Conformational Stability of Poly (N-Isopropylacrylamide) Anchored on the Surface of Gold Nanoparticles
Abstract
:1. Introduction
2. Experiment Section
2.1. Materials
2.2. Preparation of AuNPs Coated with PNIPAM-SH
2.2.1. Preparation of AuNPs
2.2.2. Preparation of PNIPAM-SH
2.2.3. Preparation of Solutions Related to the Interaction with AuNPs
2.3. Characterization
3. Results and Discussion
3.1. The Effect of Temperature on the Colorimetric Properties of AuNPs-PNIPAM
3.2. The Effect of Salt on the Colorimetric Properties of AuNPs-PNIPAM
3.3. The Effect of Proton Diffusion on the Stability of AuNPs-PNIPAM
3.4. The Effect of Ethyl Alcohol Diffusion on the Stability of AuNPs-PNIPAM
3.5. The Effect of CTAB Diffusion on the Stability of AuNPs-PNIPAM
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Link, S.; El-Sayed, M.A. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Fang, Z.; Wang, C.; Zhou, J.; Duan, B.; Pu, L.; Duan, H. Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery. Nanoscale 2013, 5, 5816–5824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, S.D.; Nativo, P.; Smith, J.; Stirling, D.; Edwards, P.R.; Venugopal, B.; Flint, D.J.; Plumb, J.A.; Graham, D.; Wheate, N.J. Gold Nanoparticles for the Improved Anticancer Drug Delivery of the Active Component of Oxaliplatin. J. Am. Chem. Soc. 2010, 132, 4678–4684. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Zhong, Y.; Du, M.; Liu, Q.; Fan, Z.; Dai, F.; Zhang, X. Theranostic Self-Assembly Structure of Gold Nanoparticles for NIR Photothermal Therapy and X-Ray Computed Tomography Imaging. Theranostics 2014, 4, 904–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Tan, S.; Ang, C.; Luo, Z.; Zhao, Y. Oxidation-triggered aggregation of gold nanoparticles for naked-eye detection of hydrogen peroxide. Chem. Commun. 2016, 52, 3508–3511. [Google Scholar] [CrossRef]
- Kaboudin, B.; Khanmohammadi, H.; Kazemi, F. Polymer supported gold nanoparticles: Synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water. Appl. Surf. Sci. 2017, 425, 400–406. [Google Scholar] [CrossRef]
- Krpetić, Z.; Singh, I.; Su, W.; Guerrini, L.; Faulds, K.; Burley, G.A.; Graham, D. Directed Assembly of DNA-Functionalized Gold Nanoparticles Using Pyrrole−Imidazole Polyamides. J. Am. Chem. Soc. 2012, 134, 8356–8359. [Google Scholar] [CrossRef]
- Park, G.; Seo, D.; Chung, I.; Song, H. Poly(ethylene glycol)- and Carboxylate-Functionalized Gold Nanoparticles Using Polymer Linkages: Single-Step Synthesis, High Stability, and Plasmonic Detection of Proteins. Langmuir 2013, 29, 13518–13526. [Google Scholar] [CrossRef]
- Takara, M.; Toyoshima, M.; Seto, H.; Hoshino, Y.; Miura, Y. Polymer-modified gold nanoparticles via RAFT polymerization: A detailed study for a biosensing application. Polym. Chem. 2014, 5, 931–939. [Google Scholar] [CrossRef]
- Du, H.; Wickramasinghe, R.; Qian, X. Effects of Salt on the Lower Critical Solution Temperature of Poly (N-Isopropylacrylamide). J. Phys. Chem. B 2010, 114, 16594–16604. [Google Scholar] [CrossRef] [PubMed]
- Yusa, S.; Fukuda, K.; Yamamoto, T.; Iwasaki, Y.; Watanabe, A.; Akiyoshi, K.; Morishima, Y. Salt Effect on the Heat-Induced Association Behavior of Gold Nanoparticles Coated with Poly(N-isopropylacrylamide) Prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) Radical Polymerization. Langmuir 2007, 23, 12842–12848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Maji, S.; Antunes, A.B.F.; Rycke, R.D.; Zhang, Q.; Hoogenboom, R.; Geest, B.G.D. Salt Plays a Pivotal Role in the Temperature-Responsive Aggregation and Layer-by-Layer Assembly of Polymer-Decorated Gold Nanoparticles. Chem. Mater. 2013, 25, 4297–4303. [Google Scholar] [CrossRef]
- Maji, S.; Cesur, B.; Zhang, Z.; Geest, B.G.D.; Hoogenboom, R. Poly(N-isopropylacrylamide) coated gold nanoparticles as colourimetric temperature and salt sensors. Polym. Chem. 2016, 7, 1705–1710. [Google Scholar] [CrossRef]
- Humphreys, B.A.; Cesur, B.; Webber, G.B. Effect of ionic strength and salt identity on poly(N-isopropylacrylamide) brush modified colloidal silica particles. J. Colloid Interfaces Sci. 2018, 516, 153–161. [Google Scholar] [CrossRef]
