State-of-the-Art Review of Capabilities and Limitations of Polymer and Glass Fibers Used for Fiber-Reinforced Concrete
Abstract
:1. Introduction
1.1. FRC with Micro and Macrofibers
1.2. Fiber Material Types
1.2.1. Polypropylene Fibers
1.2.2. Nylon Fibers
1.2.3. Polyvinyl Alcohol Fibers
1.2.4. Polyolefin Fibers
1.2.5. Carbon Fibers
1.2.6. Polyethylene Fibers
1.2.7. Polyester Fibers
1.2.8. Acrylic Fibers
1.2.9. Aramid Fibers
1.2.10. Glass Fibers
1.2.11. Silica Glass Fibers
1.2.12. Basalt Glass Fibers
1.3. Scope and Organization
2. Stability and Bond
2.1. Polypropylene Fibers
2.2. Nylon Fibers
2.3. Polyvinyl Alcohol Fibers
2.4. Polyolefin Fibers
2.5. Carbon Fibers
2.6. Polyethylene Fibers
2.7. Polyester Fibers
2.8. Acrylic Fibers
2.9. Aramid Fibers
2.10. Glass Fibers
2.10.1. Silica Glass Fibers
2.10.2. Basalt Glass Fibers
3. Workability
3.1. Polypropylene Fibers
3.2. Nylon Fibers
3.3. Polyvinyl Alcohol Fibers
3.4. Polyolefin Fibers
3.5. Carbon Fibers
3.6. Polyethylene Fibers
3.7. Polyester Fibers
3.8. Acrylic Fibers
3.9. Aramid Fibers
3.10. Glass Fibers
3.10.1. Silica Glass Fibers
3.10.2. Basalt Glass Fibers
4. Pre-Peak Mechanical Properties
4.1. Polypropylene Fibers
4.2. Nylon Fibers
4.3. Polyvinyl Alcohol Fibers
4.4. Polyolefin Fibers
4.5. Carbon Fibers
4.6. Polyethylene Fibers
4.7. Polyester Fibers
4.8. Acrylic Fibers
4.9. Aramid Fibers
4.10. Glass Fibers
4.10.1. Silica Glass Fibers
4.10.2. Basalt Glass Fibers
5. Post-Peak Mechanical Properties
5.1. Polypropylene Fibers
5.2. Nylon Fibers
5.3. Polyvinyl Alcohol Fibers
5.4. Polyolefin Fibers
5.5. Carbon Fibers
5.6. Polyethylene Fibers
5.7. Polyester Fibers
5.8. Acrylic Fibers
5.9. Aramid Fibers
5.10. Glass Fibers
5.10.1. Silica Glass Fibers
5.10.2. Basalt Glass Fibers
6. Shrinkage
6.1. Polypropylene Fibers
6.2. Nylon Fibers
6.3. Polyvinyl Alcohol Fibers
6.4. Polyolefin Fibers
6.5. Carbon Fibers
6.6. Polyethylene Fibers
6.7. Polyester Fibers
6.8. Acrylic Fibers
6.9. Aramid Fibers
6.10. Glass Fibers
6.10.1. Silica Glass Fibers
6.10.2. Basalt Glass Fibers
7. Extreme Temperature Resistance
7.1. Polypropylene Fibers
7.2. Nylon Fibers
7.3. Polyvinyl Alcohol Fibers
7.4. Polyolefin Fibers
7.5. Carbon Fibers
7.6. Polyethylene Fibers
7.7. Polyester Fibers
7.8. Acrylic Fibers
7.9. Aramid Fibers
7.10. Glass Fibers
7.10.1. Silica Glass Fibers
7.10.2. Basalt Glass Fibers
8. Synthesis and Recommendations
8.1. Stability and Bond
8.2. Workability
8.3. Pre-Peak Mechanical Properties
8.4. Post-Peak Mechanical Properties
8.5. Shrinkage
8.6. Extreme Temperature Resistance
9. Conclusions
- PP fibers are one of the most cost-effective concrete fibers. This advantage, paired with an excellent chemical stability in the concrete environment, satisfactory mechanical properties, and wide availability, has made the PP fibers one of the popular concrete fibers. The fibrillated PP microfibers are primarily used for plastic shrinkage crack control, while the monofilament PP macrofibers are employed for controlling the cracks caused by external loads, temperature gradients, or drying shrinkage.
- Nylon fibers can absorb the mixing water, and in turn, reduce the workability more than other concrete fibers. These aspects limit the application of nylon fibers to relatively low fiber volumes, especially if microfibers are used. Another limitation of nylon fibers is that, while they provide advantages similar to PP fibers in concrete, they are, in general, more expensive. Increasing attention to recycled nylon fibers can help decrease the unit cost of nylon fibers with the possible use for thermal and plastic shrinkage crack control purposes.
- PVA fibers form a strong chemical bond with the concrete matrix, increasing the possibility of fiber rupture under external loads, which is not a favorable feature where an increase in post-peak mechanical properties is needed. This feature, along with the relatively high cost of PVA fibers and their significant water absorption, which decreases the mixture’s workability more than other fibers, can limit the application of PVA fibers in FRC products. Thus, they are not as readily available as other less expensive synthetic fibers.
- PO fibers have a relatively low elastic modulus, similar to PP fibers, causing a relatively low residual strength at small crack widths. Most concrete fiber suppliers provide some forms of PO fibers, as they work well for crack controlling purposes. PO fibers are relatively inexpensive and fall in the same price range as PP fibers, making them one of the least expensive concrete fibers. However, they are not well represented in the literature, most likely due to the absence of a widespread need to them in practice because of the popularity and abundance of PP microfibers.
- Carbon fibers can withstand the alkaline environment of concrete better than glass fibers. They also have a (relatively) high strength-to-weight ratio. However, due to the issues observed during the mixing process of carbon macrofibers with conventional methods, they are not commonly used, especially in the mixtures that contain coarse aggregates. Further to the high price of most carbon fibers, they are often less effective than other synthetic fibers for several concrete applications. Thus, carbon fibers are considered an expensive specialty fiber in the concrete industry.
- As a result of low strength and stiffness, the FRC products made with conventional PE fibers can suffer from poor mechanical properties. However, high-strength and high-stiffness PE fibers have shown satisfactory mechanical properties with a potential to be used in cementitious composites. However, HSPE fibers are not very practical in conventional concrete applications, mainly because of their (relatively) weak bond with concrete.
- The use of PET fibers in FRC has been limited to laboratory tests and research investigations at the time of this review. It is expected that, as the production technology and product quality of recycled PET fibers improve in the future, these fibers gain traction in the concrete industry, owing to their economic and environmental benefits over traditional synthetic fibers.
- In the category of acrylic fibers, PAN microfibers have been found to offer effective solutions, as they can provide benefits similar to other low-strength/modulus fibers. However, compared to other common synthetic fibers, the literature suggests that acrylic fibers more adversely affect the workability of the concrete mixture, while they can provide an increased fiber-matrix bond strength, along with a significant residual strength at small crack openings. The limited general use of PAN fibers in the concrete mixtures that contain coarse aggregates is likely because other less expensive synthetic fibers can provide similar benefits, especially in the absence of acrylic macrofiber production.
- The main drawback of aramid fibers for FRC applications is their cost. Since aramid fibers are relatively expensive and may not provide enough additional benefits over other common concrete fibers, their use has been limited, which can justify the limited number of relevant studies available in the literature. However, recent works on Kevlar and Technora fibers have shown promising reinforcing potential, which can be further utilized, especially if the cost drops.
- AR silica glass fibers are able to significantly improve the strength and ductility of concrete, owing to their relatively high strength and stiffness. There are inconsistencies in the workability reported for the FRC mixtures made with AR silica glass fibers, but this can be attributed to the fact that the fibers can come in a wide range of sizes and surface areas. Degradation of silica glass fibers in concrete is often a concern, which can be addressed with an adequate zirconia content, proper sizing application, concrete binder adjustment, or even polymer impregnation. The AR silica glass fibers are effectively used as concrete fibers in various applications with a wide availability and relatively low price.
