Dependence of Heat Transport in Solids on Length-Scale, Pressure, and Temperature: Implications for Mechanisms and Thermodynamics
Abstract
:1. Introduction
1.1. Summary of the LFA Database
1.2. Purpose and Organization of the Paper
2. Macroscopic Theory of Heat Diffusion
2.1. Lumped Parameters
2.2. Dimensional Analysis of Fourier’s Equation
2.3. The Importance of Space and Heat Capacity
2.4. Parallel Flow Depicts Co-Existing Mechanisms in Condensed Matter
3. The Method of Laser Flash Analysis
3.1. Principles and Essentials
- Parallel ray geometry (not spot heating) and flat sample shape so heat flow is one-dimensional.
- A front surface coating (e.g., graphite) to provide a blackbody spectrum which diffuses.
- Small T changes from the pulse and a negligible initial thermal gradient existing across the sample, so transport occurs under approximately isothermal conditions.
- A rear surface coating so emissions are collected from the surface, not from the interior.
- A well-defined application time of the pulse and a known length over which diffusion occurs.
3.1.1. Model for External Radiative Cooling
3.1.2. Model Removing Effects of Fast Internal (Ballistic) Transport from T-t Curves
3.1.3. Sequential Rises in Metals Show Electronic Transport Is Transient and Carries Little Heat
- Electrons outpacing vibrations means that the electrons enter a “cold” region first, and so can give their heat to the valance electrons (and vibrating cations) but cannot uptake heat from the colder surroundings, due to thermodynamic law.
- Excited conduction electrons have a different set of energy states (levels) than those with ambient temperature, so energy exchange from hot to cold electrons is permitted. One may consider the heat transfer as electrons trading states or as the process involving a transient state.
3.2. Methodology: Details of LFA Experiments Utilized in This Report
4. Measured Thermal Diffusivity at Ambient Pressure
4.1. Results for D(T) at Large L
4.1.1. A Universal Law for D(T) at Large L
Sample | L | D(T) | T Range | Source |
---|---|---|---|---|
mm | mm2·s−1 | K | ||
W 99.9% | 6.35 | 858.03 T−0.38872 | 290–1100 | This work |
Ti 99.995% | 3.64 | 66.167 T−0.33605 | 290–900 | [22] |
Pd 99.9% | 3.45 | 7.7392 T+0.20185 | 290–1200 | [22] |
Si 99.999% | 2.016 | 54,1490 T−1.5477 + 0.0022293 T | 290–1690 | [10] |
Graphite ZXF-Q5 | ~2 | 34,499 T−1.1531 + 0.0028225 T | 290–1930 | [42] |
MgO | 0.909 | 40,667 T−1.385 | 290–1460 | [43] |
Al2O3 ||c-axis | 1.106 | 4073 T−1.1063 | 560–1680 | [43] |
Al2O3 ||a-axis | 0.993 | 2835.9 T−1.0555 | 560–1770 | [43] |
KTaO3 | 0.547 | 3973.9 T−1.1882 + 0.00025285 T | 290–1570 | [32] |
PbS | 1.02 | 1302.4 T−1.1875 + 0.00029244 T | 290–1130 | [4] |
SiO2 glass KU2 | 0.567 | 3.5582 T−0.2672 + 9.9943 × 10−5 T | 290–1565 | [44] |
4.1.2. Importance of Bond Type to Moderate Temperature Behavior
4.1.3. High Temperature Behavior
4.1.4. Vibrational vs. Electronic Transport in Metals
4.2. Dependence of Thermal Diffusivity Near 298 K on Sample Thickness
4.2.1. Effect of Thickness on D of Insulators at Ambient Temperature
4.2.2. Effect of Thickness on D of Elements and Alloys at Ambient Temperature
4.3. Combined Effect of Thickness and Temperature on Thermal Diffusivity
5. Heat Conduction at Elevated Pressure
5.1. Low-Pressure Transport Data on Thick Metals
5.2. Low Pressure Transport Data on Thick Electrical Insulators and Si
5.3. Problematic DAC Studies of Very Thin Metals
5.3.1. DAC Experiments with One Laser
5.3.2. DAC Experiments with Two Lasers
5.4. DAC Studies of Thin Electrical Insulators
5.5. Implications of Reliable Data on ∂ln(κ)/∂P for Lifetimes and Mechanism
5.5.1. Mechanism Independent Information on Lifetimes and Compression
5.5.2. A New Thermodynamic Formula
5.5.3. Constraints on Bridgman’s Parameter
5.5.4. Mechanisms of Heat Transport
6. Radiative Diffusion Model for Conductive Heat Transfer in Solids
6.1. Basic Equations
6.1.1. Geometrical Factors
6.1.2. Limitations and Meaning of the Basic Formula
6.2. Equations for κ vs. P of Large Samples and Comparison with Data
6.3. Approximate Equations for κ vs. T of Large Samples and Comparison with Data
6.3.1. One Mechanism of Heat Absorption
6.3.2. Multiple Mechanisms and Complex Absorption Spectra
7. Conclusions
- All solids respond to heat in the same manner, as demonstrated by simple approximations for A(ν) reproducing the known shape for κ(T) which describes metals, semi-conductors, and electrical insulators with diverse chemical compositions and crystallographic structures, as well as disordered materials (alloys and glasses).
