Acoustic Properties of Innovative Concretes: A Review
Abstract
:1. Introduction
2. Transmission of Noise and Sound in Buildings
- Reflects back from the building wall,
- Absorbs within the wall, and
- Transmits through the building wall.
3. AIC Properties
4. Types of Acoustic Insulating Materials
4.1. Sound-Absorbing
4.2. Sound-Insulating
- -
- Rw—sound insulation excluding flanking structures such as longitudinal walls, ceilings, floors, i.e., it is a value obtained during research in a laboratory;
- -
- R’w—sound insulation of the structure, taking into account the flanking elements, i.e., sound transmission along longitudinal side walls, floor slabs.
- The surface weight of the cladding [64,65]. In building acoustics, there is a well-known “law of mass”, according to which doubling the mass of a single-layer fence leads to an increase in sound insulation. This works even more efficiently if the mass is concentrated in the surface layer, as can be seen from [66]. In addition, with an increase in the mass of the cladding, the resonant frequency of the system decreases, this also increases the sound insulation.
- The tightness of the structure. Slots and holes noticeably reduce the sound-insulating ability of the structure due to sound diffraction. For example, if a through hole of 2 × 2 cm in size is made in a 15 m2 partition, then the sound insulation of the partition will decrease by 20 dB [67].
- The presence of a sound absorber inside the frame allows for a multilevel dissipation of sound energy [68]. Thanks to such measures, resonances in the airspace become impossible.
- The depth of the cladding frame. With the distance of the cladding from the wall, the sound insulation grows. This is due to the fact that the resonance frequency of the structure with which the claddings begin to effectively perform sound-reflecting functions is reduced. For example, when doubling the air gap of the tested structure, the increase in sound insulation is reported without increasing the cost of the structure [69,70].
5. Type of Concretes
5.1. Normal Concrete
5.2. Aerated Concrete
5.3. Foam and Porous Concretes
5.4. Crumb Rubber Concrete
5.5. Expanded Polystyrene Concrete
5.6. Fibered Concrete
5.7. Recycled Aggregate Concrete (RCA)
5.8. Mollusk Shell Waste Aggregate Concrete
5.9. Polymer Concrete
5.10. Foam-Glass Based Concrete
6. Building Components
6.1. Reinforced Concrete Wall System
6.2. Steel Plate Wall System
6.3. Masonry Wall System
6.4. Concrete Sandwich Panels
6.5. Reinforced Concrete Slab System
6.6. Steel–Concrete Composite Floorings
7. Conclusions
- New applications of AIC are worth exploring and can be found; for example, EPS-based concrete can be produced as a class of innovative lightweight soundproof concrete.
- To further study the potential use of modified concrete to develop high-sound insulation performance concrete.
- To increase the acoustic insulation performance of AIC in a hardened state using ecofriendly materials.
- To further extend the possible utilization of AIC in the building construction with a sound-insulated system and future sustainable cities with reduced noise and sound transmission.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIC | Acoustic insulation concrete |
CR | Crumb rubber |
CRC | Crumb rubber concrete |
EPS | Polystyrene granules |
FA/GGBS | Fly ash/Ground granulated blast furnace slag |
FC | Foam concrete |
FCR | Fiber crumb rubber |
FGC | Foam glass concrete |
GDL | Brown algae, D-Gluconic acid δ-Lactone |
GFC | Geopolymer foam concrete |
ID | Identifier |
LWA | Lightweight aggregate |
LWC | Lightweight concrete |
NRC | Noise reduction coefficient |
OPC | Ordinary Portland cement |
RC | Reinforced concrete |
Rw | Sound reduction index |
SAA | Sound absorption average |
SAC | Sound absorption coefficients |
TL | Transmission loss |
References
- Patil, M.G.S.; Kulkarni, G.S. Analysis of Noise Pollution in Kolhapur City and Technical Remedy to Reduce Noise Level. Int. J. Eng. Res. 2020, 1, 219–282. [Google Scholar]
- Héroux, M.E.; Braubach, M.; Dramac, D.; Korol, N.; Paunovic, E.; Zastenskaya, I. Summary of ongoing activities on environmental noise and health at the WHO regional office for Europe. Gig. Sanit. 2014, 5, 25–28. [Google Scholar]
- Holmes, N.; Browne, A.; Montague, C. Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Constr. Build. Mater. 2014, 73, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Ibragimov, R.; Fediuk, R. Improving the early strength of concrete: Effect of mechanochemical activation of the cementitious suspension and using of various superplasticizers. Constr. Build. Mater. 2019, 226, 839–848. [Google Scholar] [CrossRef]
- Brookhouser, P.E. Prevention of Noise-Induced Hearing Loss. Prev. Med. (Baltim) 1994, 23, 665–669. [Google Scholar] [CrossRef]
- Cuthbertson, D.; Berardi, U.; Briens, C.; Berruti, F. Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass Bioenergy 2019, 120, 77–83. [Google Scholar] [CrossRef]
- Kim, H.; Hong, J.; Pyo, S. Acoustic characteristics of sound absorbable high performance concrete. Appl. Acoust. 2018, 138, 171–178. [Google Scholar] [CrossRef]
- Vinokur, R. Infrasonic sound pressure in dwellings at the Helmholtz resonance actuated by environmental noise and vibration. Appl. Acoust. 2004, 65, 143–151. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q.; Pei, S.; Song, L.; Zhang, X. Structure-borne noise of railway composite bridge: Numerical simulation and experimental validation. J. Sound Vib. 2015, 353, 378–394. [Google Scholar] [CrossRef]
- Tsunekawa, S.; Kajikawa, Y.; Nohara, S.; Ariizumi, M.; Okada, A. Study on the perceptible level for infrasound. J. Sound Vib. 1987, 112, 15–22. [Google Scholar] [CrossRef]
- Tie, T.S.; Mo, K.H.; Putra, A.; Loo, S.C.; Alengaram, U.J.; Ling, T.C. Sound absorption performance of modified concrete: A review. J. Build. Eng. 2020, 30, 101219. [Google Scholar] [CrossRef]
- Tang, X.; Yan, X. Acoustic energy absorption properties of fibrous materials: A review. Compos. Part A Appl. Sci. Manuf. 2017, 101, 360–380. [Google Scholar] [CrossRef]
- Arenas, C.; Luna-Galiano, Y.; Leiva, C.; Vilches, L.F.; Arroyo, F.; Villegas, R.; Fernández-Pereira, C. Development of a fly ash-based geopolymeric concrete with construction and demolition wastes as aggregates in acoustic barriers. Constr. Build. Mater. 2017, 134, 433–442. [Google Scholar] [CrossRef]
- Palomar, I.; Barluenga, G.; Puentes, J. Lime-cement mortars for coating with improved thermal and acoustic performance. Constr. Build. Mater. 2015, 75, 306–314. [Google Scholar] [CrossRef]
- Keränen, J.; Hakala, J.; Hongisto, V. The sound insulation of façades at frequencies 5–5000 Hz. Build. Environ. 2019, 156, 12–20. [Google Scholar] [CrossRef]
- Møller, H.; Pedersen, C.S. Hearing at low and infrasonic frequencies. Noise Heal. 2004, 6, 37–57. [Google Scholar]
- Hambric, S.A. Structural Acoustics Tutorial—Part 1: Vibrations in Structures. Acoust. Today 2006, 2, 21–33. [Google Scholar] [CrossRef]
- Feduik, R. Reducing permeability of fiber concrete using composite binders. Spec. Top. Rev. Porous Media 2018, 9, 79–89. [Google Scholar] [CrossRef]
- Gramez, A.; Boubenider, F. Acoustic comfort evaluation for a conference room: A case study. Appl. Acoust. 2017, 118, 39–49. [Google Scholar] [CrossRef]
- Holger Rindel, J. Sound Insulation in Buildings; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498700429. [Google Scholar]
- Tata Steel Acoustic performance of pre-finished steel cladding systems. Tata Steel UK Ltd.-2010 2013, 2, 24.