- Basalt glass fibers have shown degradation issues in the concrete’s alkaline environment. Similar to silica glass fibers, various actions have been taken to increase their long-term stability in concrete. Basalt microfibers are known to be effective for increasing the splitting tensile and flexural strengths of FRC, further to reducing the plastic shrinkage cracks. BFRP macrofibers have shown a great potential as an effective solution to improve the post-crack performance of FRC and control the propagation of cracks. The basalt glass fibers are anticipated to gain popularity in the concrete industry, as the production increases and new applications are identified.
Funding
Conflicts of Interest
References
- Fibre Reinforced Concrete: From Design to Structural Applications. Technical Report. In Proceedings of the ACI-fib-RILEM International Workshop, fib Bull, Desenzano del Garda, Italy, 28–30 June 2018.
- Lawler, J.S. Hybrid Fiber-Reinforcement in Mortar and Concrete. Ph.D. Thesis, Northwestern University, Evanston, IL, USA, 2001. [Google Scholar]
- Yao, W.; Li, J.; Wu, K. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cem. Concr. Res. 2003, 33, 27–30. [Google Scholar] [CrossRef]
- Sorelli, L.; Meda, A.; Plizzari, G. Bending and uniaxial tensile tests on concrete reinforced with hybrid steel fibers. J. Mater. Civ. Eng. 2005, 17, 519–527. [Google Scholar] [CrossRef]
- Dopko, M.; Najimi, M.; Shafei, B.; Wang, X.; Taylor, P.; Phares, B.M. Flexural performance evaluation of fiber-reinforced concrete incorporating multiple macro-synthetic fibers. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 1–12. [Google Scholar] [CrossRef]
- Van Chanh, N. Steel fiber reinforced concrete. In Seminar Material; Faculty of Civil Engineering, University of Technology: Ho chi minh, Vietnam, 2004; pp. 108–116. [Google Scholar]
- Yazıcı, Ş.; Inan, G.; Tabak, V. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Constr. Build. Mater. 2007, 21, 1250–1253. [Google Scholar] [CrossRef]
- Johnston, C.D. Book Review. Fiber-reinforced cements and concretes. Can. J. Civ. Eng. 2001, 28, 879–880. [Google Scholar] [CrossRef]
- Thomas, J.; Ramaswamy, A. Mechanical properties of steel fiber-reinforced concrete. J. Mater. Civ. Eng. 2007, 19, 385–392. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, G. Properties of steel fibre reinforced concrete containing larger coarse aggregate. Cem. Concr. Compos. 1995, 17, 199–206. [Google Scholar] [CrossRef]
- Askari, S.M.; Khaloo, A.; Borhani, M.H.; Masoule, M.S.T. Performance of polypropylene fiber reinforced concrete-filled UPVC tube columns under axial compression. Constr. Build. Mater. 2020, 231, 117049. [Google Scholar] [CrossRef]
- Alhozaimy, A.; Soroushian, P.; Mirza, F. Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials. Cem. Concr. Compos. 1996, 18, 85–92. [Google Scholar] [CrossRef]
- Toutanji, H.; McNeil, S.; Bayasi, Z. Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cem. Concr. Res. 1998, 28, 961–968. [Google Scholar] [CrossRef]
- Singh, S.; Shukla, A.; Brown, R. Pullout behavior of polypropylene fibers from cementitious matrix. Cem. Concr. Res. 2004, 34, 1919–1925. [Google Scholar] [CrossRef]
- Pakravan, H.R.; Jamshidi, M.; Latifi, M. Performance of fibers embedded in a cementitious matrix. J. Appl. Polym. Sci. 2009, 116, 1247–1253. [Google Scholar] [CrossRef]
- ACI Committee 544. 544.1 R-96: Report on Fiber Reinforced Concrete (Reapproved 2009); American Concrete Institute: Farmington Hills, MI, USA, 2009. [Google Scholar]
- Studinka, J. Asbestos substitution in the fibre cement industry. Int. J. Cem. Compos. Lightweight Concr. 1989, 11, 73–78. [Google Scholar] [CrossRef]
- Bentur, A.; Mindess, S. Fibre Reinforced Cementitious Composites; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Kaminsky, W. Trends in polyolefin chemistry. Macromol. Chem. Phys. 2008, 209, 459–466. [Google Scholar] [CrossRef]
- Drechsler, K.; Heine, M.; Mitschang, P.; Baur, W.; Gruber, U.; Fischer, L.; Ottinger, O.; Heidenreich, B.; Lutzenburger, N.; Voggenreiter, H. Carbon Fiber Reinforced Composites. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons: New Jersey, NJ, USA, 2000. [Google Scholar]
- Lepoutre, P. The manufacture of polyethylene. N. Z. Inst. Chem. 2013, 10, 1–5. [Google Scholar]
- Zheng, Z.; Feldman, D. Synthetic fibre-reinforced concrete. Prog. Polym. Sci. 1995, 20, 185–210. [Google Scholar] [CrossRef]
- Kellie, G. Advances in Technical Nonwovens; Woodhead Publishing: Sawston, UK, 2016. [Google Scholar]
- Uomoto, T.; Mutsuyoshi, H.; Katsuki, F.; Misra, S. Use of fiber reinforced polymer composites as reinforcing material for concrete. J. Mater. Civ. Eng. 2002, 14, 191–209. [Google Scholar] [CrossRef]
- Deák, T.; Czigány, T. Chemical composition and mechanical properties of basalt and glass fibers: A comparison. Text. Res. J. 2009, 79, 645–651. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Jones, J.; Lutz, T.P. Glass fiber reinforced concrete products properties and applications. PCI J. 1977, 22, 80–103. [Google Scholar] [CrossRef]
- Orlowsky, J.; Raupach, M. Modelling the loss in strength of AR-glass fibres in textile-reinforced concrete. Mater. Struct. 2006, 39, 635–643. [Google Scholar] [CrossRef]
- ASTM. Standard Specification for Alkali Resistant (AR) Glass Fiber for GFRC and Fiber-Reinforced Concrete and Cement; ASTM C1666/C1666M-08; ASTM: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Zollo, R.F. Fiber-reinforced concrete: An overview after 30 years of development. Cem. Concr. Compos. 1997, 19, 107–122. [Google Scholar] [CrossRef]
- Grija, S.; Shanthini, D.; Abinaya, S. A review on fibre reinforced concrete. Int. J. Civil Eng. Technol. 2016, 7, 386–392. [Google Scholar]
- Algihwel, M.; Sultan, A. A review on effect of different fiber types on fiber reinforced concrete behavior. Sustain. Struct. Mater. Int. J. 2018, 1, 36–43. [Google Scholar]
- Tošić, N.; Aidarov, S.; De La Fuente, A. Systematic review on the creep of fiber-reinforced concrete. Materials 2020, 13, 5098. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. High-performance fiber-reinforced concrete: A review. J. Mater. Sci. 2016, 51, 6517–6551. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.-Y.; Banthia, N. Impact resistance of fiber-reinforced concrete-A review. Cem. Concr. Compos. 2019, 104, 103389. [Google Scholar] [CrossRef]
- Madhavi, T.C.; Raju, L.S.; Mathur, D. Polypropylene fiber reinforced concrete-a review. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 114–119. [Google Scholar]
- Yin, S.; Tuladhar, R.; Shi, F.; Combe, M.; Collister, T.; Sivakugan, N. Use of macro plastic fibres in concrete: A review. Constr. Build. Mater. 2015, 93, 180–188. [Google Scholar] [CrossRef]