- The exact temperature dependence of κ for any given material depends primarily on the frequency dependence of its absorption coefficient and secondarily on its temperature dependence. This material property, A, embodies how the substance interacts with light.
- The logarithmic pressure dependence of specific heat equals the negative of the linear compressibility (26). This new thermodynamic formula does not stem from Maxwell’s relations. This relationship shows that matter loses heat-energy during compression: i.e., squeezing reduces the space that a mass occupies but does not alter the amount of light flowing through that space. Linear, not volumetric compressibility, is relevant because heat flows in one direction, namely down the thermal gradient.
- The logarithmic pressure response of κ consists of two terms that sum. One term is exactly linear compressibility, which reflects loss of heat-energy as described in the preceding point. The other much larger term, ∂lnα/∂P, which is related to other equation-of-state parameters, describes how the space that a mass occupies depends on both temperature and pressure.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hofmeister, A.M.; Pertermann, M.; Branlund, J.M. Thermal conductivity of the Earth. In Treatise in Geophysics; Schubert, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 2, pp. 543–578. [Google Scholar]
- Kellett, B.S. Transmission of radiation through glass in tank furnaces. J. Soc. Glass Tech. 1952, 36, 115–123. [Google Scholar]
- Berman, R.; Brock, J.C. The effect of isotopes on lattice heat conduction. I. Lithium fluoride. Proc. R. Soc. Lond. A 1965, 289, 46–65. [Google Scholar]
- Hofmeister, A.M. Measurements, Mechanisms, and Models of Heat Transport; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 1998, 57, 14985. [Google Scholar] [CrossRef]
- Minnich, A.A. Determining phonon mean free paths from observations of quasiballistic thermal transport. Phys. Rev. Lett. 2012, 109, 205901. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Yang, J.; Chen, Y.; Li, D.; Xu, D. Experimental evidence of very long intrinsic phonon mean free path along the c-axis of graphite. Appl. Phys. Lett. 2015, 106, 031905. [Google Scholar] [CrossRef]
- Reif, F. Fundamentals of Statistical and Thermal Physics; McGraw-Hill Book Co.: St. Louis, MO, USA, 1965. [Google Scholar]
- Criss, E.M.; Hofmeister, A.M. Isolating lattice from electronic contributions in thermal transport measurements of metals and alloys and a new model. Int. J. Mod. Phys. B 2017, 31, 1750205. [Google Scholar] [CrossRef] [Green Version]
- Hofmeister, A.M.; Dong, J.J.; Branlund, J.M. Thermal diffusivity of electrical insulators at high temperatures: Evidence for diffusion of phonon-polaritons at infrared frequencies augmenting phonon heat conduction. J. Appl. Phys. 2014, 115, 163517. [Google Scholar] [CrossRef]
- Parker, W.J.; Jenkins, R.J.; Butler, C.P.; Abbot, G.L. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. J. Appl. Phys. 1961, 32, 1679. [Google Scholar] [CrossRef]
- Degiovanni, A.; Andre, S.; Maillet, D. Phonic conductivity measurement of a semi-transparent material. In Thermal Conductivity 22; Tong, T.W., Ed.; Technomic: Lancaster, PA, USA, 1994; pp. 623–633. [Google Scholar]
- Blumm, J.; Henderson, J.B.; Nilson, O.; Fricke, J. Laser flash measurement of the phononic thermal diffusivity of glasses in the presence of ballistic radiative transfer. High Temp. High Pres. 1997, 34, 555–560. [Google Scholar] [CrossRef]
- Hahn, O.; Hofmann, R.; Raether, F.; Mehling, H.; Fricke, J. Transient heat transfer in coated diathermic media: A theoretical study. High Temp. High Press. 1997, 29, 693–701. [Google Scholar] [CrossRef]