- Mommertz, E. Acoustics and Sound Insulation; Birkhauser Verlag AG: Basel, Switzerland, 2013. [Google Scholar]
- Quartaruolo, G.; Beresford, T. Method to predict airborne flanking through concrete floors with nibs at the base of lightweight walls using ISO 12354-1. In Proceedings of the INTER-NOISE 2017—46th International Congress and Exposition on Noise Control Engineering: Taming Noise and Moving Quiet, Hong Kong, China, 27–30 August 2017. [Google Scholar]
- Fediuk, R.S. Mechanical Activation of Construction Binder Materials by Various Mills. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Yurga, Russia, 26–28 November 2015; Volume 125. [Google Scholar]
- Park, H.S.; Oh, B.K.; Kim, Y.; Cho, T. Low-frequency impact sound transmission of floating floor: Case study of mortar bed on concrete slab with continuous interlayer. Build. Environ. 2015, 94, 793–801. [Google Scholar] [CrossRef]
- Feng, L. Modified impedance tube measurements and energy dissipation inside absorptive materials. Appl. Acoust. 2013, 74, 1480–1485. [Google Scholar] [CrossRef]
- ASTM. E413 Classification for Rating Sound Insulation; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Pérez, M.; Fuente, M. Acoustic design through predictive methods in Cross Laminated Timber (CLT) panel structures for buildings. In Proceedings of the 42nd International Congress and Exposition on Noise Control Engineering 2013, Innsbruck, Austria, 15–18 September 2013. INTER-NOISE 2013: Noise Control for Quality of Life. [Google Scholar]
- Çelik, O.N.; Atiş, C.D. Compactibility of hot bituminous mixtures made with crumb rubber-modified binders. Constr. Build. Mater. 2008, 22, 1143–1147. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Li, H.; Hong, J. Study on metal rubber material’s characteristics of damping and sound absorption. In Proceedings of the ASME Turbo Expo, Berlin, Germany, 9–13 June 2008. [Google Scholar]
- Ghizdăveț, Z.; Ștefan, B.M.; Nastac, D.; Vasile, O.; Bratu, M. Sound absorbing materials made by embedding crumb rubber waste in a concrete matrix. Constr. Build. Mater. 2016, 124, 755–763. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. Sound absorbing properties of materials made of rubber crumbs. J. Acoust. Soc. Am. 2008, 123, 3037. [Google Scholar] [CrossRef]
- Cox, T.J.; D’Antonio, P. Acoustic Absorbers and Diffusers, Theory, Design and Application, Third Edition; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498740999. [Google Scholar]
- Ibrahim, R.A. Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 2008, 314, 371–452. [Google Scholar] [CrossRef]
- Sun, Z.; Shen, Z.; Ma, S.; Zhang, X. Sound absorption application of fiberglass recycled from waste printed circuit boards. Mater. Struct. Constr. 2015, 48, 387–392. [Google Scholar] [CrossRef]
- Öqvist, R.; Ljunggren, F.; Johnsson, R. Walking sound annoyance vs. impact sound insulation from 20 Hz. Appl. Acoust. 2018, 135, 1–7. [Google Scholar] [CrossRef]
- Fediuk, R.; Yushin, A. Composite binders for concrete with reduced permeability. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Tomsk, Russia, 9–11 November 2015; IOP Publishing: Bristol, UK, 2016; Volume 116. [Google Scholar]
- Neithalath, N.; Weiss, J.; Olek, J. Characterizing Enhanced Porosity Concrete using electrical impedance to predict acoustic and hydraulic performance. Cem. Concr. Res. 2006, 36, 2074–2085. [Google Scholar] [CrossRef]
- Asdrubali, F.; Schiavoni, S.; Horoshenkov, K.V. A review of sustainable materials for acoustic applications. Build. Acoust. 2012, 19, 283–311. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, H.K. Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Appl. Acoust. 2010, 71, 607–615. [Google Scholar] [CrossRef]
- Arenas, C.; Leiva, C.; Vilches, L.F.; Cifuentes, H.; Rodríguez-Galán, M. Technical specifications for highway noise barriers made of coal bottom ash-based sound absorbing concrete. Constr. Build. Mater. 2015, 95, 585–591. [Google Scholar] [CrossRef]
- ASTM. C423 Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method 1; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Version, D.; Materials, F.; Materials, S.; Materials, W. Absorption Coefficients α of Building Materials and Finishes More Tables and Charts of Absorption Coefficients. 2020. Available online: http://www.sengpielaudio.com/calculator-RT60Coeff.htm (accessed on 21 October 2020).
- Tiwari, V.; Shukla, A.; Bose, A. Acoustic properties of cenosphere reinforced cement and asphalt concrete. Appl. Acoust. 2004, 65, 263–275. [Google Scholar] [CrossRef]
- Sukontasukkul, P. Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel. Constr. Build. Mater. 2009, 23, 1084–1092. [Google Scholar] [CrossRef]
- Ling, T.C.; Nor, H.M.; Lim, S.K. Using recycled waste tyres in concrete paving blocks. In Proceedings of the Institution of Civil Engineers-Waste and Resource Management; Thomas Telford Ltd.: London, UK, 2010. [Google Scholar]
- Glé, P.; Gourdon, E.; Arnaud, L. Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 2011, 72, 249–259. [Google Scholar] [CrossRef]
- Leiva, C.; Vilches, L.F.; Arenas, C.; Delgado, S.; Fernández-Pereira, C. Potential recycling of bottom and fly ashes in acoustic mortars and concretes. ACI Mater. J. 2012, 109, 529. [Google Scholar]
- Arenas, C.; Leiva, C.; Vilches, L.F.; Cifuentes, H. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers. Waste Manag. 2013, 33, 2316–2321. [Google Scholar] [CrossRef]
- Buratti, C.; Moretti, E.; Belloni, E.; Agosti, F. Development of innovative aerogel based plasters: Preliminary thermal and acoustic performance evaluation. Sustainability 2014, 6, 5839–5852. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015, 62, 97–105. [Google Scholar] [CrossRef]
- Carbajo, J.; Esquerdo-Lloret, T.V.; Ramis, J.; Nadal-Gisbert, A.V.; Denia, F.D. Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. Mater. Constr. 2015, 65, 72. [Google Scholar] [CrossRef] [Green Version]
- Kinnane, O.; Reilly, A.; Grimes, J.; Pavia, S.; Walker, R. Acoustic absorption of hemp-lime construction. Constr. Build. Mater. 2016, 122, 674–682. [Google Scholar] [CrossRef] [Green Version]
- Flores Medina, N.; Flores-Medina, D.; Hernández-Olivares, F. Influence of fibers partially coated with rubber from tire recycling as aggregate on the acoustical properties of rubberized concrete. Constr. Build. Mater. 2016, 129, 25–36. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Q.L.; Brouwers, H.J.H. Acoustic performance and microstructural analysis of bio-based lightweight concrete containing miscanthus. Constr. Build. Mater. 2017, 157, 839–851. [Google Scholar] [CrossRef]
- Gourlay, E.; Glé, P.; Marceau, S.; Foy, C.; Moscardelli, S. Effect of water content on the acoustical and thermal properties of hemp concretes. Constr. Build. Mater. 2017, 139, 513–523. [Google Scholar] [CrossRef]