- Barreto, Â.; Luis, L.G.; Girão, A.V.; Trindade, T.; Soares, A.M.V.M.; Oliveira, M. Behavior of colloidal gold nanoparticles in different ionic strength media. J. Nanopart. Res. 2015, 17, 493–505. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, X.; Mallawaarachchi, S.; Hapuarachchi, H.; Shi, Q.; Dong, D.; Thang, S.H.; Premaratned, M.; Cheng, W. Poly(N-isopropylacrylamide) capped plasmonic nanoparticles as resonance intensity-based temperature sensors with linear correlation. J. Mater. Chem. C 2017, 5, 10926–10932. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, L.; Exarhos, G.J.; Li, A.D.Q. Thermosensitive Gold Nanoparticles. J. Am. Chem. Soc. 2004, 126, 2656–2657. [Google Scholar] [CrossRef]
- Jones, S.T.; Walsh-Korb, Z.; Barrow, S.J.; Henderson, S.L.; Barrio, J.; Scherman, O.A. The Importance of Excess Poly(N-isopropylacrylamide) for the Aggregation of Poly(N-isopropylacrylamide)- Coated Gold Nanoparticles. ACS Nano 2016, 10, 3158–3165. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Soeriyadi, A.H.; Vivekchand, S.R.C.; Gooding, J.J. Simple Method for Tuning the Optical Properties of Thermoresponsive Plasmonic Nanogels. ACS Macro Lett. 2016, 5, 626–630. [Google Scholar] [CrossRef]
- Bittrich, E.; Burkert, S.; Muller, M.; Eichhorn, K.; Stamm, M.; Uhlmann, P. Temperature-Sensitive Swelling of Poly(N-isopropylacrylamide) Brushes with Low Molecular Weight and Grafting Density. Langmuir 2012, 28, 3439–3448. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Brittain, W.J. Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 2000, 25, 677–710. [Google Scholar] [CrossRef]
- Plunkett, K.N.; Zhu, X.; Moore, J.S.; Leckband, D.E. PNIPAM Chain Collapse Depends on the Molecular Weight and Grafting Density. Langmuir 2006, 22, 4259–4266. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, B.A.; Prescott, S.W.; Murdoch, T.J.; Nelson, A.; Gilbert, E.P.; Webber, G.B.; Wanless, E.J. Influence of molecular weight on PNIPAM brush modified colloidal silica particles. Soft Matter 2019, 15, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Malham, I.B.; Bureau, L. Density effects on collapse, compression and adhesion of thermoresponsive polymer brushes. Langmuir 2010, 26, 4762–4768. [Google Scholar] [CrossRef] [Green Version]
- Shan, J.; Chen, J.; Nuopponen, M.; Tenhu, H. Two Phase Transitions of Poly(N-isopropylacrylamide) Brushes Bound to Gold Nanoparticles. Langmuir 2004, 20, 4671–4676. [Google Scholar] [CrossRef]
- Gibson, M.I.; O’Reilly, R.K. To aggregate, or not to aggregate? Considerations in the design and application of polymeric thermally-responsive nanoparticles. Chem. Soc. Rev. 2013, 42, 7204–7213. [Google Scholar] [CrossRef] [Green Version]
- Yim, H.; Kent, M.S. Effects of Grafting Density and Molecular Weight on the Temperature-Dependent Conformational Change of Poly(N-isopropylacrylamide) Grafted Chains in Water. Macromolecules 2006, 39, 3420–3426. [Google Scholar] [CrossRef]
- Bastús, N.G.; Comenge, J.; Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus Ostwald ripening. Langmuir 2011, 27, 11098–11105. [Google Scholar] [CrossRef]
- Kusolkamabot, K.; Sae-ung, P.; Niamnont, N.; Wongravee, K.; Sukwattanasinitt, M.; Hoven, V.P. Poly(N-isopropylacrylamide)-Stabilized Gold Nanoparticles in Combination with Tricationic Branched Phenylene-Ethynylene Fluorophore for Protein Identification. Langmuir 2013, 29, 12317–12327. [Google Scholar] [CrossRef]
- Sharma, V.; Chotia, C.; Tarachand; Ganesan, V.; Okram, G.S. Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles. Phys. Chem. Chem. Phys. 2017, 19, 14096–14106. [Google Scholar] [CrossRef] [PubMed]
- Ojea-Jiménez, I.; Romero, F.M.; Bastús, N.G.; Puntes, V. Small Gold Nanoparticles Synthesized with Sodium Citrate and Heavy Water: Insights into the Reaction Mechanism. J. Phys. Chem. C 2010, 114, 1800–1804. [Google Scholar] [CrossRef]
- Nandwani, S.K.; Chakraborty, M.; Gupta, S. Adsorption of Surface Active Ionic Liquids on Diferent Rock Types under High Salinity Conditions. Sci. Rep. 2019, 9, 14760–14775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Z.; Huang, X.; Yang, C. Deposition of colloidal particles in a microchannel at elevated temperatures. Microfluid. Nanofluid. 2015, 18, 403–414. [Google Scholar] [CrossRef]