- Merli, R.; Preziosi, M.; Acampora, A.; Lucchetti, M.C.; Petrucci, E. Recycled fibers in reinforced concrete: A systematic literature review. J. Clean. Prod. 2020, 248, 119207. [Google Scholar] [CrossRef]
- Banthia, N. A study of some factors affecting the fiber–matrix bond in steel fiber reinforced concrete. Can. J. Civ. Eng. 1990, 17, 610–620. [Google Scholar] [CrossRef]
- Cifuentes, H.; García, F.; Maeso, O.; Medina, F. Influence of the properties of polypropylene fibres on the fracture behaviour of low-, normal-and high-strength FRC. Constr. Build. Mater. 2013, 45, 130–137. [Google Scholar] [CrossRef]
- Oh, B.H.; Kim, J.C.; Choi, Y.C. Fracture behavior of concrete members reinforced with structural synthetic fibers. Eng. Fract. Mech. 2007, 74, 243–257. [Google Scholar] [CrossRef]
- Yin, S.; Tuladhar, R.; Collister, T.; Combe, M.; Sivakugan, N.; Deng, Z. Post-cracking performance of recycled polypropylene fibre in concrete. Constr. Build. Mater. 2015, 101, 1069–1077. [Google Scholar] [CrossRef]
- Grdic, Z.J.; Curcic, G.A.T.; Ristic, N.S.; Despotovic, I.M. Abrasion resistance of concrete micro-reinforced with polypropylene fibers. Constr. Build. Mater. 2012, 27, 305–312. [Google Scholar] [CrossRef]
- Hao, Y.; Cheng, L.; Hao, H.; Shahin, M.A. Enhancing fiber/matrix bonding in polypropylene fiber reinforced cementitious composites by microbially induced calcite precipitation pre-treatment. Cem. Concr. Compos. 2018, 88, 1–7. [Google Scholar] [CrossRef] [Green Version]
- López-Buendía, A.M.; Romero-Sánchez, M.D.; Climent, V.; Guillem, C. Surface treated polypropylene (PP) fibres for reinforced concrete. Cem. Concr. Res. 2013, 54, 29–35. [Google Scholar] [CrossRef]
- Attiogbe, E.K.; Schaef, S.; Kerobo, C.O.; Vojtko, D.; Nmai, C.K. A new fiber for enhanced crack control. Concr. Int. 2014, 36. [Google Scholar]
- Wang, Y.; Li, V.C.; Backer, S. Analysis of synthetic fiber pull-out from a cement matrix. MRS Proc. 1987, 114, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Giles, H.F., Jr.; Mount, E.M., III; Wagner, J.R., Jr. Extrusion: The Definitive Processing Guide and Handbook; William Andrew: Norwich, NY, USA, 2004. [Google Scholar]
- Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z. Enhancement of mechanical properties in polypropylene-and nylon-fibre reinforced oil palm shell concrete. Mater. Des. 2013, 49, 1034–1041. [Google Scholar] [CrossRef]
- Khan, M.; Ali, M. Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks. Constr. Build. Mater. 2016, 125, 800–808. [Google Scholar] [CrossRef]
- Wongtanakitcharoen, T.; Naaman, A.E. Unrestrained early age shrinkage of concrete with polypropylene, PVA, and carbon fibers. Mater. Struct. 2006, 40, 289–300. [Google Scholar] [CrossRef]
- Ogawa, A.; Hoshiro, H. Durability of Fibres. In Durability of Strain-Hardening Fibre-Reinforced Cement-Based Composites (SHCC); Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2010; pp. 81–88. [Google Scholar]
- Roque, R.; Kim, N.; Kim, B.; Lopp, G. Durability of Fiber-Reinforced Concrete in Florida Environments; University of Florida: Tallahassee, FL, USA, 2009. [Google Scholar]
- Zhao, X.; He, X.-J. High-toughness and durability performance characterization of concrete reinforced with poly (vinyl alcohol) fibers. Mater. Express 2014, 4, 247–252. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Deng, D.; Wang, K.; Duan, W.H. Reinforcement effects of polyvinyl alcohol and polypropylene fibers on flexural behaviors of sulfoaluminate cement matrices. Cem. Concr. Compos. 2018, 88, 139–149. [Google Scholar] [CrossRef]
- Betterman, L.; Ouyang, C.; Shah, S. Fiber-matrix interaction in microfiber-reinforced mortar. Adv. Cem. Based Mater. 1995, 2, 53–61. [Google Scholar] [CrossRef]
- Hamoush, S.; Abu-Lebdeh, T.; Cummins, T. Deflection behavior of concrete beams reinforced with PVA micro-fibers. Constr. Build. Mater. 2010, 24, 2285–2293. [Google Scholar] [CrossRef]
- Li, V.C.; Horikoshi, T.; Ogawa, A.; Torigoe, S.; Saito, T. Micromechanics-based durability study of polyvinyl alcohol-engineered cementitious composite. Mater. J. 2004, 101, 242–248. [Google Scholar]
- Yan, L.; Pendleton, R.; Jenkins, C. Interface morphologies in polyolefin fiber reinforced concrete composites. Compos. Part A Appl. Sci. Manuf. 1998, 29, 643–650. [Google Scholar] [CrossRef]
- Tagnit-Hamou, A.; Vanhove, Y.; Petrov, N. Microstructural analysis of the bond mechanism between polyolefin fibers and cement pastes. Cem. Concr. Res. 2005, 35, 364–370. [Google Scholar] [CrossRef]
- Han, T.-Y.; Lin, W.-T.; Cheng, A.; Huang, R.; Huang, C.-C. Influence of polyolefin fibers on the engineering properties of cement-based composites containing silica fume. Mater. Des. 2012, 37, 569–576. [Google Scholar] [CrossRef]
- Ali, M.; Majumdar, A.; Rayment, D. Carbon fibre reinforcement of cement. Cem. Concr. Res. 1972, 2, 201–212. [Google Scholar] [CrossRef]
- Chand, S. Review Carbon fibers for composites. J. Mater. Sci. 2000, 35, 1303–1313. [Google Scholar] [CrossRef]
- Girgle, F.; Bodnárová, L.; Kučerová, A.; Janák, P.; Prokeš, J. Experimental verification of behavior of glass and carbon fibers in alkali environment. Key Eng. Mater. 2016, 677, 43–48. [Google Scholar] [CrossRef]
- Larson, B.; Drzal, L.; Sorousian, P. Carbon fibre-cement adhesion in carbon fibre reinforced cement composites. Composites 1990, 21, 205–215. [Google Scholar] [CrossRef]
- Pešić, N.; Živanović, S.; Garcia, R.; Papastergiou, P. Mechanical properties of concrete reinforced with recycled HDPE plastic fibres. Constr. Build. Mater. 2016, 115, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Marissen, R. Design with Ultra Strong Polyethylene Fibers. Mater. Sci. Appl. 2011, 2, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-C.; Li, V.C. Fiber/cement interface tailoring with plasma treatment. Cem. Concr. Compos. 1999, 21, 205–212. [Google Scholar] [CrossRef]
- He, S.; Qiu, J.; Li, J.; Yang, E.-H. Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers. Cem. Concr. Res. 2017, 98, 50–60. [Google Scholar] [CrossRef]
- Kim, S.B.; Yi, N.H.; Kim, H.Y.; Kim, J.-H.J.; Song, Y.-C. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cem. Concr. Compos. 2010, 32, 232–240. [Google Scholar] [CrossRef]
- Fraternali, F.; Spadea, S.; Berardi, V.P. Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes. Constr. Build. Mater. 2014, 61, 293–302. [Google Scholar] [CrossRef]
- Rostami, R.; Zarrebini, M.; Mandegari, M.; Sanginabadi, K.; Mostofinejad, D.; Abtahi, S.M.; Rostami, R. The effect of concrete alkalinity on behavior of reinforcing polyester and polypropylene fibers with similar properties. Cem. Concr. Compos. 2019, 97, 118–124. [Google Scholar] [CrossRef]