- Hoffmann, R.; Hahn, O.; Raether, F.; Mehling, H.; Fricke, J. Determination of thermal diffusivity in diathermic materials by laser-flash technique. High Temp. High Press. 1997, 29, 703–710. [Google Scholar] [CrossRef]
- Mehling, H.; Hautzinger, G.; Nilsson, O.; Fricke, J.; Hofmann, R.; Hahn, O. Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new mathematical model. Int. J. Thermophys. 1998, 19, 941–949. [Google Scholar] [CrossRef]
- Zhao, D.; Qian, X.; Gu, X.; Jajja, S.A.; Yang, R. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Packag. 2016, 138, 040802. [Google Scholar] [CrossRef] [Green Version]
- Hofmeister, A.M.; Branlund, J.M. Thermal conductivity of the Earth. In Treatise in Geophysics, 2nd ed.; Schubert, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2, pp. 584–608. [Google Scholar]
- Narasimhan, T.N. Thermal conductivity through the 19th century. Phys. Today 2010, 63, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed.; Oxford University Press: New York, NY, USA, 1959. [Google Scholar]
- Transtrum, M.K.; Machta, B.B.; Brown, K.S.; Daniels, B.C.; Myers, C.R.; Sethna, J.P. Perspective: Sloppiness and emergent theories in physics, biology, and beyond. J. Chem. Phys. 2015, 143, 010901. [Google Scholar] [CrossRef]
- Criss, E.M.; Hofmeister, A.M. Transport Properties of Metals, Alloys, and Their Melts from LFA Measurements. In Measurements, Mechanisms, and Models of Heat Transport; Hofmeister, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 295–325. [Google Scholar]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; W.B. Saunders Co.: Philifelphia, PA, USA, 1976. [Google Scholar]
- Hust, J.G.; Lankford, A.B. Update of thermal conductivity and electrical resistivity of electrolytic iron, tungsten, and stainless steel. Natl. Bur. Stand. Spec. Pub. 1984, 260, 90. [Google Scholar]
- Rudkin, R.L.; Jenkins, R.J.; Parker, W.J. Thermal diffusivity measurements on metals at high temperatures. Rev. Sci. Instrum. 1962, 33, 21–24. [Google Scholar] [CrossRef]
- Vozár, L.; Hohenauer, W. Flash method of measuring the thermal diffusivity: A review. High Temp. High Press. 2004, 36, 253–264. [Google Scholar] [CrossRef]
- Corbin, S.F.; Turriff, D.M. Thermal Diffusivity by the Laser Flash Method. In Characterization of Materials; Kaufmann, E.N., Ed.; John Wiley and Sons, Inc.: New York, NY, USA, 2012; pp. 1–10. [Google Scholar]
- Cowan, D.R. Proposed method of measuring thermal diffusivity at high temperatures. J. Appl. Phys. 1961, 32, 1363–1370. [Google Scholar] [CrossRef]
- Cowan, D.R. Pulse method of measuring thermal diffusivity at high temperatures. J. Appl. Phys. 1963, 34, 926–927. [Google Scholar] [CrossRef]
- Beck, P.; Goncharov, A.F.; Struzhkin, V.V.; Militzer, B.; Mao, H.K.; Hemley, R.J. Measurement of thermal diffusivity at high pressure using a transient heating technique. Appl. Phys. Lett. 2007, 91, 181914. [Google Scholar] [CrossRef]
- Hofmeister, A.M. Thermal diffusivity of garnets at high temperature. Phys. Chem. Miner. 2006, 33, 45–62. [Google Scholar] [CrossRef]
- Hofmeister, A.M. Thermal diffusivity of perovskite-type compounds at elevated temperature. J. Appl. Phys. 2010, 107, 103532. [Google Scholar] [CrossRef]
- Pertermann, M.; Hofmeister, A.M. Thermal diffusivity of olivine-group minerals. Am. Mineral. 2006, 91, 1747–1760. [Google Scholar] [CrossRef]
- Branlund, J.M.; Hofmeister, A.M. Thermal diffusivity of quartz to 1000 degrees C: Effects of impurities and the α-β phase transition. Phys Chem. Miner. 2007, 34, 581–595. [Google Scholar] [CrossRef]
- Milošević, N. Application of the laser pulse method of measuring thermal diffusivity to thin alumina and silicon samples in a wide temperature range. J. Therm. Sci. 2010, 14, 417–423. [Google Scholar] [CrossRef]