- Carbajo, J.; Esquerdo-Lloret, T.V.; Ramis, J.; Nadal-Gisbert, A.V.; Denia, F.D. Acoustic modeling of perforated concrete using the dual porosity theory. Appl. Acoust. 2017, 115, 150–157. [Google Scholar] [CrossRef]
- Stolz, J.; Boluk, Y.; Bindiganavile, V. Mechanical, thermal and acoustic properties of cellular alkali activated fly ash concrete. Cem. Concr. Compos. 2018, 94, 24–32. [Google Scholar] [CrossRef]
- Mastali, M.; Kinnunen, P.; Isomoisio, H.; Karhu, M.; Illikainen, M. Mechanical and acoustic properties of fiber-reinforced alkali-activated slag foam concretes containing lightweight structural aggregates. Constr. Build. Mater. 2018, 187, 371–381. [Google Scholar] [CrossRef]
- Oancea, I.; Bujoreanu, C.; Budescu, M.; Benchea, M.; Grădinaru, C.M. Considerations on sound absorption coefficient of sustainable concrete with different waste replacements. J. Clean. Prod. 2018, 203, 301–312. [Google Scholar] [CrossRef]
- Fernea, R.; Manea, D.L.; Plesa, L.; Iernutan, R.; Dumitran, M. Acoustic and thermal properties of hemp-cement building materials. Procedia Manuf. 2019, 32, 208–215. [Google Scholar] [CrossRef]
- Mhaya, A.M.; Huseien, G.F.; Abidin, A.R.Z.; Ismail, M. Long-term mechanical and durable properties of waste tires rubber crumbs replaced GBFS modified concretes. Constr. Build. Mater. 2020, 256, 119505. [Google Scholar] [CrossRef]
- Neves, E.; Sousa, A.; Gibbs, B.M. Low frequency impact sound transmission in dwellings through homogeneous concrete floors and floating floors. Appl. Acoust. 2011, 72, 177–189. [Google Scholar] [CrossRef]
- Yang, Z.; Dai, H.M.; Chan, N.H.; Ma, G.C.; Sheng, P. Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 2010, 96, 041906. [Google Scholar] [CrossRef]
- Tolstoy, A.D.; Lesovik, V.S.; Glagolev, E.S.; Krymova, A.I. Synergetics of hardening construction systems. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Azkorra, Z.; Pérez, G.; Coma, J.; Cabeza, L.F.; Bures, S.; Álvaro, J.E.; Erkoreka, A.; Urrestarazu, M. Evaluation of green walls as a passive acoustic insulation system for buildings. Appl. Acoust. 2015, 89, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Akishita, S.; Mitani, A.; Uchida, H.; Shioda, M. Acoustically evaluating measurement of active insulation panel of floor impact noise. In Proceedings of the International Congress on Noise Control Engineering, Rio de Janeiro, Brazil, 7–10 August 2005. [Google Scholar]
- Maa, D.-Y. Potential of microperforated panel absorber. J. Acoust. Soc. Am. 1998, 104, 2861–2866. [Google Scholar] [CrossRef]
- Park, S.W.; Lee, I.H.; Ko, K.I.; Lee, E.T. Evaluation of the pull-out strength of connections with roof cladding using honeycomb panels with cool roof performance capacity. Int. J. Steel Struct. 2016, 16, 505–516. [Google Scholar] [CrossRef]
- Vatin, N.I.; Pestryakov, I.I.; Kiski, S.S.; Teplova, Z.S. Influence of the geometrical values of hollowness on the physicotechnical characteristics of the concrete vibropressed wall stones. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014. [Google Scholar]
- Ayzenshtadt, A.; Lesovik, V.; Frolova, M.; Tutygin, A.; Danilov, V. Nanostructured wood mineral composite. Procedia Eng. 2015, 117, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, N.; Ramamurthy, K. Structure and properties of aerated concrete: A review. Cem. Concr. Compos. 2000, 22, 321–329. [Google Scholar] [CrossRef]
- Kwon, H.B.; Lee, C.W.; Jun, B.S.; Yun, J.D.; Weon, S.Y.; Koopman, B. Recycling waste oyster shells for eutrophication control. Resour. Conserv. Recycl. 2004, 41, 75–82. [Google Scholar] [CrossRef]
- Laukaitis, A.; Fiks, B. Acoustical properties of aerated autoclaved concrete. Appl. Acoust. 2006, 67, 284–296. [Google Scholar] [CrossRef]
- Luna-Galiano, Y.; Leiva, C.; Arenas, C.; Fernández-Pereira, C. Fly ash based geopolymeric foams using silica fume as pore generation agent. Physical, mechanical and acoustic properties. J. Non. Cryst. Solids 2018, 500, 196–204. [Google Scholar] [CrossRef]
- ISO. ISO 10534-2:1998—Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- Wu, J.; Zhang, Z.; Zhang, Y.; Li, D. Preparation and characterization of ultra-lightweight foamed geopolymer (UFG) based on fly ash-metakaolin blends. Constr. Build. Mater. 2018, 168, 771–779. [Google Scholar] [CrossRef]
- Jones, M.R.; Ozlutas, K.; Ouzounidou, A.; Rathbone, R.F. Behaviour of PC-CSA-FA Blends in Foamed Concrete. In Proceedings of the Conference World Coal Ash Conference, Lexington, MA, USA, 22–25 April 2013. [Google Scholar]
- Park, S.B.; Seo, D.S.; Lee, J. Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio. Cem. Concr. Res. 2005, 35, 1846–1854. [Google Scholar] [CrossRef]
- Erofeev, V.T.; Makridin, N.I.; Maksimova, I.N. Mechanical and acoustic behavior of modified structures of a cement stone of different age. Izv. Vyss. Uchebnykh Zaved. Seriya Teknol. Tekst. Promyshlennosti 2019, 4, 74–79. [Google Scholar]
- Provis, J.L.; Myers, R.J.; White, C.E.; Rose, V.; Van Deventer, J.S.J. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem. Concr. Res. 2012, 42, 855–864. [Google Scholar] [CrossRef]
- Blanco, F.; Garcı’a, P.; Mateos, P.; Ayala, J. Characteristics and properties of lightweight concrete manufactured with cenospheres. Cem. Concr. Res. 2000, 30, 1715–1722. [Google Scholar] [CrossRef]
- Luo, X.; Li, W.; Jin, X.; Zeng, L. Effects of porosity and pore size on sound absorption characteristic of ceramsite porous material. J. Chinese Ceram. Soc. 2011, 39, 158–163. [Google Scholar]
- Amran, M.; Debbarma, S.; Ozbakkaloglu, T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 2021, 270, 121857. [Google Scholar] [CrossRef]
- Guo, Y.C.; Zhang, J.H.; Chen, G.M.; Xie, Z.H. Compressive behaviour of concrete structures incorporating recycled concrete aggregates, rubber crumb and reinforced with steel fibre, subjected to elevated temperatures. J. Clean. Prod. 2014, 72, 193–203. [Google Scholar] [CrossRef]
- Lesovik, V.S.; Pershina, I.L. Acoustic Factor in the Formation of Architectural Space. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Zawiercie, Poland, 26–29 September 2018. [Google Scholar]
- Paje, S.E.; Bueno, M.; Terán, F.; Miró, R.; Pérez-Jiménez, F.; Martínez, A.H. Acoustic field evaluation of asphalt mixtures with crumb rubber. Appl. Acoust. 2010, 71, 578–582. [Google Scholar] [CrossRef]
- Lesovik, V.S.; Bessonov, I.V.; Bulgakov, B.I.; Larsen, O.A.; Puchka, O.V.; Vaysera, S.S. Approach on Improving the Performance of Thermal Insulating and Acoustic Glass Composites. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Zawiercie, Poland, 26–29 September 2018. [Google Scholar]
- Factors Influencing Acoustic Performance of Sound Absorptive Materials. Aust. J. Basic Appl. Sci. 2009, 3, 4610–4617.