- Silva, D.; Betioli, A.; Gleize, P.; Roman, H.; Gómez, L.; Ribeiro, J. Degradation of recycled PET fibers in Portland cement-based materials. Cem. Concr. Res. 2005, 35, 1741–1746. [Google Scholar] [CrossRef]
- Ochi, T.; Okubo, S.; Fukui, K. Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cem. Concr. Compos. 2007, 29, 448–455. [Google Scholar] [CrossRef]
- Amat, T.; Blanco, M.; Palomo, Á. Acrylic fibres as reinforcement for cement pastes. Cem. Concr. Compos. 1994, 16, 31–37. [Google Scholar] [CrossRef]
- Jamshidi, M.; Karimi, M. Characterization of polymeric fibers as reinforcements of cement-based composites. J. Appl. Polym. Sci. 2010, 115, 2779–2785. [Google Scholar] [CrossRef]
- Hahne, H.; Karl, S.; Worner, J. Properties of polyacrylonitrile fiber reinforced concrete. Spec. Publ. 1987, 105, 211–224. [Google Scholar]
- Uomoto, T.; Nishimura, T. Deterioration of aramid, glass, and carbon fibers due to alkali, acid, and water in different temperatures. ACI Mater. J. 1999, 188, 515–522. [Google Scholar]
- Derombise, G.; Van Schoors, L.V.; Davies, P. Degradation of Technora aramid fibres in alkaline and neutral environments. Polym. Degrad. Stab. 2009, 94, 1615–1620. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Wu, S.; Lai, J.; Shyu, S. The Effect of chemical treatment on reinforcement/matrix interaction in Kevlar-fiber/bismaleimide composites. Compos. Sci. Technol. 2000, 60, 1873–1878. [Google Scholar] [CrossRef]
- Zhang, S.; Li, G.Z.; Yuan, H.Y. Effect of the chemical treated kevlar fiber on the behaviors of cement mortars. Adv. Mater. Res. 2011, 306, 758–761. [Google Scholar] [CrossRef]
- Larner, L.; Speakman, K.; Majumdar, A. Chemical interactions between glass fibres and cement. J. Non-Cryst. Solids 1976, 20, 43–74. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Wu, Z.; Dong, Z.; Zhang, G. Durability of basalt fibers and composites in corrosive environments. J. Compos. Mater. 2014, 49, 873–887. [Google Scholar] [CrossRef]
- Scheffler, C.; Förster, T.; Mäder, E.; Heinrich, G.; Hempel, S.; Mechtcherine, V. Aging of alkali-resistant glass and basalt fibers in alkaline solutions: Evaluation of the failure stress by Weibull distribution function. J. Non-Cryst. Solids 2009, 355, 2588–2595. [Google Scholar] [CrossRef]
- Lipatov, Y.; Gutnikov, S.; Manylov, M.; Zhukovskaya, E.S.; Lazoryak, B. High alkali-resistant basalt fiber for reinforcing concrete. Mater. Des. 2015, 73, 60–66. [Google Scholar] [CrossRef]
- Anon, A. Properties of GRC: Ten Year Results, Building Research Establishment Information Paper IP 38/79; Building Research Establishment: Watford, UK, 1979. [Google Scholar]
- Shah, S.P.; Ludirdja, D.; Daniel, J.; Mobasher, B. Toughness-durability of glass fiber reinforced concrete systems. ACI Mater. J. 1988, 85, 352–360. [Google Scholar]
- Orlowsky, J.; Raupach, M. Durability model for AR-glass fibres in textile reinforced concrete. Mater. Struct. 2008, 41, 1225–1233. [Google Scholar] [CrossRef]
- Orlowsky, J.; Raupach, M.; Cuypers, H.; Wastiels, J. Durability modelling of glass fibre reinforcement in cementitious environment. Mater. Struct. 2005, 38, 155–162. [Google Scholar] [CrossRef]
- Gao, S.-L.; Mäder, E.; Abdkader, A.A.; Offermann, P. Sizings on alkali-resistant glass fibers: Environmental effects on mechanical properties. Langmuir 2003, 19, 2496–2506. [Google Scholar] [CrossRef]
- Song, M.; Purnell, P.; Richardson, I. Microstructure of interface between fibre and matrix in 10-year aged GRC modified by calcium sulfoaluminate cement. Cem. Concr. Res. 2015, 76, 20–26. [Google Scholar] [CrossRef]
- Benmokrane, B.; Wang, P.; Ton-That, T.M.; Rahman, H.; Robert, J.-F. Durability of glass fiber-reinforced polymer reinforcing bars in concrete environment. J. Compos. Constr. 2002, 6, 143–153. [Google Scholar] [CrossRef]
- Micelli, F.; Nanni, A. Durability of FRP rods for concrete structures. Constr. Build. Mater. 2004, 18, 491–503. [Google Scholar] [CrossRef]
- Sayyar, M.; Soroushian, P.; Sadiq, M.M.; Balachandra, A.; Lu, J. Low-cost glass fiber composites with enhanced alkali resistance tailored towards concrete reinforcement. Constr. Build. Mater. 2013, 44, 458–463. [Google Scholar] [CrossRef]
- Nkurunziza, G.; Debaiky, A.; Cousin, P.; Benmokrane, B. Durability of GFRP bars: A critical review of the literature. Prog. Struct. Eng. Mater. 2005, 7, 194–209. [Google Scholar] [CrossRef]
- Karim, R.; Shafei, B. Performance of fiber-reinforced concrete link slabs with embedded steel and GFRP rebars. Eng. Struct. 2021, 229, 111590. [Google Scholar] [CrossRef]
- Mufti, A.A.; Banthia, N.; Benmokrane, B.; Boulfiza, M.; Newhook, J.P. Durability of GFRP composite rods. Concr. Int. 2007, 29, 37–42. [Google Scholar]
- Gooranorimi, O.; Nanni, A. GFRP reinforcement in concrete after 15 years of service. J. Compos. Constr. 2017, 21, 04017024. [Google Scholar] [CrossRef]
- Scheffler, C.; Zhandarov, S.; Mäder, E. Alkali resistant glass fiber reinforced concrete: Pull-out investigation of interphase behavior under quasi-static and high rate loading. Cem. Concr. Compos. 2017, 84, 19–27. [Google Scholar] [CrossRef]
- Wei, B.; Cao, H.; Song, S. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater. Des. 2010, 31, 4244–4250. [Google Scholar] [CrossRef]
- Rybin, V.; Utkin, A.; Baklanova, N. Alkali resistance, microstructural and mechanical performance of zirconia-coated basalt fibers. Cem. Concr. Res. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Mingchao, W.; Zuoguang, Z.; Yubin, L.; Min, L.; Zhijie, S. Chemical durability and mechanical properties of alkali-proof basalt fiber and its reinforced epoxy composites. J. Reinf. Plast. Compos. 2008, 27, 393–407. [Google Scholar] [CrossRef]
- Jiang, C.; Fan, K.; Wu, F.; Chen, D. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 2014, 58, 187–193. [Google Scholar] [CrossRef]
- Arslan, M.E. Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Constr. Build. Mater. 2016, 114, 383–391. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J. Concrete Microstructure, Properties and Materials; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Mohod, M.V. Performance of polypropylene fibre reinforced concrete. IOSR J. Mech. Civil Eng. 2015, 12, 28–36. [Google Scholar]
- Heo, Y.-S.; Sanjayan, J.; Han, C.-G.; Han, M.-C. Critical parameters of nylon and other fibres for spalling protection of high strength concrete in fire. Mater. Struct. 2010, 44, 599–610. [Google Scholar] [CrossRef]
- Hossain, K.; Lachemi, M.; Sammour, M.; Sonebi, M. Influence of polyvinyl alcohol, steel, and hybrid fibers on fresh and rheological properties of self-consolidating concrete. J. Mater. Civ. Eng. 2012, 24, 1211–1220. [Google Scholar] [CrossRef]
- Shafiq, N.; Ayub, T.; Khan, S.U. Investigating the performance of PVA and basalt fibre reinforced beams subjected to flexural action. Compos. Struct. 2016, 153, 30–41. [Google Scholar] [CrossRef]