- Hofmeister, A.M. Thermal diffusivity of aluminous spinels and magnetite at elevated temperature with implications for heat transport in Earth’s transition zone. Am. Mineral. 2007, 92, 1899–1911. [Google Scholar] [CrossRef]
- Bauer, M.; Marienfeld, A.; Aeschlimann, M. Hot electron lifetimes in metals probed by time-resolved two-photon photoemission. Prog. Surf. Sci. 2015, 90, 319–376. [Google Scholar] [CrossRef]
- Henderson, J.B.; Hagemann, L.; Blumm, J. Development of SRM 8420 Series Electrolytic Iron as a Thermal Diffusivity Standard; Thermophysical Properties Section Report No. I-9E; Netzsch Applications Laboratory: Selb, Germany, 1998. [Google Scholar]
- Henderson, J.B.; Giblin, F.; Blumm, J.; Hagemann, L. SRM 1460 series as a thermal diffusivity standard for laser flash instruments. Int. J. Thermophys. 1998, 19, 1647–1656. [Google Scholar] [CrossRef]
- Bräuer, H.; Dusza, L.; Schulz, B. New laser flash equipment LFA 427. Interceram 1992, 41, 489–492. [Google Scholar]
- Whittington, A.G. Heat and Mass Transfer in Glassy and Molten Silicates. In Measurements, Mechanisms, and Models of Heat Transport; Hofmeister, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 325–357. [Google Scholar]
- Poco Graphite Properties. Available online: http://poco.com/MaterialsandServices/Graphite.aspx (accessed on 3 November 2020).
- Hofmeister, A.M. Thermal diffusivity and thermal conductivity of single-crystal MgO and Al2O3 as a function of temperature. Phys. Chem. Miner. 2014, 41, 361–371. [Google Scholar] [CrossRef]
- Hofmeister, A.M.; Whittington, A.G. Thermal diffusivity of fused quartz, fused silica, and molten SiO2 at high temperature from laser flash analysis: Effects of hydration and annealing. J. Non Cryst. Solids 2012, 358, 1072–1082. [Google Scholar] [CrossRef]
- Gale, W.F.; Totemeier, T.C. Smithells Metals Reference Book, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Min, S.; Blumm, J.; Lindemann, A. A new laser flash system for measurement of the thermophysical properties. Thermochim. Acta 2007, 455, 46–49. Available online: https://www.netzsch-thermal-analysis.com/us/materials-applications/metals-alloys/pure-copper-thermal-diffusivity/ (accessed on 4 November 2020). [CrossRef]
- Campbell, R.C. Approximations in the use of two and three layer analysis models in flash diffusivity measurements. Therm. Conduct. 2020, 30, 328–338. [Google Scholar]
- Blumm, J.; Lindemann, A.; Niedrig, B.; Campbell, R. Measurement of selected thermophysical properties of the NPL certified reference material stainless steel 310. Int. J. Thermophys. 2007, 28, 674–682. [Google Scholar] [CrossRef]
- Rohde, M.; Hemberger, F.; Bauer, T.; Blumm, J.; Fend, T.; Häusler, T.; Hammerschmidt, U.; Hohenauer, W.; Jaenicke-Rössler, K.; Kaschnitz, E.; et al. Intercomparison of thermal diffusivity measurements on CuCrZr and PMMA. High Temp. High Press. 2013, 42, 469–472. [Google Scholar]
- Hofmeister, A.M.; Carpenter, P. Heat transport of micas. Can. Mineral. 2015, 53, 557–570. [Google Scholar] [CrossRef]
- Bridgmann, P.W. The Effect of Pressure on the Thermal Conductivity of Metals. Proc. Am. Acad. Art. Sci. 1922, 57, 77–127. [Google Scholar] [CrossRef]
- Katsura, T. Thermal diffusivity of periclase at high temperatures and pressures. Phys. Earth Planet Inter. 1997, 101, 73–77. [Google Scholar] [CrossRef]
- Katsura, T. Thermal diffusivity of silica glass at pressures up to 9 GPa. Phys. Chem. Miner. 1993, 20, 201–208. [Google Scholar] [CrossRef]
- Osako, M.; Ito, E.; Yoneda, A. Simultaneous measurements of thermal conductivity and thermal diffusivity for garnet and olivine under high pressure. Phys. Earth Planet. Inter. 2004, 143–144, 311–320. [Google Scholar] [CrossRef]