- Wang, X.; Chin, C.S.; Xia, J. Material characterization for sustainable concrete paving blocks. Appl. Sci. 2019, 9, 1197. [Google Scholar] [CrossRef] [Green Version]
- Hamoush, S.; Abu-Lebdeh, T.; Picornell, M.; Amer, S. Development of sustainable engineered stone cladding for toughness, durability, and energy conservation. Constr. Build. Mater. 2011, 25, 4006–4016. [Google Scholar] [CrossRef]
- Najim, K.B.; Hall, M.R. Crumb rubber aggregate coatings/pre-treatments and their effects on interfacial bonding, air entrapment and fracture toughness in self-compacting rubberised concrete (SCRC). Mater. Struct. Constr. 2013, 46, 2029–2043. [Google Scholar] [CrossRef]
- Richardson, A.E.; Coventry, K.A.; Ward, G. Freeze/thaw protection of concrete with optimum rubber crumb content. J. Clean. Prod. 2012, 23, 96–103. [Google Scholar] [CrossRef] [Green Version]
- Lesovik, V.S.; Elistratkin, M.Y.; Glagolev, E.S.; Voronov, V.V.; Absimetov, M.V. Non-autoclaved aerated concrete on the basis of composite binder using technogenic raw materials. Mater. Sci. Forum 2018, 945, 205–211. [Google Scholar] [CrossRef]
- Wakefield Acoustics Ltd. City of Vancouver Noise Control Manual City of Vancouver Noise Control Manual; Wakefield Acoustics Ltd., Engineering Services: Vancouver, BC, Canada, 2005. [Google Scholar]
- Rindel, J.H. Acoustic Quality and Sound Insulation between Dwellings. Build. Acoust. 1998, 5, 291–301. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J.; Chen, L.Z. Experimental study of lightweight expanded polystyrene aggregate concrete containing silica fume and polypropylene fibers. J. Shanghai Jiaotong Univ. 2010, 15, 129–137. [Google Scholar] [CrossRef]
- Sikora, J.; Turkiewicz, J. Sound absorption coefficients of granular materials. Mech. Control 2010, 29, 149–157. [Google Scholar]
- Olukunle, B.G.; Uche, N.B.; Efomo, A.O.; Adeyemi, G.A.; Joshua, J.K. Data on acoustic behaviour of coconut fibre-reinforced concrete. Data Br. 2018, 21, 1004–1007. [Google Scholar] [CrossRef]
- Zulkifli, R.; Mohd Nor, M.J.; Mat Tahir, M.F.; Ismail, A.R.; Nuawi, M.Z. Acoustic properties of multi-layer coir fibres sound absorption panel. J. Appl. Sci. 2008, 8, 3709–3714. [Google Scholar] [CrossRef] [Green Version]
- Lesovik, V.; Voronov, V.; Glagolev, E.; Fediuk, R.; Alaskhanov, A.; Amran, M.; Murali, G.; Baranov, A. Improving the behaviors of foam concrete through the use of composite binder. J. Build. Eng. 2020, 13, 101414. [Google Scholar] [CrossRef]
- Klyuev, S.V.; Klyuev, A.V.; Khezhev, T.A.; Pukharenko, Y.V. High-strength fine-grained fiber concrete with combined reinforcement by fiber. J. Eng. Appl. Sci. 2018, 13, 6407–6412. [Google Scholar]
- Kim, H.K.; Jeon, J.H.; Lee, H.K. Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Constr. Build. Mater. 2012, 29, 193–200. [Google Scholar] [CrossRef]
- Navacerrada, M.A.; Díaz, C.; Pedrero, A.; García, L.E. Acoustic properties of aluminium foams. Mater. Constr. 2008, 58, 85–98. [Google Scholar]
- Arenas, C.; Leiva, C.; Vilches, L.F.; González Ganso, J.A. Approaching a methodology for the development of a multilayer sound absorbing device recycling coal bottom ash. Appl. Acoust. 2017, 115, 81–87. [Google Scholar] [CrossRef]
- Parker, G. Effective Noise Barrier Design and Specification Chair CEN TC226/WG6/TG1 for Road Traffic Noise reducing Devices. In Proceedings of the Acoustics, Christchurch, New Zealand, 20–22 November 2006. [Google Scholar]
- Lesovik, V.; Volodchenko AFediuk, R.; Aman, M.; Timokhin, R. Enhancing performances of clay masonry materials based on nanosize mine waste. Constr. Build. Mater. 2021, 269, 121333. [Google Scholar] [CrossRef]
- Wang, C.N.; Torng, J.H. Experimental study of the absorption characteristics of some porous fibrous materials. Appl. Acoust. 2001, 62, 447–459. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, N. Carbonized and Activated Non-wovens as High-Performance Acoustic Materials: Part I Noise Absorption. Text. Res. J. 2007, 77, 785–791. [Google Scholar] [CrossRef]
- Sun, F.; Chen, H.; Wu, J.; Feng, K. Sound absorbing characteristics of fibrous metal materials at high temperatures. Appl. Acoust. 2010, 71, 221–235. [Google Scholar] [CrossRef]
- Kino, N. A comparison of two acoustical methods for estimating parameters of glass fibre and melamine foam materials. Appl. Acoust. 2012, 73, 590–603. [Google Scholar] [CrossRef]
- Lippitz, N.; Rösler, J.; Hinze, B. Potential of metal fibre felts as passive absorbers in absorption silencers. Metals 2013, 3, 150–158. [Google Scholar] [CrossRef]
- Prabhakaran, S.; Krishnaraj, V.; Senthil Kumar, M.; Zitoune, R. Sound and vibration damping properties of flax fiber reinforced composites. Procedia Eng. 2014, 97, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, Y.; Chen, T.; Ying, Z. Research on the sound absorption characteristics of porous metal materials at high sound pressure levels. Adv. Mech. Eng. 2015, 7, 1687814015575429. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Chen, Z.; Fu, R.; Li, Y. Sound insulation properties of sandwich structures on glass fiber felts. Fibers Polym. 2015, 16, 1568–1577. [Google Scholar] [CrossRef]
- Kim, B.S.; Cho, S.J.; Min, D.K.; Park, J. Sound absorption structure in helical shapes made using fibrous paper. Compos. Struct. 2015, 134, 90–94. [Google Scholar] [CrossRef]
- Lippitz, N.; Blech, C.; Langer, S.; Rösler, J. Identification of material parameters for the simulation of acoustic absorption of fouled sintered fiber felts. Materials 2016, 9, 709. [Google Scholar] [CrossRef] [Green Version]
- Moretti, E.; Belloni, E.; Agosti, F. Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization. Appl. Energy 2016, 169, 421–432. [Google Scholar] [CrossRef]
- Wang, R.; Yan, R.; Lou, C.W.; Lin, J.H. Characterization of acoustic-absorbing inter/intra-ply hybrid laminated composites under dynamic loading. Fibers Polym. 2016, 17, 439–452. [Google Scholar] [CrossRef]