- Alberti, M.G.; Enfedaque, A.; Gálvez, J.C. On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete. Constr. Build. Mater. 2014, 55, 274–288. [Google Scholar] [CrossRef]
- Zaroudi, M.; Madandoust, R.; Aghaee, K. Fresh and hardened properties of an eco-friendly fiber reinforced self-consolidated concrete composed of polyolefin fiber and natural zeolite. Constr. Build. Mater. 2020, 241, 118064. [Google Scholar] [CrossRef]
- Smirnova, O.M.; Shubin, A.A.; Potseshkovskaya, I.V. Strength and deformability properties of polyolefin macrofibers reinforced concrete. Int. J. Appl. Eng. Res. 2017, 12, 9397–9404. [Google Scholar]
- Nishioka, K.; Yamakawa, S.; Shirakawa, K. Properties and applications of carbon fiber reinforced cement composites. In Proceedings of the Development in Fiber Reinforced Cement and Concrete, RILEM Symposium, Sheffield, UK, 13–17 July 1986. [Google Scholar]
- Banthia, N.; Moncef, A.; Sheng, J. Thin reinforced concrete products and systems. ACI Special Publ. 1994, 146, 43–68. [Google Scholar]
- Akihama, S.; Suenaga, T.; Banno, T. The behaviour of carbon fibre reinforced cement composites in direct tension. Int. J. Cem. Compos. Light. Concr. 1984, 6, 159–168. [Google Scholar] [CrossRef]
- Dopko, M.; Najimi, M.; Shafei, B.; Wang, X.; Taylor, P.; Phares, B. Strength and crack resistance of carbon microfiber reinforced concrete. ACI Mater. J. 2020, 117. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Q.-F. Combined effect of polypropylene fiber and silica fume on workability and carbonation resistance of concrete composite containing fly ash. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2012, 227, 250–258. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murakami, K.; Takeda, K.; Mitsui, Y. Blast resistance of polyethylene fiber reinforced concrete to contact detonation. J. Adv. Concr. Technol. 2011, 9, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Borg, R.P.; Baldacchino, O.; Ferrara, L. Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Constr. Build. Mater. 2016, 108, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Liu, M.Y.J. Contribution of acrylic fibre addition and ground granulated blast furnace slag on the properties of lightweight concrete. Constr. Build. Mater. 2015, 95, 686–695. [Google Scholar] [CrossRef]
- Fan, S.-J. Mechanical and durability performance of polyacrylonitrile fiber reinforced concrete. Mater. Res. 2015, 18, 1298–1303. [Google Scholar] [CrossRef] [Green Version]
- Nanni, A. Properties of aramid? Fiber reinforced concrete and SIFCON. J. Mater. Civ. Eng. 1992, 4, 1–15. [Google Scholar] [CrossRef]
- Ghugal, Y.M.; Deshmukh, S.B. Performance of alkali-resistant glass fiber reinforced concrete. J. Reinf. Plast. Compos. 2006, 25, 617–630. [Google Scholar] [CrossRef]
- Ayub, T.; Shafiq, N.; Nuruddin, M.F. Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng. 2014, 77, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, A.; Miller, L.; Adhikari, S.; Standal, P.C. Basalt FRP minibar reinforced concrete. Fibre Concr. 2013, 12–13. [Google Scholar]
- Branston, J.; Das, S.; Kenno, S.Y.; Taylor, C. Mechanical behaviour of basalt fibre reinforced concrete. Constr. Build. Mater. 2016, 124, 878–886. [Google Scholar] [CrossRef]
- Mohammadi Mohaghegh, A. Use of Macro Basalt Fibre Concrete for Marine Applications; KTH Royal Institute of Technology: Stockholm, Sweden, 2016. [Google Scholar]
- Choi, Y.; Yuan, R.L. Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cem. Concr. Res. 2005, 35, 1587–1591. [Google Scholar] [CrossRef]
- Hasan, M.; Afroz, M.; Mahmud, H. An experimental investigation on mechanical behavior of macro synthetic fiber reinforced concrete. Int. J. Civ. Environ. Eng. 2011, 11, 19–23. [Google Scholar]
- Soroushian, P.; Plasencia, J.; Ravanbakhsh, S. Assessment of reinforcing effects of recycled plastic and paper in concrete. Mater. J. 2003, 100, 203–207. [Google Scholar]
- Ramezanianpour, A.; Esmaeili, M.; Ghahari, S.A.; Najafi, M. Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Constr. Build. Mater. 2013, 44, 411–418. [Google Scholar] [CrossRef]
- Yin, S.; Tuladhar, R.; Riella, J.; Chung, D.; Collister, T.; Combe, M.; Sivakugan, N. Comparative evaluation of virgin and recycled polypropylene fibre reinforced concrete. Constr. Build. Mater. 2016, 114, 134–141. [Google Scholar] [CrossRef]
- Song, P.; Hwang, S.; Sheu, B. Strength properties of nylon- and polypropylene-fiber-reinforced concretes. Cem. Concr. Res. 2005, 35, 1546–1550. [Google Scholar] [CrossRef]
- Zia, A.; Ali, M. Behavior of fiber reinforced concrete for controlling the rate of cracking in canal-lining. Constr. Build. Mater. 2017, 155, 726–739. [Google Scholar] [CrossRef]
- Ozsar, D.S.; Ozalp, F.; Yilmaz, H.D.; Akcay, B. Effects of Nylon Fibre and Concrete Strength on the Shrinkage and Fracture Behaviour of Fibre Reinforced Concrete. In Proceedings of the RILEM Bookseries; Springer Science and Business Media LLC: Dordrecht, The Netherland, 2017; pp. 188–194. [Google Scholar]
- Yeganeh, A.E.; Kouroshnezhad, F.; Dadsetan, S.; Hossain, K.M.A.; Lachemi, M. Experimental Investigation on Mechanical Properties of Fiber Reinforced Lightweight Self-Consolidating Concrete. In Fibre Reinforced Concrete: Improvements and Innovations; Springer Science and Business Media LLC: Dordrecht, The Netherland, 2019; pp. 536–543. [Google Scholar]
- Ahmad, S.; Umar, A. Rheological and mechanical properties of self-compacting concrete with glass and polyvinyl alcohol fibres. J. Build. Eng. 2018, 17, 65–74. [Google Scholar] [CrossRef]
- Noushini, A.; Samali, B.; Vessalas, K. Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Constr. Build. Mater. 2013, 49, 374–383. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Rudžionis, Ž.; Balakrishnan, A.; Jayakumar, V. Investigation on the mechanical properties and post-cracking behavior of polyolefin fiber reinforced concrete. Fibers 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Alani, A.M.; Beckett, D. Mechanical properties of a large scale synthetic fibre reinforced concrete ground slab. Constr. Build. Mater. 2013, 41, 335–344. [Google Scholar] [CrossRef]
- Chen, M.; Gao, P.; Geng, F.; Zhang, L.; Liu, H. Mechanical and smart properties of carbon fiber and graphite conductive concrete for internal damage monitoring of structure. Constr. Build. Mater. 2017, 142, 320–327. [Google Scholar] [CrossRef]
- Chen, P.-W.; Chung, D. Low-drying-shrinkage concrete containing carbon fibers. Compos. Part B Eng. 1996, 27, 269–274. [Google Scholar] [CrossRef]
- Soroushian, P.; Khan, A.; Hsu, J.-W. Mechanical properties of concrete materials reinforced with polypropylene or polyethylene fibers. Mater. J. 1992, 89, 535–540. [Google Scholar]