- Sundqvist, B.; Bäckström, G. Pressure dependence of the thermal conductivity of aluminum. Solid State Commun. 1977, 23, 773–775. [Google Scholar] [CrossRef]
- Sundqvist, B.; Bäckström, G. Thermal conductivity of gold and silver at high pressures. J. Phys. Chem. Solids 1978, 39, 1133–1137. [Google Scholar] [CrossRef]
- Sundqvist, B. Transport properties of iron and nickel under pressure. In High Pressure in Research and Industry, Proceedings of the 8th AIRAPT Conference and 19th EHPRG Conference, University of Uppsala, Uppsala, Sweden, 17–22 August 1981; Backman, C.M., Johannison, T., Tegnér, T., Eds.; Arkitektkopia: Stockholm, Sweden, 1982; pp. 432–433. [Google Scholar]
- Sundqvist, B. Thermal conductivity and Lorentz number of nickel under pressure. Solid State Commun. 1981, 37, 289–291. [Google Scholar] [CrossRef]
- Sundqvist, B.; Bäckström, G. Thermal conductivity of copper under high pressure. High Temp. High Press. 1977, 9, 41–48. [Google Scholar]
- Jacobsson, P.; Sundqvist, B. Thermal conductivity and Lorenz function of zinc under pressure. Int. J. Thermophys. 1988, 577–585. [Google Scholar] [CrossRef]
- Jacobsson, P.; Sundqvist, B. Thermal conductivity and electrical resistivity of gadolinium as functions of pressure and temperature. Phys. Rev. B 1989, 40, 9541–9551. [Google Scholar] [CrossRef]
- Jacobsson, P.; Sundqvist, B.J. Pressure dependence of the thermal and electrical conductivities of the intermetallic compounds AuCu and AuCu3. J. Phys. Chem. Solids 1988, 49, 441–450. [Google Scholar] [CrossRef]
- Andersson, S.; Bäckström, G. The thermal conductivity and heat capacity of single-crystal Si under hydrostatic pressure. J. Phys. C Solid State Phys. 1988, 21, 3727. [Google Scholar] [CrossRef]
- Andersson, S.; Bäckström, G. Techniques for determining thermal conductivity and heat capacity under hydrostatic pressure. Rev. Sci. Instrum. 1986, 57, 1633–1639. [Google Scholar] [CrossRef]
- Chai, M.; Brown, J.M.; Slutsky, L.J. Thermal diffusivity of mantle minerals. Phys. Chem. Miner. 1996, 23, 470–475. [Google Scholar] [CrossRef]
- Andersson, S.; Dzhavadov, L. Thermal conductivity and heat capacity of amorphous SiO2: Pressure and volume dependence. J. Phys. Condensed Matter. 1992, 4, 6209–6216. [Google Scholar] [CrossRef]
- Andersson, S.; Bäckström, G. Thermal conductivity and heat capacity of single-crystal LiF and CaF2 under hydrostatic pressure. J. Phys. C Solid State Phys. 1987, 20, 5951–5962. [Google Scholar] [CrossRef]
- Håkansson, B.; Ross, R.G. Thermal conductivity and heat capacity of solid LiBr and RbF under pressure. J. Phys. Condens. Matter 1989, 1, 3977–3985. [Google Scholar] [CrossRef]
- Håkansson, B.; Andersson, P. Thermal conductivity and heat capacity of solid NaCl and NaI under pressure. J. Phys. Condens. Matter 1989, 1, 3977–3985. [Google Scholar] [CrossRef]
- Pangilinan, G.I.; Ladouceur, H.D.; Russell, T.P. All-optical technique for measuring thermal properties of materials at static high pressure. Rev. Sci. Instrum. 2000, 71, 3846–3852. [Google Scholar] [CrossRef]
- Andersson, P. Thermal conductivity under pressure and through phase transitions in solid alkali halides. I. Experimental results for KCl, KBr, KI, RbCl, RbBr and RbI. J. Phys. C Solid State Phys. 1985, 18, 3943–3955. [Google Scholar] [CrossRef]
- Raju, S.; Mohandas, E.; Raghunathan, V.S. The pressure derivative of bulk modulus of transition metals: An estimation using the method of model potentials and a study of the systematics. J. Phys. Chem Solids 1997, 58, 1367–1373. [Google Scholar] [CrossRef]
- Iron. Available online: https://en.wikipedia.org/wiki/Iron (accessed on 1 October 2020).