- Yang, Y.; Li, B.; Chen, Z.; Sui, N.; Chen, Z.; Saeed, M.U.; Li, Y.; Fu, R.; Wu, C.; Jing, Y. Acoustic properties of glass fiber assembly-filled honeycomb sandwich panels. Compos. Part B Eng. 2016, 96, 281–286. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, J.; Tang, H.; Wang, J.; Ao, Q.; Bao, T.; Song, W. Gradient-structural optimization of metal fiber porous materials for sound absorption. Powder Technol. 2016, 301, 1235–1241. [Google Scholar] [CrossRef]
- ISO. ISO 354. International Organization for Standardization Measurement of Sound Absorption in a Reverberation Room; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- Peceño, B.; Arenas, C.; Alonso-Fariñas, B.; Leiva, C. Substitution of Coarse Aggregates with Mollusk-Shell Waste in Acoustic-Absorbing Concrete. J. Mater. Civ. Eng. 2019, 31, 04019077. [Google Scholar] [CrossRef]
- Paridah, M.T.; Juliana, A.H.; El-Shekeil, Y.A.; Jawaid, M.; Alothman, O.Y. Measurement of mechanical and physical properties of particleboard by hybridization of kenaf with rubberwood particles. Meas. J. Int. Meas. Confed. 2014, 56, 70–80. [Google Scholar] [CrossRef]
- Zhong, R.; Xu, M.; Vieira Netto, R.; Wille, K. Influence of pore tortuosity on hydraulic conductivity of pervious concrete: Characterization and modeling. Constr. Build. Mater. 2016, 125, 1158–1168. [Google Scholar] [CrossRef]
- König, J.; Lopez-Gil, A.; Cimavilla-Roman, P.; Rodriguez-Perez, M.A.; Petersen, R.R.; Østergaard, M.B.; Iversen, N.; Yue, Y.; Spreitzer, M. Synthesis and properties of open- and closed-porous foamed glass with a low density. Constr. Build. Mater. 2020, 247, 118574. [Google Scholar] [CrossRef]
- Kyaw Oo D’Amore, G.; Caniato, M.; Travan, A.; Turco, G.; Marsich, L.; Ferluga, A.; Schmid, C. Innovative thermal and acoustic insulation foam from recycled waste glass powder. J. Clean. Prod. 2017, 165, 1306–1315. [Google Scholar] [CrossRef]
- Mohajerani, A.; Vajna, J.; Cheung, T.H.H.; Kurmus, H.; Arulrajah, A.; Horpibulsuk, S. Practical recycling applications of crushed waste glass in construction materials: A review. Constr. Build. Mater. 2017, 156, 443–467. [Google Scholar] [CrossRef]
- Meyer, C. The greening of the concrete industry. Cem. Concr. Compos. 2009, 31, 601–605. [Google Scholar] [CrossRef]
- Kamseu, E.; Ponzoni, C.; Tippayasam, C.; Taurino, R.; Chaysuwan, D.; Sglavo, V.M.; Thavorniti, P.; Leonelli, C. Self-compacting geopolymer concretes: Effects of addition of aluminosilicate-rich fines. J. Build. Eng. 2016, 5, 211–221. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Monfort, E.; Querol, X.; Llaudis, A.S.; Font, O.; Moreno, N.; Ten, F.J.G.; Izquierdo, M. Utilization of coal fly ash from a Chinese power plant for manufacturing highly insulating foam glass: Implications of physical, mechanical properties and environmental features. Constr. Build. Mater. 2018, 175, 64–76. [Google Scholar] [CrossRef]
- Klyuev, S.V.; Klyuev, A.V.; Vatin, N.I. Fiber concrete for the construction industry. Mag. Civ. Eng. 2018, 84, 41–47. [Google Scholar]
- Yoo, D.Y.; Banthia, N.; Yoon, Y.S. Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Eng. Struct. 2016, 111, 246–262. [Google Scholar] [CrossRef]
- Kongsong, P.; Sikong, L.; Niyomwas, S.; Rachpech, V. Photocatalytic antibacterial performance of glass fibers thin film coated with N-doped SnO2/TiO2. Sci. World, J. 2014, 1, 869706. [Google Scholar]
- Joshi, S.V.; Drzal, L.T.; Mohanty, A.K.; Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 2004, 35, 371–376. [Google Scholar] [CrossRef]
- Hesky, D.; Aneziris, C.G.; Groß, U.; Horn, A. Water and waterglass mixtures for foam glass production. Ceram. Int. 2015, 41, 12604–12613. [Google Scholar] [CrossRef]
- Karandashova, N.S.; Goltsman, B.M.; Yatsenko, E.A. Analysis of Influence of Foaming Mixture Components on Structure and Properties of Foam Glass. IOP Conf. Ser. Mater. Sci. Eng. 2017, 262, 012020. [Google Scholar] [CrossRef]
- Qu, Y.N.; Xu, J.; Su, Z.G.; Ma, N.; Zhang, X.Y.; Xi, X.Q.; Yang, J.L. Lightweight and high-strength glass foams prepared by a novel green spheres hollowing technique. Ceram. Int. 2016, 42, 2370–2377. [Google Scholar] [CrossRef]
- Petersen, R.R.; König, J.; Yue, Y. The mechanism of foaming and thermal conductivity of glasses foamed with MnO2. J. Non. Cryst. Solids 2015, 425, 74–82. [Google Scholar] [CrossRef]
- König, J.; Petersen, R.R.; Yue, Y. Fabrication of highly insulating foam glass made from CRT panel glass. Ceram. Int. 2015, 41, 9793–9800. [Google Scholar] [CrossRef]
- König, J.; Petersen, R.R.; Yue, Y. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses. J. Non. Cryst. Solids 2016, 447, 190–197. [Google Scholar] [CrossRef]
- Fernandes, H.R.; Andreola, F.; Barbieri, L.; Lancellotti, I.; Pascual, M.J.; Ferreira, J.M.F. The use of egg shells to produce Cathode Ray Tube (CRT) glass foams. Ceram. Int. 2013, 39, 9071–9078. [Google Scholar] [CrossRef]
- Huo, W.; Yan, S.; Wu, J.M.; Liu, J.; Chen, Y.; Qu, Y.; Tang, X.; Yang, J. A novel fabrication method for glass foams with small pore size and controllable pore structure. J. Am. Ceram. Soc. 2017, 100, 5502–5511. [Google Scholar] [CrossRef]
- König, J.; Nemanič, V.; Žumer, M.; Petersen, R.R.; Østergaard, M.B.; Yue, Y.; Suvorov, D. Evaluation of the contributions to the effective thermal conductivity of an open-porous-type foamed glass. Constr. Build. Mater. 2019, 214, 337–343. [Google Scholar] [CrossRef]
- Xu, Q.; Zeng, J.; Li, X.; Xu, J.; Liu, X. 3D nano-macroporous structured TiO2-foam glass as an efficient photocatalyst for organic pollutant treatment. RSC Adv. 2016, 6, 51888–51893. [Google Scholar] [CrossRef]