- Swamy, R.; Barr, B. Fibre Reinforced Cement and Concretes: Recent Developments; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Sivakumar, A.; Santhanam, M. Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres. Cem. Concr. Compos. 2007, 29, 603–608. [Google Scholar] [CrossRef]
- Fraternali, F.; Ciancia, V.; Chechile, R.; Rizzano, G.; Feo, L.; Incarnato, L. Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Compos. Struct. 2011, 93, 2368–2374. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, J.; Dou, Y.; Xin, Q. Mechanical properties and durability of fiber-reinforced concrete. J. Eng. Sci. Technol. Rev. 2017, 10, 68–75. [Google Scholar] [CrossRef]
- Chan, L.; Tanapornraweekit, G.; Tangtermsirikul, S. Investigation of aramid fibers compared with steel fiber on bending behavior of hybrid RC beams. Mater. Sci. Forum 2016, 860, 117–120. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, R.; Zhou, Y. Research on drying shrinkage and early-age crack resistance of aramid fiber reinforced concrete. In Proceedings of the Transportation Research Board Annual Meeting, Washington, DC, USA, 7–11 January 2018. [Google Scholar]
- Barluenga, G.; Hernández-Olivares, F. Cracking control of concretes modified with short AR-glass fibers at early age. Experimental results on standard concrete and SCC. Cem. Concr. Res. 2007, 37, 1624–1638. [Google Scholar] [CrossRef]
- Söylev, T.; Özturan, T. Durability, physical and mechanical properties of fiber-reinforced concretes at low-volume fraction. Constr. Build. Mater. 2014, 73, 67–75. [Google Scholar] [CrossRef]
- Löber, P.; Heiden, B.; Holschemacher, K.; Barragan, B. Glass fiber reinforced concrete for slabs on ground-material characterization and application. In Proceedings of the 8th International Conference Fibre Concrete, Praha, Czech Republic, 10–11 September 2015. [Google Scholar]
- Ibrahim, K. Mechanical properties of Glass Fiber Reinforced Concrete (GFRC). IOSR J. Mech. Civ. Eng. 2016, 13, 47–50. [Google Scholar] [CrossRef]
- Kizilkanat, A.B.; Kabay, N.; Akyüncü, V.; Chowdhury, S.; Akça, A.H. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Constr. Build. Mater. 2015, 100, 218–224. [Google Scholar] [CrossRef]
- Mirza, F.A.; Soroushian, P. Effects of alkali-resistant glass fiber reinforcement on crack and temperature resistance of lightweight concrete. Cem. Concr. Compos. 2002, 24, 223–227. [Google Scholar] [CrossRef]
- Dehghan, A.; Peterson, K.; Shvarzman, A. Recycled glass fiber reinforced polymer additions to Portland cement concrete. Constr. Build. Mater. 2017, 146, 238–250. [Google Scholar] [CrossRef]
- Yang, Y.X.; Lian, J. Basalt Fiber Reinforced Concrete. Adv. Mater. Res. 2011, 194, 1103–1108. [Google Scholar] [CrossRef]
- Kabay, N. Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 2014, 50, 95–101. [Google Scholar] [CrossRef]
- Saradar, A.; Tahmouresi, B.; Mohseni, E.; Shadmani, A. Restrained shrinkage cracking of fiber-reinforced high-strength concrete. Fibers 2018, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, A.; Miller, L.; Standal, P.C. Fiber reinforced concrete made from basalt FRP minibar. In Proceedings of the 1st Concrete Innovation Conference (CIC), Oslo, Norway, 11–13 June 2014. [Google Scholar]
- Cui, Z.; Alipour, A.; Shafei, B. Structural performance of deteriorating reinforced concrete columns under multiple earthquake events. Eng. Struct. 2019, 191, 460–468. [Google Scholar] [CrossRef]
- Shafei, B.; Alipour, A. Application of large-scale non-Gaussian stochastic fields for the study of corrosion-induced structural deterioration. Eng. Struct. 2015, 88, 262–276. [Google Scholar] [CrossRef]
- Shafei, B.; Alipour, A. Estimation of corrosion initiation time in reinforced concrete bridge columns: How to incorporate spatial and temporal uncertainties. J. Eng. Mech. 2015, 141, 04015037. [Google Scholar] [CrossRef]
- Shafei, B.; Alipour, A.; Shinozuka, M. A Stochastic computational framework to investigate the initial stage of corrosion in reinforced concrete superstructures. Comput. Civ. Infrastruct. Eng. 2013, 28, 482–494. [Google Scholar] [CrossRef]
- Alipour, A.; Shafei, B.; Shinozuka, M.S. Capacity loss evaluation of reinforced concrete bridges located in extreme chloride-laden environments. Struct. Infrastruct. Eng. 2011, 9, 1–20. [Google Scholar] [CrossRef]
- Shafei, B.; Alipour, A.; Shinozuka, M. Prediction of corrosion initiation in reinforced concrete members subjected to environmental stressors: A finite-element framework. Cem. Concr. Res. 2012, 42, 365–376. [Google Scholar] [CrossRef]
- Shafei, B. Stochastic Finite-Element Analysis of Reinforced Concrete Structures Subjected to Multiple Environmental Stressors. Ph.D. Thesis, Deptartment of Civil and Environmental Engineering, University of California, Irvine, CA, USA, 2011. [Google Scholar]
- Alipour, A.; Shafei, B.; Shinozuka, M. Performance evaluation of deteriorating highway bridges located in high seismic areas. J. Bridg. Eng. 2011, 16, 597–611. [Google Scholar] [CrossRef]
- Hajilar, S.; Shafei, B. Strength anisotropy and tension-compression asymmetry in complex sulfate-bearing crystals. Int. J. Mech. Sci. 2019, 150, 304–313. [Google Scholar] [CrossRef]
- Hajilar, S.; Shafei, B. Structure, orientation, and dynamics of water-soluble ions adsorbed to basal surfaces of calcium monosulfoaluminate hydrates. Phys. Chem. Chem. Phys. 2018, 20, 24681–24694. [Google Scholar] [CrossRef]
- Hajilar, S.; Shafei, B. Atomic-scale investigation of physical adsorption of water molecules and aggressive ions to ettringite’s surfaces. J. Colloid Interface Sci. 2018, 513, 104–116. [Google Scholar] [CrossRef]
- Hajilar, S.; Shafei, B. Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations. J. Solid State Chem. 2016, 244, 164–174. [Google Scholar] [CrossRef]
- Hajilar, S.; Shafei, B. Mechanical failure mechanisms of hydrated products of tricalcium aluminate: A reactive molecular dynamics study. Mater. Des. 2016, 90, 165–176. [Google Scholar] [CrossRef]
- Hajilar, S.; Shafei, B. Nano-scale investigation of elastic properties of hydrated cement paste constituents using molecular dynamics simulations. Comput. Mater. Sci. 2015, 101, 216–226. [Google Scholar] [CrossRef]
- Hajilar, S.; Shafei, B. Nano-scale characterization of elastic properties of AFt and AFm phases of hydrated cement paste. In Proceedings of the Computational Modelling of Concrete Structures, St. Anton am Arlberg, Austria, 24–27 March 2014. [Google Scholar]