- Touloukian, Y.S.; Kirby, R.K.; Taylor, R.E.; Desai, P.D. Thermal Expansion: Metallic Elements and Alloys; IFI/Plenum: New York, NY, USA, 1975. [Google Scholar]
- Ahrens, T.J. (Ed.) Mineral Physics and Crystallography. A Handbook of Physical Constants; American Geophysical Union: Washington, DC, USA, 1995. [Google Scholar]
- He, Q.; Yan, Z.-T. Study of temperature dependence of bulk modulus and interatomic separation for ionic solids. Phys. Stat. Sol. B 2001, 223, 767. [Google Scholar] [CrossRef]
- Sumino, Y.; Anderson, O.L. Elastic constants of minerals. In CRC Handbook of Physical Properties of Rocks; Carmichael, R.S., Ed.; CRC Press, Inc.: Boca Raton, FL, USA, 1984; Volume 3, pp. 39–139. [Google Scholar]
- Garai, J.; Laugier, A. The temperature dependence of the isothermal bulk modulus at pressure. J. Appl. Phys. 2007, 101, 023514. [Google Scholar] [CrossRef]
- Uszyfiski, I.; Janczak, J.; Kubiak, R. Thermal expansion of a-AuCu, AuCu(II) and AuCu(I) at low temperatures. J. Alloys Compd. 1994, 206, 211–213. [Google Scholar] [CrossRef]
- Philip, J.; Breazeale, M.A. Third-order elastic constants and Grüneisen parameters of silicon and germanium between 3 and 300 °K. J. Appl. Phys. 1983, 54, 752. [Google Scholar] [CrossRef]
- McWilliams, R.S.; Konôpková, Z.; Goncharov, A.F. A flash heating method for measuring thermal conductivity at high pressure and temperature: Application to Pt. Phys. Earth Planet. Inter. 2015, 174, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Konôpková, Z.; McWilliams, R.S.; Gómez-Pérez, N.; Goncharov, A.F. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 2016, 534, 99–101. [Google Scholar]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Watanabe, H.; Susa, M.; Fukuyama, H.; Nagata, K. Phase (liquid/solid) dependence of the normal spectral emissivity for iron, cobalt, and nickel at melting points. Int. J. Thermophys. 2003, 24, 473–488. [Google Scholar] [CrossRef]
- Goncharov, A.F.; Beck, P.; Struzhkin, V.V.; Haugen, B.D.; Jacobsen, S.D. Thermal conductivity of lower-mantle minerals. Phys. Earth Planet. Inter. 2009, 174, 24–32. [Google Scholar] [CrossRef]
- Goncharov, A.F.; Struzhkin, V.V.; Montoya, J.A.; Kharlamova, S.; Kundargi, R.; Siebert, J.; Badro, J.; Antonangeli, D.; Ryerson, F.J.; Mao, W. Effect of composition, structure, and spin state on the thermal conductivity of the Earth’s lower mantle. Phys. Earth Planet. Inter. 2010, 180, 148–153. [Google Scholar] [CrossRef]
- Hofmeister, A.M. Comment on “Measurement of thermal diffusivity at high pressure using a transient heating technique” in [Appl. Phys. Lett. 91, 181914 (2007)]. Appl. Phys. Lett. 2009, 95, 096101. [Google Scholar] [CrossRef] [Green Version]
- Yagi, T.; Ohta, K.; Kobayashi, K.; Taketoshi, N.; Hirose, K.; Baba, T. Thermal diffusivity measurement in a diamond anvil cell using a light pulse thermoreflectance technique. Meas. Sci. Technol. 2011, 22, 024011. [Google Scholar] [CrossRef] [Green Version]
- Okuda, Y.; Ohta, K.; Yagi, T.; Sinmyo, R.; Wakamatsu, T.; Hirose, K.; Ohishi, Y. The effect of iron and aluminum incorporation on lattice thermal conductivity of bridgmanite at the Earth’s lower mantle. Earth Planet. Sci. Lett. 2017, 474, 25–31. [Google Scholar] [CrossRef]
- Hsieh, W.P.; Chen, B.; Li, J.; Keblinski, P.; Cahill, D.G. Pressure tuning of the thermal conductivity of the layered muscovite crystal. Phys. Rev. B 2009, 80, 180302(R). [Google Scholar] [CrossRef]
- Gray, A.S.; Uher, C. Thermal conductivity of mica at low temperatures. J. Mater. Sci. 1977, 12, 959–965. [Google Scholar] [CrossRef]
- Goncharov, A.F.; Lobanov, S.S.; Tan, X.; Hohensee, G.T.; Cahill, D.G.; Lin, J.-F.; Thomas, S.-M.; Okuchi, T.; Tomioka, N. Experimental study of thermal conductivity at high pressures: Implications for the deep Earth’s interior. Phys. Earth Planet. Inter. 2015, 247, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Bridgmann, P.W. A complete collection of thermodynamic formulas. Phys. Rev. 1914, 3, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Eiling, A.; Schilling, J.S. Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1-300 K and 0-10 GPa-use as continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn, and In. J. Phys. F Met. Phys. 1981, 11, 623–639. [Google Scholar] [CrossRef]
- Melloni, M. La Thermochrôse ou la Coloration Calorifique; Joseph Baron: Naples, Italy, 1850; Available online: https://play.google.com/books/reader?id=5NgPAAAAQAAJ&printsec=frontcover&output=reader&hl=en&pg=GBS.PR3 (accessed on 21 February 2017).
