Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pyrolysis of the Sewage Sludge Biochar (SSB)
2.2. Measurement of Biochar SSB
2.3. Extraction and Analysis of Heavy Metals
2.3.1. Concentrations and Chemical Forms of Heavy Metals
2.3.2. Ecological Risk Index (RI) of Heavy Metals
3. Results and Discussion
3.1. The Characteristics of Sewage Sludge and SSB
3.2. FTIR Analysis
3.3. SEM Analysis
3.4. Analysis of Heavy Metals
3.4.1. Total Contents of Heavy Metals in Sewage Sludge and Biochar SSB
3.4.2. Analysis of the Chemical Forms of Heavy Metals in Sewage Sludge and Biochar SSB
3.4.3. Ecological Risk Assessment of Heavy Metals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, G.; Hu, Y.; Wang, J. Biohydrogen production from co-fermentation of fallen leaves and sewage sludge. Bioresour. Technol. 2019, 285, 121342. [Google Scholar] [CrossRef]
- Fan, H.; Lv, M.; Wang, X. Effect of Cr on the Mineral Structure and Composition of Cement Clinker and Its Solidification Behavior. Materials 2020, 13, 1529. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Tang, Y.; Shih, K. Enhanced phosphorus availability and heavy metal removal by chlorination during sewage sludge pyrolysis. J. Hazard. Mater. 2020, 382, 121110. [Google Scholar] [CrossRef]
- Thomsen, T.P.; Sarossy, Z.; Ahrenfeldt, J.; Henriksen, U.B.; Frandsen, F.J.; Muller-Stover, D.S. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge. J. Environ. Manag. 2017, 198, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Li, Y.; Zhang, J.; Wu, S.; Cao, Y.; Liang, P.; Zhang, J.; Wong, M.H.; Wang, M.; Shan, S.; et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 2016, 320, 417–426. [Google Scholar] [CrossRef]
- Jin, H.; Renato, O.; Arazo, J.G. Leaching of heavy metals from fast pyrolysis residues produced from different particle sizes of sewage sludge. J. Anal. Appl. Pyrolysis 2014, 109, 168–175. [Google Scholar] [CrossRef]
- Fonts, I.; Gea, G.; Azuara, M.; Ábrego, J.; Arauzo, J. Sewage sludge pyrolysis for liquid production: A review, Renew. Sustain. Energy Rev. 2012, 16, 2781–2805. [Google Scholar] [CrossRef]
- Méndez, A.; Paz-Ferreiro, J.; Araujo, F.; Gascó, G. Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil. J. Anal. Appl. Pyrolysis. 2014, 107, 46–52. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Li, Z. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotoxicol. Environ. Saf. 2019, 168, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Sohi, S.P. Carbon storage with benefits. Science 2012, 338, 1034–1035. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Chen, B. A direct observation of the fine aromatic clusters and molecular structures of biochars. Environ. Sci. Technol. 2017, 51, 5473–5482. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.; Saroha, A.K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour. Technol. 2014, 162, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, Z.; Zheng, Q.; Lang, Q.; Xia, Y.; Peng, N.; Gai, C. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis. Bioresour. Technol. 2018, 247, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhang, B.; Saad, E.M.; Ingall, E.D.; Tang, Y. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges. Water Res. 2018, 132, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Legros, S.; Levard, C.; Marcato-Romain, C.E.; Guiresse, M.; Doelsch, E. Anaerobic digestion alters copper and zinc speciation. Environ. Sci. Technol. 2017, 51, 10326–10334. [Google Scholar] [CrossRef] [Green Version]
