, 453–459. [Google Scholar] [CrossRef]
- Coutinho, J.A.P. A thermodynamic model for predicting wax formation in jet and diesel fuels. Energy Fuels 2000, 14, 625–631. [Google Scholar] [CrossRef]
- Nazir, H.; Batool, M.; Bolivar Osorio, F.J.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
References | Mixtures | Tran. Reported | Info. Reported | Models |
---|---|---|---|---|
Lutton and Hugenberg [38] (1962) | EP/ES MP/MS ES/MS | Melting | Cloud point data | n/a |
Lobbia et al. [27] (1982) | MS/Octacosane ES/Octacosane | Melting | Cloud point data | n/a |
Lobbia et al. [28] (1983) | Hexadecane/MP Hexadecane/MN Hexadecane/MS Hexadecane/ES | Melting | Cloud point data | n/a |
Dörfler and Pietschmann [39] (1990) | MP/MH MP/MS MP/ME | Melting | DSC curves Cloud point diagram | n/a |
Lockemann and Schlünder [40] (1993) | MM/MP | Melting | SLE data Phase diagram | n/a |
Suppes et al. [29] (2003) | MP/MS MP/ES MP/EP MS/ES EP/MS EP/ES MO/MP MO/MS | Cloud point | DSC curves Cloud point data | n/a |
Collinet and Gmehling [30] (2005) | EM/Benzene EM/p-Xylene | Melting | Cloud point data Cloud point diagram | UNIFAC (Dortmund) |
Imahara et al. [31] (2006) | MP/MO MS/MO MP/MLi MS/MLi MO/MLi MP/MS MM/MP ML/MP | Cloud point | Cloud point diagram | UNIFAC Wilson NRTL UNIQUAC |
Lopes et al. [32] (2008) | MM/MP EL/EM EL/EP EL/ES | Cloud point | Cloud point diagram | UNIQUAC |
Boros et al. [34] (2009) | ECy/ES ECa/ES EL/ES EM/ES EP/ES EO/ES ELi/ES | Cloud point | Cloud point data Cloud point diagram | UNIQUAC |
Costa et al. [41] (2011) | MM/MP MM/MS MP/MS | Melting Eutectic Peritectic Metatectic Other transitions | DSC curves SLE data Phase diagram Tammann plots Optical images | n/a |
Costa et al. [42] (2012) | EP/ECy EP/ECa EP/EL EP/EM EP/EO EP/ELi | Cloud point | Cloud point data Cloud point diagram | UNIQUAC |
Benziane et al. [43] (2013) | Eicosane/MP Tetracosane/MS Octacosane/MS | Melting Eutectic | DSC curves SLE data Phase diagram Tammann plots | UNIFAC (Larsen & Gmehling) UNIQUAC Ideal models |
Benziane et al. [44] (2013) | MS/Byphenyl MS/Naphthalene MP/Byphenyl MP/Naphthalene | Melting Eutectic Other transitions | DSC curves SLE data Phase diagram | NRTL Wilson UNIQUAC Ideal models |
Robustillo et al. [35] (2013) | EO/EL EO/EP EL/EP EO/EL/EP | Melting Eutectic Other transitions | DSC curves SLE data Phase diagram | Flory-Huggins |
Robustillo et al. [45] (2013) | EL/EP EL/ES EP/ES EL/EP/ES | Melting Eutectic Other transitions | DSC curves SLE data Phase diagram Tammann plots | Flory-Huggins |
Carareto et al. [37] (2014) | EL/EM EL/EP EM/EP | Melting | Cloud point data Cloud point diagram | UNIQUAC |
Robustillo et al. [46] (2014) | EL/EM EM/EP EL/EP EL/EP/EM | Melting Eutectic Peritectic Metatectic Other transitions | DSC curves SLE data Phase diagram Tammann plots | Flory-Huggins |
Robustillo et al. [47] (2014) | EO/EM EO/ES EM/ES EO/EM/ES | Melting Eutectic Peritectic Metatectic Other transitions | DSC curves SLE data Phase diagram | Flory-Huggins |
Xu et al. [48] (2014) | MP/MS | Melting | DSC curves SLE data Cycling stability FTIR spectra | n/a |
Boros et al. [49] (2016) | ECa/ECy EL/ECy EM/ECy EL/ECa EM/ECa ECa/EO ECa/ELi EL/ELi EM/ELi | Melting Eutectic Other transitions | Cloud point diagram SLE data Tammann plots | UNIQUAC Ideal models |