- Bates, J.B. Infrared emission spectroscopy. Fourier Transform IR Spect. 1978, 1, 99–142. [Google Scholar]
- Siegel, R.; Howell, J.R. Thermal Radiation Heat Transfer; McGraw-Hill: New York, NY, USA, 1972. [Google Scholar]
- Rybicki, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Marr, J.M.; Wilkin, F.P. A better presentation of Planck’s radiation law. Am. J. Phys. 2012, 80, 339–405. [Google Scholar] [CrossRef] [Green Version]
- Fikhtengol’ts, G.M. Kurs Differentsialnogo I Integral’nogo Ischisleniya (Course in Differential and Integral Calculus); Gostekhizdat: Moscow, Russia, 1948; Volume 2. [Google Scholar]
- Hofmeister, A.M.; Criss, E.M.; Criss, R.E. A Macroscopic Model of Blackbody Emissions with Implications. In Measurements, Mechanisms, and Models of Heat Transport; Hofmeister, A.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 251–294. [Google Scholar]
- Wooten, F. Optical Properties of Solids; Academic Press, Inc.: San Diego, CA, USA, 1972. [Google Scholar]
- Fransson, A.; Ross, R.G. Thermal conductivity, heat capacity and phase stability of solid solium chlorate (NaClO3) under pressure. J. Phys. C Solid State Phys. 1983, 16, 2861–2869. [Google Scholar] [CrossRef]
- Kieffer, S.W. Thermodynamics and lattice vibrations of minerals: 3. Lattice dynamics and an approximation for minerals with application to simple substances and framework silicates. Rev. Geophys. Space Phys. 1979, 17, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Burns, G. Solid State Physics; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Bradley, P.E.; Radebaugh, R. Properties of selected materials at cryogenic temperatures. NIST Publ. 2013, 680, 1–14. [Google Scholar]
Sample | D∞ | b | R | Sample | D∞ | b | R |
---|---|---|---|---|---|---|---|
mm2 s−1 | mm−1 | – | mm2 s−1 | mm−1 | – | ||
MgO | 18.867 | 1.8394 | 0.94 | Ag | 184.73 | 0.61894 | 0.97 |
Al2O3 | 13.738 | 1.5459 | 0.99 | Cu | 127.89 | 0.5872 | 0.99 |
Quartz ||c | 6.7415 | 2.7419 | 0.88 | Al | 111.13 | 0.52831 | 0.99 |
Quartz ⊥c | 3.963 | 2.7381 | 0.94 | Si | 109.02 | 0.64621 | 0.99 |
YSZ | 0.73397 | 7.5016 | 0.96 | Brass 260 | 43.764 | 0.85614 | 0.99 |
– | – | – | – | Pb | 25.966 | 1.3854 | 0.99 |
– | – | – | – | Fe | 23.654 | 1.8109 | 0.90 |
Ge124 glass 1 | 0.87352 | 11.111 | 0.68 1 | Steel 2 | 3.4556 2 | 4.164 2 | 0.97 |
Phase | Pmax GPa | ∂lnκ/∂P %GPa−1 | ∂lncP/∂P %GPa−1 | Ref. 1 | BT3,4,5 GPa | ∂BT/∂T GPaK−1 | α μK−1 | γth | ∂lnτ/∂P %GPa−1 |
---|---|---|---|---|---|---|---|---|---|
Al | 2.5 | 4.2 | −1.8 | [55] | 72 | −0.015 | 69.3 | 2.22 | −5.5 |
Ag | 2.5 | 4.0 | −0.44 calc | [56] | 103 | −0.0215 | 56.7 | 2.34 | −4.1 |
Au | 2.5 | 3.9 | −0.25 calc | [56] | 163 | −0.031 | 42.6 | 2.90 | −3.9 |
Fe | 1.6 | 3.5 | −0.16 calc | [57] | 163 | −0.04 | 35.4 | 1.7 | −3.5 |