- Hajilar, S.; Shafei, B.; Cheng, T.; Jaramillo-Botero, A. Reactive molecular dynamics simulations to understand mechanical response of thaumasite under temperature and strain rate effects. J. Phys. Chem. A 2017, 121, 4688–4697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatami, D.; Shafei, B.; Smadi, O. Management of bridges under aging mechanisms and extreme events: Risk-based approach. Transp. Res. Rec. J. Transp. Res. Board 2016, 2550, 89–95. [Google Scholar] [CrossRef]
- Alipour, A.; Shafei, B. Assessment of postearthquake losses in a network of aging bridges. J. Infrastruct. Syst. 2016, 22, 04015023. [Google Scholar] [CrossRef]
- Alipour, A.; Shafei, B. Seismic resilience of transportation networks with deteriorating components. J. Struct. Eng. 2016, 142, 4015015. [Google Scholar] [CrossRef]
- Hsie, M.; Tu, C.; Song, P. Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater. Sci. Eng. A 2008, 494, 153–157. [Google Scholar] [CrossRef]
- Cengiz, O.; Turanli, L. Comparative evaluation of steel mesh, steel fibre and high-performance polypropylene fibre reinforced shotcrete in panel test. Cem. Concr. Res. 2004, 34, 1357–1364. [Google Scholar] [CrossRef]
- Lee, G.; Han, D.; Han, M.-C.; Han, C.-G.; Son, H.-J. Combining polypropylene and nylon fibers to optimize fiber addition for spalling protection of high-strength concrete. Constr. Build. Mater. 2012, 34, 313–320. [Google Scholar] [CrossRef]
- Ozger, O.; Girardi, F.; Giannuzzi, G.M.; Salomoni, V.; Majorana, C.; Fambri, L.; Baldassino, N.; Di Maggio, R. Effect of nylon fibres on mechanical and thermal properties of hardened concrete for energy storage systems. Mater. Des. 2013, 51, 989–997. [Google Scholar] [CrossRef]
- Spadea, S.; Farina, I.; Carrafiello, A.; Fraternali, F. Recycled nylon fibers as cement mortar reinforcement. Constr. Build. Mater. 2015, 80, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Hossain, K.; Lachemi, M.; Sammour, M.; Sonebi, M. Strength and fracture energy characteristics of self-consolidating concrete incorporating polyvinyl alcohol, steel and hybrid fibres. Constr. Build. Mater. 2013, 45, 20–29. [Google Scholar] [CrossRef]
- Ramakrishnan, V. Structural application of polyolefin fiber reinforced concrete. Spec. Publ. 1999, 182, 235–253. [Google Scholar]
- Kobayashi, K.; Cho, R. Flexural behaviour of polyethylene fibre reinforced concrete. Int. J. Cem. Compos. Light. Concr. 1981, 3, 19–25. [Google Scholar] [CrossRef]
- Abeysinghe, T.M.; Tanapornraweekit, G.; Tangtermsirikul, S.; Pansuk, W.; Nuttayasakul, N. Performance of aramid fiber reinforced concrete panels under blast loads. In Proceedings of the 2017 Fourth Asian Conference on Defence Technology-Japan (ACDT), Tokyo, Japan, 29 November–1 December 2017; pp. 1–6. [Google Scholar]
- Jalasutram, S.; Sahoo, D.R.; Matsagar, V. Experimental investigation of the mechanical properties of basalt fiber-reinforced concrete. Struct. Concr. 2017, 18, 292–302. [Google Scholar] [CrossRef]
- Adhikari, S. Mechanical and Structural Characterization of Mini-Bar Reinforced Concrete Beams; University of Akron: Akron, OH, USA, 2013. [Google Scholar]
- Patnaik, A.; Baah, P.; Ricciardi, P.; Khalifa, W. Reduction of Crack Widths in Steel Reinforced Concrete Bridge Decks with Fiber Addition. Spec. Publ. 2017, 319, 1.1–1.20. [Google Scholar]
- Šahinagić-Isović, M.; Markovski, G.; Ćećez, M. Shrinkage strain of concrete-causes and types. Građevinar 2012, 64, 727–734. [Google Scholar]
- Ramezanianpour, A.A.; Kazemian, M.; Sedighi, S.; Bahmanzadeh, F.; Amiri, R.; Ramezanianpour, A.M. Study durability of mortars with natural pozzolans under carbonation. New Approach. Civ. Eng. 2019, 3, 63–75. [Google Scholar]
- Sedighi, S.; Ramezanianpour, A.A.; Kazemian, M.; Ramezanianpour, A.M. Effect of micro silica and slag on the durability properties of mortars against accelerated carbonation and chloride ions attack. AUT J. Civ. Eng. 2020. [Google Scholar] [CrossRef]
- Karim, R.; Najimi, M.; Shafei, B. Assessment of transport properties, volume stability, and frost resistance of non-proprietary ultra-high performance concrete. Constr. Build. Mater. 2019, 227, 117031. [Google Scholar] [CrossRef]
- Khatami, D.; Shafei, B. Impact of climate conditions on deteriorating reinforced concrete bridges in the US midwest region. J. Perform. Constr. Facil. 2021, 35, 04020129. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Zolfagharnasab, A.; Bahman Zadeh, F.; Estahbanati, S.H.; Boushehri, R.; Pourebrahimi, M.R.; Ramzanianpour, A.M. Effect of Supplementary Cementing Materials on Concrete Resistance Against Sulfuric acid Attack. In High Tech Concrete: Where Technology and Engineering Meet; Springer: New York, NY, USA, 2018; pp. 2290–2298. [Google Scholar]
- Shi, W.; Najimi, M.; Shafei, B. Chloride penetration in shrinkage-compensating cement concretes. Cem. Concr. Compos. 2020, 113, 103656. [Google Scholar] [CrossRef]
- Shi, W.; Shafei, B.; Liu, Z.; Phares, B.M. Early-age performance of longitudinal bridge joints made with shrinkage-compensating cement concrete. Eng. Struct. 2019, 197, 109391. [Google Scholar] [CrossRef]
- Shi, W.; Najimi, M.; Shafei, B. Reinforcement corrosion and transport of water and chloride ions in shrinkage-compensating cement concretes. Cem. Concr. Res. 2020, 135, 106121. [Google Scholar] [CrossRef]
- Aly, T.; Sanjayan, J.G.; Collins, F. Effect of polypropylene fibers on shrinkage and cracking of concretes. Mater. Struct. 2008, 41, 1741–1753. [Google Scholar] [CrossRef]
- Banthia, N.; Gupta, R. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cem. Concr. Res. 2006, 36, 1263–1267. [Google Scholar] [CrossRef]
- Islam, G.S.; Gupta, S.D. Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete. Int. J. Sustain. Built Environ. 2016, 5, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Bayasi, Z.; Zeng, J. Properties of polypropylene fiber reinforced concrete. Mater. J. 1993, 90, 605–610. [Google Scholar]
- Nam, J.; Kim, G.; Yoo, J.; Choe, G.; Kim, H.; Choi, H.; Kim, Y. Effectiveness of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete. Materials 2016, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Passuello, A.; Moriconi, G.; Shah, S.P. Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers. Cem. Concr. Compos. 2009, 31, 699–704. [Google Scholar] [CrossRef]
- Banthia, N.; Yan, C. Shrinkage cracking in polyolefin fiber-reinforced concrete. Mater. J. 2000, 97, 432–437. [Google Scholar]
- Yousefieh, N.; Joshaghani, A.; Hajibandeh, E.; Shekarchi, M. Influence of fibers on drying shrinkage in restrained concrete. Constr. Build. Mater. 2017, 148, 833–845. [Google Scholar] [CrossRef]
- Auchey, F.L.; Dutta, P.K. The use of recycled high density polyethylene fibers as secondary reinforcement in concrete subjected to severe environment. In Proceedings of the Sixth International Offshore and Polar Engineering Conference, Los Angeles, CA, USA, 26–31 May 1996. [Google Scholar]