- Rincón, A.; Giacomello, G.; Pasetto, M.; Bernardo, E. Novel ‘inorganic gel casting’ process for the manufacturing of glass foams. J. Eur. Ceram. Soc. 2017, 37, 2227–2234. [Google Scholar] [CrossRef]
- König, J.; Petersen, R.R.; Yue, Y. Influence of the glass-calcium carbonate mixture’s characteristics on the foaming process and the properties of the foam glass. J. Eur. Ceram. Soc. 2014, 34, 1591–1598. [Google Scholar] [CrossRef]
- Østergaard, M.B.; Petersen, R.R.; König, J.; Bockowski, M.; Yue, Y. Foam glass obtained through high-pressure sintering. J. Am. Ceram. Soc. 2018, 101, 3917–3923. [Google Scholar] [CrossRef]
- Wang, B.; Matsumaru, K.; Yang, J.; Fu, Z.; Ishizaki, K. Mechanical behavior of cellular borosilicate glass with pressurized Ar-filled closed pores. Acta Mater. 2012, 60, 4185–4193. [Google Scholar] [CrossRef]
- König, J.; Petersen, R.R.; Iversen, N.; Yue, Y. Suppressing the effect of cullet composition on the formation and properties of foamed glass. Ceram. Int. 2018, 44, 11143–11150. [Google Scholar] [CrossRef]
- Østergaard, M.B.; Petersen, R.R.; König, J.; Yue, Y. Effect of alkali phosphate content on foaming of CRT panel glass using Mn3O4 and carbon as foaming agents. J. Non. Cryst. Solids 2018, 482, 217–222. [Google Scholar] [CrossRef]
- Østergaard, M.B.; Cai, B.; Petersen, R.R.; König, J.; Lee, P.D.; Yue, Y. Impact of pore structure on the thermal conductivity of glass foams. Mater. Lett. 2019, 250, 72–74. [Google Scholar] [CrossRef]
- Caniato, M.; Bettarello, F.; Taffarel, M. Sound power level of speaking people. Acoustical Society of America 2013, 19, 040026. [Google Scholar]
- Caniato, M.; Bettarello, F.; Fausti, P.; Marsich, L.; Ferluga, A.; Schmid, C. Low frequency noise and disturbance assessment methods: A brief literature overview and a new proposal. Acoustical Society of America 2016, 28, 032001. [Google Scholar]
- Caniato, M.; Bettarello, F.; Schmid, C.; Fausti, P. Assessment criterion for indoor noise disturbance in the presence of low frequency sources. Appl. Acoust. 2016, 113, 22–33. [Google Scholar] [CrossRef]
- Bonfiglio, P.; Pompoli, F. Frequency-dependent mechanical modelling of poro-elastic materials for sound transmission loss simulations. Noise Control Eng. J. 2016, 64, 627–633. [Google Scholar] [CrossRef]
- Bonfiglio, P.; Pompoli, F. Frequency dependent tortuosity measurement by means of ultrasonic tests. In Proceedings of the 14th International Congress on Sound and Vibration 2007, ICSV 2007, Cairns, Australia, 9–12 July 2007. [Google Scholar]
- Di Bella, A.; Granzotto, N.; Pavarin, C. Comparative analysis of thermal and acoustic performance of building elements. In Proceedings of the Forum Acusticum, Krakow, Poland, 7–12 September 2014. [Google Scholar]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Mihai, T.; Iordache, V. Determining the Indoor Environment Quality for an Educational Building. Energy Procedia 2016, 85, 566–574. [Google Scholar] [CrossRef] [Green Version]
- Schiavoni, S.; D’Alessandro, F.; Bianchi, F.; Asdrubali, F. Insulation materials for the building sector: A review and comparative analysis. Renew. Sustain. Energy Rev. 2016, 62, 988–1011. [Google Scholar] [CrossRef]
- Roulet, C.A.; Johner, N.; Foradini, F.; Bluyssen, P.; Cox, C.; De Oliveira Fernandes, E.; Müller, B.; Aizlewood, C. Perceived health and comfort in relation to energy use and building characteristics. Build. Res. Inf. 2006, 34, 467–474. [Google Scholar] [CrossRef]
- Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L.J.; Kim, K.H.; Lieber, C.M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313–1317. [Google Scholar] [CrossRef]
- Ismail, M.R. Quiet environment: Acoustics of vertical green wall systems of the Islamic urban form. Front. Archit. Res. 2013, 2, 162–177. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, B. International proposal for an acoustic classification scheme for dwellings—Background and perspectives. In Proceedings of the INTERNOISE 2014—43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control, Melbourne, Australia, 16–19 November 2014. [Google Scholar]
- Calleri, C.; Astolfi, A.; Shtrepi, L.; Prato, A.; Schiavi, A.; Zampini, D.; Volpatti, G. Characterization of the sound insulation properties of a two-layers lightweight concrete innovative façade. Appl. Acoust. 2019, 145, 267–277. [Google Scholar] [CrossRef]
- Isolamento, R.E.; Di, P. Modulo a getto singolo. ECOSISM Adv. Build. Technol. 2020, 5, 267–277. [Google Scholar]
- Hongisto, V.; Mäkilä, M.; Suokas, M. Satisfaction with sound insulation in residential dwellings—The effect of wall construction. Build. Environ. 2015, 85, 309–320. [Google Scholar] [CrossRef]
- Wittstock, V. Determination of measurement uncertainties in building acoustics by interlaboratory tests. Part 1: Airborne sound insulation. Acta Acust. United Acust. 2015, 101, 88–98. [Google Scholar] [CrossRef]
- Martinović, A.; Mathias, M.; Weissenberg, J.; Van Gool, L. A three-layered approach to facade parsing. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012. [Google Scholar]
- Müller, P.; Zeng, G.; Wonka, P.; Van Gool, L. Image-based procedural modeling of facades. ACM Trans. Graph. 2007, 26, 85. [Google Scholar] [CrossRef]
- Ljunggren, F.; Simmons, C.; Hagberg, K. Findings from the AkuLite project: Correlation between measured vibro—Acoustic parameters and subjective perception in lightweight buildings. In Proceedings of the International Congress and Exposition on Noise Control Engineering, Innsbruck, Austria, 15–18 September 2013. [Google Scholar]
- Moussavi Nadoushani, Z.S.; Akbarnezhad, A.; Ferre Jornet, J.; Xiao, J. Multi-criteria selection of façade systems based on sustainability criteria. Build. Environ. 2017, 121, 67–78. [Google Scholar] [CrossRef]
- Orion-SD Porcelain Stoneware Ventilated Facade. Vent. Facades 2020. Available online: https://orion-sd.ru/raboty/vent-fasad-2 (accessed on 22 August 2020).