- Zhang, Y.; Furyk, S.; Sagle, L.B.; Cho, Y.; Bergbreiter, D.E.; Cremer, P.S. Effects of Hofmeister Anions on the LCST of PNIPAM as a Function of Molecular Weight. J. Phys. Chem. C 2007, 111, 8916–8924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischofberger, I.; Trappe, V. New aspects in the phase behaviour of poly-N-isopropyl acrylamide: Systematic temperature dependent shrinking of PNiPAM assemblies well beyond the LCST. Sci. Rep. 2015, 5, 15520–15529. [Google Scholar] [CrossRef]
- Gajinov, Z.; Matić, M.; Prćić, S.; Đuran, V. Optical properties of the human skin. Serb. J. Dermatol. Venereol. 2010, 2, 131–136. [Google Scholar] [CrossRef]
- Pei, Y.; Chen, J.; Yang, L.; Shi, L.; Tao, Q.; Hui, B.; Li, J. The effect of pH on the LCST of poly(Nisopropylacrylamide) and poly(Nisopropylacrylamide-co-acrylic acid). J. Biomater. Sci. Polym. Ed. 2004, 15, 585–594. [Google Scholar] [CrossRef]
- Nayak, P.K.; Hathorne, A.P.; Bermudez, H. Critical solution behavior of poly(N-isopropyl acrylamide) in ionic liquid–water mixtures. Phys. Chem. Chem. Phys. 2013, 15, 1806–1809. [Google Scholar] [CrossRef]
- Karg, M.; Pastoriza-Santos, I.; Rodriguez-González, B.; Klitzing, R.; Wellert, S.; Hellweg, T. Temperature, pH, and Ionic Strength Induced Changes of the Swelling Behavior of PNIPAM-Poly(allylacetic acid) Copolymer Microgels. Langmuir 2008, 24, 6300–6306. [Google Scholar] [CrossRef]
- Kazuma, E.; Tatsuma, T. Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips. ACS Nanoscale 2014, 6, 2397–2405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Chang, C.; You, M.; Pan, M.; Wei, P. Enhancing Surface Sensing Sensitivity of Metallic Nanostructures using Blue-Shifted Surface Plasmon Mode and Fano Resonance. Sci. Rep. 2018, 8, 9762–9773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyagi, H.; Khan, T.; Mohapatra, J.; Mitra, A.; Kalitaad, H.; Aslam, M. The exclusive response of LSPR in uncapped gold nanoparticles towards silver ions and gold chloride ions. RSC Adv. 2016, 6, 109192–109200. [Google Scholar] [CrossRef]
- Wei, H.; Willner, M.R.; Marr, L.C.; Vikesland, P.J. Highly stable SERS pH nanoprobes produced by co-solvent controlled AuNP aggregation. Analyst 2016, 141, 5159–5169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischofberger, I.; Calzolari, D.C.E.; Rios, P.D.L.; Jelezarov, I.; Trappe, V. Hydrophobic hydration of poly-N-isopropyl acrylamide: A matter of the mean energetic state of water. Sci. Rep. 2014, 4, 4377–4383. [Google Scholar] [CrossRef] [Green Version]
- Dalgicdir, C.; Rodríguez-Ropero, F.; Vegt, N.F.A. Computational Calorimetry of PNIPAM Cononsolvency in Water/Methanol Mixtures. J. Phys. Chem. B 2017, 121, 7741–7748. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Gu, X.; Chen, C.; Zhang, Y.; Hu, D. Study on the Assembly Structure Variation of Cetyltrimethylammonium Bromide on the Surface of Gold Nanoparticles. ACS Omega 2020, 5, 4943–4952. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Cheng, C.; Wang, Z.; Gu, X.; Zhang, C.; Wang, C.; Liang, X.; Hu, D. Conformational Stability of Poly (N-Isopropylacrylamide) Anchored on the Surface of Gold Nanoparticles. Materials 2021, 14, 443. https://doi.org/10.3390/ma14020443
Li R, Cheng C, Wang Z, Gu X, Zhang C, Wang C, Liang X, Hu D. Conformational Stability of Poly (N-Isopropylacrylamide) Anchored on the Surface of Gold Nanoparticles. Materials. 2021; 14(2):443. https://doi.org/10.3390/ma14020443
Chicago/Turabian StyleLi, Runmei, Cong Cheng, Zhuorui Wang, Xuefan Gu, Caixia Zhang, Chen Wang, Xinyue Liang, and Daodao Hu. 2021. "Conformational Stability of Poly (N-Isopropylacrylamide) Anchored on the Surface of Gold Nanoparticles" Materials 14, no. 2: 443. https://doi.org/10.3390/ma14020443
APA StyleLi, R., Cheng, C., Wang, Z., Gu, X., Zhang, C., Wang, C., Liang, X., & Hu, D. (2021). Conformational Stability of Poly (N-Isopropylacrylamide) Anchored on the Surface of Gold Nanoparticles. Materials, 14(2), 443. https://doi.org/10.3390/ma14020443