Liston et al. [50] (2016) | ML/MM ML/MP | Melting Eutectic Peritectic Metatectic Other transitions | DSC curves SLE data Phase diagram Tammann plots | n/a |
Moura-Nickel et al. [51] (2016) | EP/Hexadecane ES/Hexadecane EP/ES EP/ES/Hexadecane | Melting | Cloud point data Cloud point diagram | n/a |
Robustillo et al. [52] (2016) | EL/DC DC/EP EL/DC/EP | Melting Eutectic Peritectic Other transitions | DSC curves SLE data Phase diagram Tammann plots | Ideal models Flory-Huggins UNIFAC (Dortmund) |
Robustillo et al. [53] (2016) | Decane/EL Decane/EP Decane/EL/EP | Melting Eutectic Peritectic Other transitions | DSC curves SLE data Phase diagram Tammann plots | Ideal models Flory-Huggins UNIFAC (Dortmund) |
Saeed et al. [54] (2017) | MP/LA | Melting | DSC curves SLE data Thermal conduct. Specific heat Thermal diffusivity Density Cycling stability | Ideal models |
Chabane et al. [55] (2018) | EM/Tetradecane EM/Hexadecane EP/Octadecane | Melting Eutectic Peritectic Other transitions | DSC curves SLE data Phase diagram Tammann plots | UNIFAC NRTL Wilson UNIQUAC Ideal models |
Maximo et al. [56] (2018) | EP/MP ES/MP EO/MP | Melting Eutectic Peritectic Metatectic Other transitions | Phase diagram Optical images | n/a |
Robustillo et al. [57] (2018) | EO/Hexadecane EL/Hexadecane EM/Hexadecane EP/Hexadecane ES/Hexadecane | Melting Eutectic Peritectic Metatectic Other transitions | SLE data Phase diagram Tammann plots | UNIFAC (Dortmund) |
Bessa et al. [58] (2019) | EL/Dodecane EM/Dodecane EP/Dodecane ES/Dodecane EO/Dodecane | Melting Eutectic Peritectic Metatectic Other transitions | SLE data Phase diagram Tammann plots | Ideal models UNIFAC (Dortmund) Flory-Huggins |
Bessa et al. [59] (2019) | EL/p-Xylene EM/p-Xylene EP/p-Xylene ES/p-Xylene EO/p-Xylene | Melting Eutectic Other transitions | SLE data Phase diagram Tammann plots | Ideal model UNIFAC (Dortmund) Flory-Huggins |
Branco et al. [36] (2020) | MS/Hexadecane MS/Octadecane MS/Eicosane MP/Eicosane MP/Hexadecane MP/Octadecane | Melting Eutectic Metatectic Other transitions | Phase diagram Tammann plots XRD spectra | Ideal models |
Purpose of the Study. | References |
---|---|
Study of the behavior of the mixture | [38,39,40] |
Data measurement | [30] |
Group interaction statistics | [27,28] |
Characterization of PCM | [29,48,50,54] |
Study of the behavior of biodiesel | [31,32,34,35,36,37,41,42,43,44,45,46,47,49,51,52,53,55,56,57,58,59] |
Mixture | Eutectic Temp. (K) | Eutectic Enthalpy | References | Comments |
---|---|---|---|---|
MP/MLi | 220.00 * | - | [31] | Data of pure MLi |
MS/MLi | 220.00 * | - | [31] | Data of pure MLi |
MO/MLi | 220.00 * | - | [31] | Data of pure MLi |
ELi/ES | 220.68 | - | [34] | Data of pure ELi |
EP/ELi | 220.68 | - | [42] | Data of pure ELi |
ECa/ELi | 220.68 | - | [49] | Data of pure ELi |
EL/ELi | 220.68 | - | [49] | Data of pure ELi |
EM/ELi | 220.68 | - | [49] | Data of pure ELi |
ECa/ECy | 230.35 | 23 * (kJ/mol) | [49] | Data of pure ECy |
ECy/ES | 230.35 | - | [34] | Data of pure ECy |
ECy/EP | 230.35 | - | [42] | Data of pure ECy |
EL/ECy | 230.35 | 27 * (kJ/mol) | [49] | Data of pure ECy |
EM/ECy | 230.35 | 20 * (kJ/mol) | [49] | Data of pure ECy |
MO/MP | 237.15 | 144 (J/g) | [29] | Data of pure MO |
258.00 * | - | [31] | Data of pure MO | |