- Frazão, C.; Barros, J.; Toledo Filho, R.; Ferreira, S.; Gonçalves, D. Development of sandwich panels combining Sisal Fiber-Cement Composites and Fiber-Reinforced Lightweight Concrete. Cem. Concr. Compos. 2018, 86, 206–223. [Google Scholar] [CrossRef]
- Cuypers, H.; Wastiels, J. Analysis and verification of the performance of sandwich panels with textile reinforced concrete faces. J. Sandw. Struct. Mater. 2011, 13, 589–603. [Google Scholar] [CrossRef]
- Flores-Johnson, E.A.; Li, Q.M. Structural behaviour of composite sandwich panels with plain and fibre-reinforced foamed concrete cores and corrugated steel faces. Compos. Struct. 2012, 94, 1555–1563. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.Y.; Hong, J.Y.; Kim, S.M.; Lee, P.J. Classification of heavy-weight floor impact sounds in multi-dwelling houses using an equal-appearing interval scale. Build. Environ. 2015, 94, 821–828. [Google Scholar] [CrossRef]
- Zhang, B.; Poon, C.S. Sound insulation properties of rubberized lightweight aggregate concrete. J. Clean. Prod. 2018, 172, 3176–3185. [Google Scholar] [CrossRef]
- Lee, S.; Hwang, D.; Park, J.; Jeon, J.Y. Cause and perception of amplitude modulation of heavy-weight impact sounds in concrete wall structures. Build. Environ. 2015, 94, 785–792. [Google Scholar] [CrossRef]
- Abirami, T.; Loganaganandan, M.; Murali, G.; Fediuk, R.; Vickhram Sreekrishna, R.; Vignesh, T.; Januppriya, G.; Karthikeyan, K. Experimental research on impact response of novel steel fibrous concretes under falling mass impact. Constr. Build. Mater. 2019, 222, 447–457. [Google Scholar] [CrossRef]
- Di, J.; Sun, Y.; Yu, K.; Liu, L.; Qin, F. Experimental investigation of shear performance of existing PC hollow slab. Eng. Struct. 2020, 211, 110451. [Google Scholar] [CrossRef]
- Nguyen, H.T.N.; Tan, K.H.; Kanda, T. Experimental and numerical studies on shear behavior of deep prestressed concrete hollow core slabs. In Proceedings of the High Tech Concrete: Where Technology and Engineering Meet, Maastricht, The Netherlands, 12–14 June 2017. [Google Scholar]
- Al-Rubaye, M.; Manalo, A.; Alajarmeh, O.; Ferdous, W.; Lokuge, W.; Benmokrane, B.; Edoo, A. Flexural behaviour of concrete slabs reinforced with GFRP bars and hollow composite reinforcing systems. Compos. Struct. 2020, 236, 111836. [Google Scholar] [CrossRef] [Green Version]
- Rivera, U. Precast Decking System. Cobute Concr. Build. Tech. 2020. Available online: https://www.cobute.co.za/precast-decking-system (accessed on 22 August 2020).
- Ferrante, C.D.O.; de Andrade, S.A.L.; de Lima, L.R.O.; Vellasco, P.C.G. Analytical study and experimental tests on innovative steel-concrete composite floorings. J. Constr. Steel Res. 2020, 168, 105868. [Google Scholar]
- Lawson, M.; Beguin, P.; Obiala, R.; Braun, M. Slim-floor construction using hollow-core and composite decking systems. Steel Constr. 2015, 8, 85–89. [Google Scholar] [CrossRef]
- Lu, X.; Mäkeläinen, P. Slim floor developments in Sweden and Finland. Struct. Eng. Int. J. Int. Assoc. Bridg. Struct. Eng. 1996, 6, 127–129. [Google Scholar] [CrossRef]
- Braun, M.; Hechler, O.; Obiala, R. Untersuchungen zur Verbundwirkung von Betondübeln. Stahlbau 2014, 83, 302–308. [Google Scholar] [CrossRef]
- Braun, M.; Obiala, R.; Odenbreit, C. Analyses of the loadbearing behaviour of deep-embedded concrete dowels, CoSFB. Steel Constr. 2015, 8, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.K.; Chun, S.C.; Kim, S.D. Flexural test of a composite beam using asymmetric steel section with web openings. J. Struct. Eng. 2009, 135, 448–458. [Google Scholar] [CrossRef]
- Huo, B.Y.; D’Mello, C.A. Shear Transferring Mechanisms in a Composite Shallow Cellular Floor Beam with Web Openings. Structures 2017, 9, 134–146. [Google Scholar] [CrossRef]
- Huo, B.Y.; D’Mello, C.A. Push-out tests and analytical study of shear transfer mechanisms in composite shallow cellular floor beams. J. Constr. Steel Res. 2013, 88, 191–205. [Google Scholar] [CrossRef]
- Amran, Y.M.; El-Zeadani, M.; Lee, Y.H.; Lee, Y.Y.; Murali, G.; Feduik, R. Design innovation, efficiency and applications of structural insulated panels: A. review. Structures 2020, 27, 1358–1379. [Google Scholar] [CrossRef]
- Lam, D.; Dai, X.; Kuhlmann, U.; Raichle, J.; Braun, M. Slim-floor construction—Design for ultimate limit state. Steel Constr. 2015, 8, 79–84. [Google Scholar] [CrossRef]
Ref. | Year | Type of Specimen | Descriptions | Density (kg/m3) | α at Octave Frequency (Hz) | NRC | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Percentage (%) | Type of Materials | Size of LWA, mm (Thic. of Specimen, mm) | 250 | 500 | 1000 | 2000 | |||||
[44] | 2004 | Concrete with LWA | 20% | Lightweight cenospheres | 10 to 300 μm (25 mm) | 2310 | 0.04 | 0.10 | 0.21 | 0.17 | 0.13 |
40% | 2250 | 0.05 | 0.11 | 0.23 | 0.21 | 0.15 | |||||
60% | 2180 | 0.05 | 0.10 | 0.11 | 0.12 | 0.11 | |||||
[45] | 2009 | 10% | CR | <4.75 | 2170 | 0.12 | 0.12 | 0.32 | 0.17 | 0.18 | |
20% | 2110 | 0.11 | 0.10 | 0.37 | 0.15 | 0.18 | |||||
[40] | 2010 | - | Expanded shale with 1.0% AE agent | 4–8 | 1254 | 0.08 | 0.24 | 1.00 | – | 0.44 | |
- | Expanded shale with 1.0% AE agent | 8–12 | 1189 | 0.06 | 0.22 | 0.96 | – | 0.41 | |||
[46] | 10% | CR | <4.75 | 2200 | 0.05 | 0.10 | 0.06 | 0.07 | 0.07 | ||
20% | 2100 | 0.07 | 0.08 | 0.09 | 0.10 | 0.09 | |||||
30% | 2000 | 0.12 | 0.13 | 0.11 | – | 0.12 | |||||
[47] | 2011 | Hemp concrete | 10, 15, 75% | Lime | 1060 | 0.4 | 0.48 | – | – | 0.44 | |
[48] | 2012 | Concrete with LWA | 60% | Bottom ash | <10 | 701 | 0.21 | 0.24 | 0.28 | 0.28 | 0.25 |
[49] | 2013 | Mortar with LWA | 80% | 1–10 μm | 1470 | 0.65 | 0.62 | 0.61 | 0.56 | 0.61 | |
[50] | 2014 | Plaster with lightweight | 80% | Insulation plaster and aerogel | −(10 mm) | 300 | 0.03 | 0.08 | 0.06 | – | 0.06 |
[51] | 2015 | Alkali-activated cellular concrete | 5% | Foam dosage | - | 1050 | 0.05 | 0.10 | 0.15 | – | 0.10 |
10% | - | 960 | 0.06 | 0.10 | 0.20 | – | 0.12 | ||||