Ni | 1.6 | 4.4 | −0.33 | [57,58] | 190.5 | 40.2 | 1.8 | −4.6 | |
Cu | 2.5 | 3.1 | −0.32 | [59] | 137.4 | −0.036 | 49.5 | 2.02 | −3.3 |
Zn | 2 | 8.7 | −0.67 calc | [60] | 59.8 | −0.0189 | 60.6 | 1.94 | −8.8 |
Sn | 1.1 | 13.4 avrg. | −0.56 calc | [51] | 57 | 63.4 | 2.25 | −13.4 | |
Pb | 1.1 | 17.7 | −0.58 calc | [51] | 43.2 | −0.0192 | 86.7 | 2.65 | −17.5 |
Gd | 2.5 | 22 | −2.0 calc | [61] | 37 | 2.4 | −23 | ||
AuCu disordered | 1.6 | 5.6 | −0.87 | [62] | 139 | 46.05 | 2.4 | −6.2 | |
AuCu3 ordered | 1.4 | 5.9 | −0.4 | [62] | 138 | 47.4 | 2.2 | −6.1 | |
AuCu3 disordered | 1.9 | 3.2 | ~−0.4 | [62] | 138 | 47.4 | 2.2 | −3.4 | |
Si | 1 | 4.0 | −0.35 calc | [63] | 100 | (δT = 3.7) 6 | 7.8 | 0.16 | −4.0 |
MgO | 1.2 | 5.0 | −0.4 | [64] | 160.2 | −0.023 | 31.2 | 1.54 | −5.2 |
MgO ceramic | 5 | 4.7 | – | [52] | – | – | – | – | – |
Mg1.8Fe0.2SiO4 | 8.3 | 4.6 avrg. | −0.10 calc | [54] 2 | 128 | −0.018 | 27.2 | 1.31 | −3.8 |
Mg1.8Fe0.2SiO4 | 4.8 | ~4 optical | [65] | – | – | – | – | – | |
Garnet, natural | 8.3 | 4.6 | −0.04 calc | [54] 2 | 172 | −0.029 | 23.6 | 1.5 | −4.5 |
SiO2 glass | 1 | −4 | +0.1 | [66] | 37 | +0.016 | 1.5 | 0.5 | 5 |
SiO2 glass | 9 | −3.7 | −2.7 calc | [53] | – | – | – | – | 1.9 |
CaF2 | 1 | 11 | −0.6 | [67] | 82.2 | −0.0175 | 18.85 | 1.74 | −11 |
LiF | 1 | 12 | −0.4 | [67] | 64.7 | −0.377 | 97.8 | 1.60 | −12 |
RbF | 2 | 34.4 | – | [68] | 24 | −0.122 | 95 | 1.4 | – |
NaCl | 2 | 31 | −1.75 calc | [69] | 23.8 | −0.016 | 118 | 1.58 | −31 |
NaCl | 1.7 | 27 optical | – | [70] | – | – | – | – | – |
KCl | 1.9 | 36 | −2.35 | [71] | 17.3 | −0.012 | 110 | 1.44 | −36 |
CsCl | 1.7 | 41 | −4.0 calc | [69] | 17.6 | −0.147 | 144 | 1.99 | −43 |
LiBr | 2 | 28.9 | −1.93 calc | [68] | 24.3 | −0.19 | 147 | 1.4 | −29.5 |
KBr | 1.7 | 58 | −3.3 | [71] | 14.4 | −0.10 | 116.4 | 1.45 | −59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmeister, A.M. Dependence of Heat Transport in Solids on Length-Scale, Pressure, and Temperature: Implications for Mechanisms and Thermodynamics. Materials 2021, 14, 449. https://doi.org/10.3390/ma14020449
Hofmeister AM. Dependence of Heat Transport in Solids on Length-Scale, Pressure, and Temperature: Implications for Mechanisms and Thermodynamics. Materials. 2021; 14(2):449. https://doi.org/10.3390/ma14020449
Chicago/Turabian StyleHofmeister, Anne M. 2021. "Dependence of Heat Transport in Solids on Length-Scale, Pressure, and Temperature: Implications for Mechanisms and Thermodynamics" Materials 14, no. 2: 449. https://doi.org/10.3390/ma14020449
APA StyleHofmeister, A. M. (2021). Dependence of Heat Transport in Solids on Length-Scale, Pressure, and Temperature: Implications for Mechanisms and Thermodynamics. Materials, 14(2), 449. https://doi.org/10.3390/ma14020449