- Khanmohammadi, Z.; Afyuni, M.; Mosaddeghi, M.R. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Manag. Res. 2015, 33, 275–283. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef]
- Hakanson, L. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Huang, H.-J.; Yuan, X.-Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Bioresour. Technol. 2016, 200, 991–998. [Google Scholar] [CrossRef]
- Song, X.D.; Xue, X.Y.; Chen, D.Z.; He, P.J.; Dai, X.H. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 2014, 109, 213–220. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Deng, X.; Zhao, J.; Luo, Y.; Novak, J.; Herbert, S.; Xing, B. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour. Technol. 2013, 130, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lu, Y.; Liu, Y.; Sun, H.; Liang, Z. Adsorption mechanisms of Cadmium (II) on biochars derived from corn straw. J. Agro Environ. Sci. China 2014, 31, 2277–2283. [Google Scholar]
Characteristics | SS | SSB-300 | SSB-400 | SSB-500 | SSB-600 | SSB-700 |
---|---|---|---|---|---|---|
Yield (wt %) | / | 74.30 ± 0.43 | 63.58 ± 0.29 | 57.58 ± 0.29 | 55.42 ± 0.42 | 51.41 ± 0.08 |
Ash content (wt %) | 38.85 ± 0.10 | 52.00 ± 0.38 | 63.62 ± 0.20 | 69.09 ± 0.40 | 71.20 ± 1.17 | 82.51 ± 0.45 |
pH value | 6.77 ± 0.06 | 7.60 ± 0.00 | 7.73 ± 0.06 | 9.27 ± 0.06 | 10.27 ± 0.06 | 10.97 ± 0.06 |
C (wt %) | 31.77 ± 0.04 | 31.55 ± 0.15 | 25.88 ± 0.15 | 22.66 ± 0.08 | 22.69 ± 0.08 | 13.69 ± 0.03 |
H (wt %) | 4.30 ± 0.36 | 3.18 ± 0.17 | 1.83 ± 0.09 | 1.25 ± 0.10 | 0.58 ± 0.01 | 0.48 ± 0.00 |
N (wt %) | 2.78 ± 0.06 | 2.68 ± 0.02 | 2.14 ± 0.03 | 1.83 ± 0.01 | 1.65 ± 0.04 | 0.76 ± 0.01 |
S (wt %) | 0.61 ± 0.01 | 0.46 ± 0.01 | 0.27 ± 0.01 | 0.13 ± 0.00 | 0.11 ± 0.01 | 0.53 ± 0.01 |
O (wt %) | 21.69 | 10.13 | 6.26 | 5.04 | 3.77 | 2.03 |
Molar H/C | 1.62 | 1.21 | 0.85 | 0.66 | 0.31 | 0.42 |
Molar O/C | 0.51 | 0.24 | 0.18 | 0.17 | 0.12 | 0.11 |
Specific surface area (m2/g) | 1.88 | 2.03 | 3.42 | 5.88 | 11.16 | 11.26 |
Sample | Heavy Metal (mg·kg−1) | |||||
---|---|---|---|---|---|---|
Cd | Cr | Cu | Ni | Pb | Zn | |
SS | 7.05 ± 0.01 | 124.15 ± 0.86 | 134.70 ± 0.88 | 14.29 ± 0.06 | 121.78 ± 0.23 | 1341.73 ± 6.25 |
SSB-300 | 9.15 ± 0.01 | 159.51 ± 2.88 | 174.40 ± 3.71 | 18.90 ± 1.08 | 157.42 ± 3.01 | 1761.42 ± 9.26 |
SSB-400 | 10.67 ± 0.02 | 184.45 ± 1.93 | 201.38 ± 1.41 | 21.93 ± 0.34 | 179.20 ± 1.59 | 2034.77 ± 18.45 |
SSB-500 | 11.32 ± 0.01 | 200.45 ± 3.07 | 222.69 ± 2.66 | 24.19 ± 0.19 | 195.63 ± 2.75 | 2235.49 ± 21.93 |
SSB-600 | 11.54 ± 0.10 | 209.58 ± 2.49 | 231.02 ± 3.17 | 25.24 ± 0.42 | 200.53 ± 3.59 | 2212.49 ± 13.13 |
SSB-700 | 10.87 ± 0.03 | 225.61 ± 4.26 | 248.96 ± 1.54 | 27.12 ± 0.65 | 204.86 ± 3.10 | 2355.45 ± 39.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Ding, S.; Fan, H.; Ren, Y. Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment. Materials 2021, 14, 447. https://doi.org/10.3390/ma14020447
Li B, Ding S, Fan H, Ren Y. Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment. Materials. 2021; 14(2):447. https://doi.org/10.3390/ma14020447
Chicago/Turabian StyleLi, Binbin, Songxiong Ding, Haihong Fan, and Yu Ren. 2021. "Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment" Materials 14, no. 2: 447. https://doi.org/10.3390/ma14020447
APA StyleLi, B., Ding, S., Fan, H., & Ren, Y. (2021). Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment. Materials, 14(2), 447. https://doi.org/10.3390/ma14020447