[52] | Pervious concrete | 1: 5 | Vermiculite | 0.5 to 4 | 640 | 0.10 | 0.21 | 0.78 | 0.32 | 0.35 | |
[53] | 2016 | Hemp concrete | 0.5% and 30% | 30% GGBS and 0.5% ethyl cellulose | - | 522 | – | 0.52 | 0.45 | 0.53 | 0.50 |
30% | GGBS | - | 505 | – | 0.49 | 0.42 | 0.44 | 0.45 | |||
80%, 20%, and 0.5% | Hydrated lime, MK, and methyl cellulose | - | 469 | – | 0.42 | 0.37 | 0.41 | 0.40 | |||
80% and 20% | Hydrated lime, MK | - | 493 | – | 0.46 | 0.39 | 0.44 | 0.43 | |||
[54] | Concrete with LWA | 20% | CR | 4–8 | 2264 | 0.06 | – | – | – | 0.05 | |
40% | 2156 | – | 0.45 | – | – | 0.04 | |||||
60% | 2026 | – | 0.54 | – | – | 0.06 | |||||
80% | 1858 | 0.06 | – | – | – | 0.05 | |||||
20% | FCR | 2313 | – | 0.30 | – | – | 0.05 | ||||
40% | 2139 | – | – | 0.34 | – | 0.06 | |||||
60% | 2032 | – | – | 0.43 | – | 0.10 | |||||
80% | 1851 | – | – | – | 0.23 | 0.20 | |||||
[55] | 2017 | 10% | Miscanthus fibers | 2–4 | 1504 | 0.06 | 0.20 | 0.25 | 0.07 | 0.15 | |
20% | 1406 | 0.02 | 0.06 | 0.36 | 0.00 | 0.11 | |||||
[13] | Geopolymer concrete with LWA | 80% | C and D waste | <10 | 1510 | 0.00 | 0.06 | 0.85 | 0.23 | 0.29 | |
[56] | Hemp concrete | - | Hemp shiv | 5 | 590 | 0.13 | 0.28 | 0.91 | 0.48 | 0.45 | |
[57] | Pervious concrete | 50% | Arlite | 700 | 0.08 | 0.12 | 0.46 | 0.23 | 0.22 | ||
[58] | 2018 | Alkali-activated cellular concrete | 20–50% | Fly ash and 3:1 by mass. Adequate foam | - | 940 | – | 0.25 | – | – | 0.19 |
1130 | – | 0.23 | – | – | 0.24 | ||||||
1310 | – | 0.18 | – | – | 0.11 | ||||||
[59] | 35% | Foam dosage | - | 600 | 0.20 | 0.10 | 0.40 | 0.94 | 0.41 | ||
30% | - | 720 | 0.18 | 0.16 | 0.54 | 0.78 | 0.42 | ||||
25% | - | 820 | 0.03 | 0.12 | 0.43 | 0.85 | 0.36 | ||||
[60] | 2019 | Concrete with LWA | 50% | Polystyrene granules | 1–4 | 1810 | 0.16 | – | – | – | 0.18 |
50% | Polyethylene terephthalate | 1–4 | 2047 | 0.22 | – | – | – | 0.18 | |||
50% | Corn cob granules | size 1–6 | 1775 | 0.20 | – | – | – | 0.19 | |||
[61] | Hemp concrete | 1:2 | Hemp shiv | - | 605 | 0.13 | 0.31 | 0.81 | 0.48 | 0.43 | |
1:2 | Hemp fiber | - | 407 | 0.19 | 0.63 | 0.83 | 0.71 | 0.59 | |||
[62] | 2020 | GGBS-based concrete | 5–30% | GGBS as coarse and fine aggregates | 1–4 and 4–8 | 419–995 | - | 0.54 | - | - | 0.24 |
[61] | Foam-glass concrete | 92% | Foam bubbles | 0.5–1.35 | 107–143 | - | - | 0.57 | 0.67 | 0.56 |
Type of Concretes | Maximum Coefficient of Sound Absorption | Level of Sound Reflection | Maximum Decrease in Sound Level at Frequencies, Hz | Refs. |
---|---|---|---|---|
Normal concrete | 0.05–0.10 | High | 3000–5500 | [52,57] |
Aerated concrete | 0.15–0.75 | Low | 250–2500 | [44,72] |
Foamed concrete | 0.13–0.50 | Low | 100–2000 | [51,61] |
Crumb rubber concrete | 0.30–0.70 | Medium | 400–2500 | [3,54] |
Polyurethane concrete | 0.08–1.0 | Low | 150–1400 | [55,60] |
Coal bottom ash concrete | 0.05–0.31 | Medium | 500–3500 | [41,58] |
Coconut fibers concrete | 0.42–0.80 | Medium | 1250–3200 | [59] |
Recycled aggregate concrete | 0.01–1.0 | Medium | 1500–2000 | [60] |
Oyster shell waste aggregate concrete | 0.43–0.53 | Low | 1000–1800 | [73] |
Polymer concrete | 0.90–1.0 | Low | 64–1600 | [55] |
Glass-based concrete | 0.20–0.37 | High | 250–3150 | [61] |
Type of Material | SACs |
---|---|
Concrete | 0.02–0.06 |
Hardwood | 0.3 |
Unpainted block-work | 0.02–0.05 |
Type of Fiber | Main Findings | Refs. |
---|---|---|
Rock wool | Similar acoustic behavior to glass wool | [108] |
Carbon and glass fiber | Composites made with carbon fiber has higher SAC relative to glass fibered composite | [109] |
Fibrous metal materials | Used to make silencers in cars | [110] |
Glass wool | Comparison made between the Bies–Allard and Kino–Allard’s acoustic methods | [111] |
Metal fiber felts | Used as an absorption material in silencers | [112] |
Glass fiber-reinforced epoxy | Investigated the acoustic absorption properties of different composites | [113] |
Sintered fibrous metals | Determined anisotropic acoustic properties of of sintered fibrous metals | [35] |
Glass fiber recycled from deserted print circuit boards | Utilized for noise-reducing applications | [114] |
Metal fiber | Absorption properties depends on the material properties such as the diameter, porosity, and thickness of fiber | [115] |
Glass fiber felt | The direction of sound incidence and structure of the composite affects the sound insulation | [115] |
Carbon fiber | Increases the sound absorption coefficient of a helical-shaped composite sound absorber | [116] |
Fouled sintered fiber felts | Depends on the flow resistivity measurements | [117] |
Basalt fiber | Panels shows a good absorption coefficient that increases with thickness and density | [118] |
Carbon fiber | Composites made with carbon fibers shows higher absorption coefficients than Kevlar fiber at low to medium frequencies | [119] |
Glass fiber-filled honeycomb sandwich panels | Improves the absorption coefficient at frequencies below 4.5 kHz | [120] |
Metal fiber porous materials | Porous material can effectively enhance the sound absorption coefficient | [121] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fediuk, R.; Amran, M.; Vatin, N.; Vasilev, Y.; Lesovik, V.; Ozbakkaloglu, T. Acoustic Properties of Innovative Concretes: A Review. Materials 2021, 14, 398. https://doi.org/10.3390/ma14020398
Fediuk R, Amran M, Vatin N, Vasilev Y, Lesovik V, Ozbakkaloglu T. Acoustic Properties of Innovative Concretes: A Review. Materials. 2021; 14(2):398. https://doi.org/10.3390/ma14020398
Chicago/Turabian StyleFediuk, Roman, Mugahed Amran, Nikolai Vatin, Yuriy Vasilev, Valery Lesovik, and Togay Ozbakkaloglu. 2021. "Acoustic Properties of Innovative Concretes: A Review" Materials 14, no. 2: 398. https://doi.org/10.3390/ma14020398
APA StyleFediuk, R., Amran, M., Vatin, N., Vasilev, Y., Lesovik, V., & Ozbakkaloglu, T. (2021). Acoustic Properties of Innovative Concretes: A Review. Materials, 14(2), 398. https://doi.org/10.3390/ma14020398