- Pelisser, F.; Neto, A.B.D.S.S.; La Rovere, H.L.; Pinto, R.C.D.A. Effect of the addition of synthetic fibers to concrete thin slabs on plastic shrinkage cracking. Constr. Build. Mater. 2010, 24, 2171–2176. [Google Scholar] [CrossRef]
- Soranakom, C.; Bakhshi, M.; Mobasher, B. Role of Alkali resistant glass fibers in suppression of restrained shrinkage cracking of concrete materials. In Proceedings of the 15th International Glass Fibre Reinforced Concrete Association Congress, GRC, Prague, Czech Republic, 20–23 April 2008. [Google Scholar]
- Malathy, R.; Subramanian, K.; Rameshkumar, M. Effect of Glass Fibers on Restrained Plastic Shrinkage Cracking of HPC with Silica Fume; CSIR: New Delhi, India, 2007. [Google Scholar]
- Sun, Z.; Xu, Q. Microscopic, physical and mechanical analysis of polypropylene fiber reinforced concrete. Mater. Sci. Eng. A 2009, 527, 198–204. [Google Scholar] [CrossRef]
- Mai, Y.; Andonian, R.; Cotterell, B. Thermal Degradation of Polypropylene Fibers in Cement Composites. J. Compos. Mater. 1980, 3, 149–155. [Google Scholar]
- Holmes, D.R.; Bunn, C.W.; Smith, D.J. The crystal structure of polycaproamide: Nylon 6. J. Polym. Sci. 1955, 17, 159–177. [Google Scholar] [CrossRef]
- Şahmaran, M.; Özbay, E.; Yücel, H.E.; Lachemi, M.; Li, V.C. Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures. J. Mater. Civ. Eng. 2011, 23, 1735–1745. [Google Scholar] [CrossRef]
- Ling, Y.; Zhang, P.; Wang, J.; Chen, Y. Effect of PVA fiber on mechanical properties of cementitious composite with and without nano-SiO2. Constr. Build. Mater. 2019, 229, 117068. [Google Scholar] [CrossRef]
- Cao, R.; Yang, H.-W.; Lu, G. Effects of high temperature on the burst process of carbon fiber/PVA fiber high-strength concretes. Materials 2019, 12, 973. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, O.; Kharitonov, A.; Belentsov, Y. Influence of polyolefin fibers on the strength and deformability properties of road pavement concrete. J. Traffic Transp. Eng. 2019, 6, 407–417. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J. Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures. Cem. Concr. Res. 2004, 34, 1065–1069. [Google Scholar] [CrossRef]
- Ishida, H.; Bussi, P. Surface induced crystallization in ultrahigh-modulus polyethylene fiber-reinforced polyethylene composites. Macromolecules 1991, 24, 3569–3577. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Pomchiengpin, W.; Songpiriyakij, S. Post-crack (or post-peak) flexural response and toughness of fiber reinforced concrete after exposure to high temperature. Constr. Build. Mater. 2010, 24, 1967–1974. [Google Scholar] [CrossRef]
- Sadrmomtazi, A.; Tahmouresi, B. Effect of fiber on mechanical properties and toughness of self-compacting concrete exposed to high temperatures. Civil Eng. 2017, 1, 153–166. [Google Scholar]
- Song, Y.-W.; Yoon, S.; Jeong, Y.; Gong, M.-H. Properties of fire resistance of high strength concrete with diameter and fiber content of PET fiber. In Proceedings of the Korea Concrete Institute Conference; Korea Concrete Institute: Seoul, Korea, 2009; pp. 475–476. [Google Scholar]
- Choi, S.-W.; Lee, G.-P.; Chang, S.-H.; Park, Y.-T.; Bae, G.-J. Fire resistance assessment of high strength segment concrete depending on PET fiber amount under fire curves. J. Korean Tunn. Undergr. Space Assoc. 2014, 16, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Moody, V.; Needles, H.L. Tufted Carpet: Textile Fibers, Dyes, Finishes and Processes; William Andrew: Norwich, NY, USA, 2004. [Google Scholar]
- Sim, J.; Park, C.; Moon, D.Y. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part. B Eng. 2005, 36, 504–512. [Google Scholar] [CrossRef]
Property | Polymer Fibers | ||||||||
---|---|---|---|---|---|---|---|---|---|
Polypropylene | Nylon | Polyvinyl Alcohol | Polyolefin | Carbon | Polyethylene | Polyester | Acrylic | Aramid | |
Tensile Strength (MPa) | 60–700 | 300–950 | 850–1600 | 300–700 | 1500–7000 | 40–3000 | 250–1000 | 300–1000 | 2300–3400 |
Elastic Modulus (GPa) | 1.5–10.0 | 3.0–5.4 | 25–41 | 3.0–10 | 30–500 | 0.5–120 | 10–20 | 3.8–17 | 70–143 |
Ultimate Strain (%) | 8.0–15.0 | 10.0–20.0 | 5.0–7.0 | 5.0–15.0 | 0.5–2.5 | 3.0–80.0 | 10.0–50.0 | 7.5–50.0 | 2.0–4.5 |
Water Absorption (%) | 0 | 2.5–5.0 | 0.1–1.0 | 0 | 0 | 0 | 0.2–0.6 | 1.0–2.5 | 1.2–4.0 |
Specific Gravity | 0.90–0.95 | 1.13–1.15 | 1.30 | 0.90–0.95 | 1.60–1.90 | 0.92–0.98 | 1.32–1.38 | 0.91–1.20 | 1.39–1.47 |
Property | Glass Fibers | ||
---|---|---|---|
Silica Glass | Basalt Glass | GFRP/BFRP | |
Tensile Strength (MPa) | 1700–4600 | 1800–4800 | 1080 |
Elastic Modulus (GPa) | 72–89 | 72–110 | 44 |
Ultimate Strain (%) | 2.0–3.5 | 2.0–3.5 | 2.0–3.0 |
Water Absorption (%) | 0 | 0 | 0 |
Specific Gravity | 2.6–2.7 | 2.55–2.8 | 1.9–2.1 |
Fiber | Stability | Bond | Workability | Pre-Peak Mechanical Properties | Post-Peak Mechanical Properties | Shrinkage | Temperature and Fire Resistance | Cost | Availability | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Compressive Strength | Tensile & Flexural Strength | Melting Point | Performance | ||||||||
PP | E | F–G | G | W–F | F | F | G–E | Low | F–G | E | E |
Nylon | E | G | F–G | W–F | F | W–F | W | Low | E | F–G | G |
PVA | E | E | W | W–F | F–G | F | F–G | Low | G | W | F |
PO | E | G | G | W–F | F–G | F | G | Low | NI | G–E | G |
Carbon | E | F–G | G | F–G | G–E | G–E | G | High | F–G | W | W |
HSPE | E | W | G | W–F | F | F | G–E | Low | NI | W | NI |
PET | F–G | F–G | G | W–F | F | F | F | Low | F–G | NI | NI |
PAN | F–G | G | G | W–F | F | F | NI | Low | NI | W | F–G |
Aramid | W–G | F | G | W–F | G–E | G–E | NI | High | F–G | W | W |
Silica Glass | W | G | G | W–G | G | F–G | F | High | F | G | E |
Basalt Glass | W | G | E | W–G | E | G–E | F–G | Very High | E | G–E | F |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafei, B.; Kazemian, M.; Dopko, M.; Najimi, M. State-of-the-Art Review of Capabilities and Limitations of Polymer and Glass Fibers Used for Fiber-Reinforced Concrete. Materials 2021, 14, 409. https://doi.org/10.3390/ma14020409
Shafei B, Kazemian M, Dopko M, Najimi M. State-of-the-Art Review of Capabilities and Limitations of Polymer and Glass Fibers Used for Fiber-Reinforced Concrete. Materials. 2021; 14(2):409. https://doi.org/10.3390/ma14020409
Chicago/Turabian StyleShafei, Behrouz, Maziar Kazemian, Michael Dopko, and Meysam Najimi. 2021. "State-of-the-Art Review of Capabilities and Limitations of Polymer and Glass Fibers Used for Fiber-Reinforced Concrete" Materials 14, no. 2: 409. https://doi.org/10.3390/ma14020409
APA StyleShafei, B., Kazemian, M., Dopko, M., & Najimi, M. (2021). State-of-the-Art Review of Capabilities and Limitations of Polymer and Glass Fibers Used for Fiber-Reinforced Concrete. Materials, 14(2), 409. https://doi.org/10.3390/ma14020409