MO/MS | 237.15 | 144 (J/g) | [29] | Data of pure MO |
258.00 * | - | [31] | Data of pure MO | |
EL/Decane | 243.86 | 27 * (kJ/mol) | [53] | - |
EP/Decane | 244.63 | 28 * (kJ/mol) | [53] | Data of pure Decane |
ECa/EO | 243.89 | - | [49] | - |
EO/p-Xylene | 247.70 | 35 * (kJ/mol) | [59] | - |
EO/Dodecane | 250.00 | 45 * (kJ/mol) | [58] | - |
EL/ECa | 250.25 | 28 * (kJ/mol) | [49] | - |
EO/EL | 250.30 | - | [35] | - |
EO/MP | 251.08 | 29 * (kJ/mol) | [56] | Data of pure EO |
EO/ES | 252.35 | - | [47] | Data of pure EO |
254.61 | - | [34] | Data of pure EO | |
EO/EP | 252.55 | - | [35] | Data of pure EO |
254.67 | - | [42] | Data of pure EO | |
EO/EM | 252.79 | - | [47] | Data of pure EO |
EO/Hexadecane | 254.00 | 47 * (kJ/mol) | [57] | Data of pure EO |
EM/ECa | 252.15 | 35 * (kJ/mol) | [49] | - |
ECa/ES | 254.51 | - | [34] | Data of pure ECa |
ECa/EP | 254.51 | - | [42] | Data of pure ECa |
EL/Dodecane | 259.20 | 26 * (kJ/mol) | [58] | - |
EL/p-Xylene | 260.10 | 27 * (kJ/mol) | [59] | - |
EM/Dodecane | 262.30 | 34 * (kJ/mol) | [58] | - |
EM/Benzene | 264.04 | - | [30] | - |
EP/Dodecane | 264.90 | 43 * (kJ/mol) | [58] | Data of pure dodecane |
ES/Dodecane | 264.90 | 43 * (kJ/mol) | [58] | Data of pure dodecane |
EL/EM | 266.29 | 35 * (kJ/mol) | [46] | - |
267.00 * | - | [32] | - | |
267.90 | - | [37] | - | |
EL/EP | 268.69 | - | [42] | - |
269.16 | - | [35,45,46] | - | |
269.80 | - | [37] | - | |
EL/Hexadecane | 268.80 | 23 * (kJ/mol) | [57] | - |
EL/DC | 269.09 | 37 * (kJ/mol) | [52] | - |
EM/p-Xylene | 269.50 | 25 * (kJ/mol) | [59] | - |
270.13 | - | [30] | - | |
ML/MP | 272.00 * | - | [31] | - |
275.01 | 190.10 (J/g) | [50] | - | |
EL/ES | 272.00 * | - | [32] | - |
272.23 | 40 * (kJ/mol) | [45] | Data of pure EL | |
272.51 | - | [34] | Data of pure EL | |
ML/MM | 273.36 | 174.30 (J/g) | [50] | - |
EM/Tetradecane | 274.10 | 126 * (J/g) | [55] | - |
EP/p-Xylene | 276.10 | 25 * (kJ/mol) | [59] | - |
ES/p-Xylene | 280.30 | 23 * (kJ/mol) | [59] | - |
DC/EP | 281.67 | 42 * (kJ/mol) | [52] | - |
EM/EP | 281.70 | 20 * (kJ/mol) | [46] | - |
282.60 | - | [37] | - | |
282.87 | - | [42] | - | |
EM/Hexadecane | 281.75 | 205 * (J/g) | [55] | - |
282.42 | 42 * (kJ/mol) | [57] | - | |
EM/ES | 282.07 | - | [47] | - |
283.37 | - | [34] | - | |
MM/MP | 284.65 * | - | [40] | - |
285.00 * | - | [31] | - | |
286.52 | 43 * (kJ/mol) | [41] | - | |
287.00 * | - | [32] | - | |
MM/MS | 287.35 | 45 * (kJ/mol) | [41] | - |
EP/Hexadecane | 287.58 | - | [51] | - |
ES/Hexadecane | 288.63 | - | [51] | - |
288.80 | - | [28] | - | |
290.38 | 40 * (kJ/mol) | [57] | - | |
MP/Hexadecane | 289.00 | - | [28] | - |
MS/Hexadecane | 289.00 | - | [36] | - |
289.30 | - | [28] | - | |
MN/Hexadecane | 289.30 | - | [28] | - |
EP/MP | 293.15 | 175 (J/g) | [29] | - |
294.10 | 15 * (kJ/mol) | [56] | - | |
EP/MS | 294.15 | 178 (J/g) | [29] | - |
EP/ES | 294.15 | 209 (J/g) | [29] | - |
294.37 | - | [51] | - | |
294.97 | - | [34] | - | |
EP/Octadecane | 294.45 | 180 * (J/g) | [55] | - |
MP/MS | 295.00 * | - | [31] | - |
297.71 | 41 * (kJ/mol) | [41] | - | |
298.15 | 194 (J/g) | [29] | - | |
298.60 | - | [39] | - | |
MP/Eicosane | 295.00 | - | [36] | - |
295.75 | 225 * (J/g) | [43] | - | |
MP/Octadecane | 296.00 | - | [36] | - |
MP/Naphthalene | 296.30 | - | [44] | - |
MP/Biphenyl | 296.51 | - | [44] | - |
ES/MP | 297.15 | 20 * (kJ/mol) | [56] | - |
298.15 | 171 (J/g) | [29] | - | |
MS/Octadecane | 298.00 | - | [36] | - |
MP/ME | 298.60 | - | [39] | - |
MP/LA | 298.85 | 205.5 (J/g) | [54] | - |
ES/Octacosane | 303.90 | - | [27] | - |
MS/ES | 305.15 | 200 (J/g) | [29] | - |
MS/Biphenyl | 305.24 | - | [44] | - |
MS/Naphthalene | 306.00 | - | [44] | - |
MS/Tetracosane | 307.03 | 125 * (J/g) | [43] | - |
MS/Octacosane | 308.80 | - | [27] | - |
309.31 | 210 * (J/g) | [43] | - |
ELi | EO | ES | EP | EM | EL | ECa | ECy | |
---|---|---|---|---|---|---|---|---|
ECy | - | - | [34] | [42] | [49] | [49] | [49] | |
ECa | [49] | [49] | [34] | [42] | [49] | [49] | ||
EL | [49] | [35] | [32,34,45] | [32,35,37,42,45,46] | [32,37,46] | |||
EM | [49] | [47] | [34,47] | [37,42,46] | ||||
EP | [42] | [35,42] | [29,34,38,45,51] | |||||
ES | [34] | [34,47] | ||||||
EO | - | |||||||
ELi |
ME | MLi | MO | MH | MS | MP | MM | ML | |
---|---|---|---|---|---|---|---|---|
ML | - | - | - | - | - | [31,50] | [50] | |
MM | - | - | - | - | [41] | [31,32,40,41] | ||
MP | [39] | [31] | [29,31] | [39] | [29,31,38,39,41,48] | |||
MS | - | [31] | [29,31] | - | ||||
MH | - | - | - | |||||
MO | - | [31] | ||||||
MLi | - | |||||||
ME |
MP | MS | |
---|---|---|
EP | [29,56] | [29] |
ES | [29,56] | [29,38] |
EO | [56] | - |
EL | EM | EP | ES | EO | MP | MS | MN | |
---|---|---|---|---|---|---|---|---|
Decane | [53] | - | [53] | - | - | - | - | - |
Dodecane | [58] | [58] | [58] | [58] | [58] | - | - | - |
Tetradecane | - | [55] | - | - | - | - | - | - |
Hexadecane | [57] | [55,57] | [51,57] | [28,51,57] | [57] | [28,36] | [28,36] | [28] |
Octadecane | - | - | [55] | - | - | [36] | [36] | - |
Octacosane | - | - | - | [27] | - | - | [27,43] | - |
Eicosane | - | - | - | - | - | [36,43] | [36] | - |
Tetracosane | - | - | - | - | - | - | [43] | - |
Dodecylcyclohexane | [52] | - | [52] | - | - | - | - | - |
Biphenyl | - | - | - | - | - | [44] | [44] | - |
Naphthalene | - | - | - | - | - | [44] | [44] | - |
Benzene | - | [30] | - | - | - | - | - | - |
P-Xylene | [59] | [30,59] | [59] | [59] | [59] | - | - | - |
Lauric acid | - | - | - | - | - | [54] | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubio-Pérez, G.; Muñoz-Rujas, N.; Aguilar, F.; Ravotti, R.; Müller, L.; Montero, E. Evolution of the Study of Phase Diagram of Binary and Ternary Mixtures Involving Fatty Acid Esters. Materials 2021, 14, 369. https://doi.org/10.3390/ma14020369
Rubio-Pérez G, Muñoz-Rujas N, Aguilar F, Ravotti R, Müller L, Montero E. Evolution of the Study of Phase Diagram of Binary and Ternary Mixtures Involving Fatty Acid Esters. Materials. 2021; 14(2):369. https://doi.org/10.3390/ma14020369
Chicago/Turabian StyleRubio-Pérez, Gabriel, Natalia Muñoz-Rujas, Fernando Aguilar, Rebecca Ravotti, Lukas Müller, and Eduardo Montero. 2021. "Evolution of the Study of Phase Diagram of Binary and Ternary Mixtures Involving Fatty Acid Esters" Materials 14, no. 2: 369. https://doi.org/10.3390/ma14020369
APA StyleRubio-Pérez, G., Muñoz-Rujas, N., Aguilar, F., Ravotti, R., Müller, L., & Montero, E. (2021). Evolution of the Study of Phase Diagram of Binary and Ternary Mixtures Involving Fatty Acid Esters. Materials, 14(2), 369. https://doi.org/10.3390/ma14020369