Acetone Sensing and Catalytic Conversion by Pd-Loaded SnO2
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Material Characterization
3.2. Sensing
3.3. Catalytic Conversion of Acetone by Packed Beds of Pd-Loaded SnO2 Particles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kemmler, J.A.; Pokhrel, S.; Mädler, L.; Weimar, U.; Bârsan, N. Flame spray pyrolysis for sensing at the nanoscale. Nanotechnology 2013, 24, 442001. [Google Scholar] [CrossRef] [PubMed]
- Güntner, A.T.; Abegg, S.; Konigstein, K.; Gerber, P.A.; Schmidt-Trucksäss, A.; Pratsinis, S.E. Breath sensors for health monitoring. ACS Sens. 2019, 4, 268–280. [Google Scholar] [CrossRef]
- Righettoni, M.; Amann, A.; Pratsinis, S.E. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Mater. Today 2015, 18, 163–171. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Mishra, Y.K.; Lin, L. Functional gas sensing nanomaterials: A panoramic view. Appl. Phys. Rev. 2020, 7, 021301. [Google Scholar] [CrossRef] [Green Version]
- Yamazoe, N.; Sakai, G.; Shimanoe, K. Oxide semiconductor gas sensors. Catal. Surv. Asia 2003, 7, 63–75. [Google Scholar] [CrossRef]
- Bârsan, N.; Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Yamazoe, N.; Kurokawa, Y.; Seiyama, T. Effects of additives on semiconductor gas sensors. Sens. Actuators 1983, 4, 283–289. [Google Scholar] [CrossRef]
- Müller, S.A.; Degler, D.; Feldmann, C.; Türk, M.; Moos, R.; Fink, K.; Studt, F.; Gerthsen, D.; Bârsan, N.; Grunwaldt, J.-D. Exploiting synergies in catalysis and gas sensing using noble metal-loaded oxide composites. Chemcatchem 2018, 10, 864–880. [Google Scholar] [CrossRef]
- Cabot, A.; Vilà, A.; Morante, J.R. Analysis of the catalytic activity and electrical characteristics of different modified SnO2 layers for gas sensors. Sens. Actuators B Chem. 2002, 84, 12–20. [Google Scholar] [CrossRef]
- Ogel, E.; Müller, S.A.; Sackmann, A.; Gyger, F.; Bockstaller, P.; Brose, E.; Casapu, M.; Schöttner, L.; Gerthsen, D.; Feldmann, C.; et al. Comparison of the catalytic performance and carbon monoxide sensing behavior of Pd-SnO2 Core@Shell nanocomposites. Chemcatchem 2017, 9, 407–413. [Google Scholar] [CrossRef]
- Degler, D.; Müller, S.A.; Doronkin, D.E.; Wang, D.; Grunwaldt, J.-D.; Weimar, U.; Barsan, N. Platinum loaded tin dioxide: A model system for unravelling the interplay between heterogeneous catalysis and gas sensing. J. Mater. Chem A 2018, 6, 2034–2046. [Google Scholar] [CrossRef]
- Tofighi, G.; Degler, D.; Junker, B.; Müller, S.; Lichtenberg, H.; Wang, W.; Weimar, U.; Barsan, N.; Grunwaldt, J.-D. Microfluidically synthesized Au, Pd and AuPd nanoparticles supported on SnO2 for gas sensing applications. Sens. Actuators B Chem. 2019, 292, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Kolmakov, A.; Klenov, D.O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 2005, 5, 667–673. [Google Scholar] [CrossRef]
- Judilla, A.M.; Nair, R.; Bruzek, J.A.; Kundu, S.K. Breath acetone analyzer: Diagnostic tool to monitor dietary fat loss. Clin. Chem. 1993, 39, 87–92. [Google Scholar]
- Forsyth, C.; Broder, M.W. Toxicological review of acetone. In Support of Summary Information on the Integrated Risk Information System (IRIS); United States Environmental Protection Agency: Washington, DC, USA, 2017. [Google Scholar]
- Freund, G. The calorie deficiency hypothesis of ketogenesis tested in man. Metabolism 1965, 14, 985–990. [Google Scholar] [CrossRef]
- Kalapos, M.P. On the mammalian acetone metabolism: From chemistry to clinical implications. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2003, 1621, 122–139. [Google Scholar] [CrossRef]
- Pineau, N.J.; Keller, S.D.; Güntner, A.T.; Pratsinis, S.E. Palladium embedded in SnO2 enhances the sensitivity of flame-made chemoresistive gas sensors. Microchim. Acta 2020, 187, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Muller, U.; Pratsinis, S.E. Pd subnano-clusters on TiO2 for solar-light removal of NO. ACS Catal. 2016, 6, 1887–1893. [Google Scholar] [CrossRef]
- Korotcenkov, G. Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sens. Actuators B Chem. 2005, 107, 209–232. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Boris, Y.; Ivanov, M.; Schwank, J.; Morante, J. Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pirolysis. Thin Solid Film. 2003, 436, 119–126. [Google Scholar] [CrossRef]
- Güntner, A.T.; Weber, I.C.; Pratsinis, S.E. Catalytic filter for continuous and selective ethanol removal prior to gas sensing. ACS Sens. 2020, 5, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Suematsu, K.; Yuasa, M.; Shimanoe, K. Pd size effect on the gas sensing properties of Pd-loaded SnO2 in humid Atmosphere. ACS Appl. Mater. Inter. 2015, 7, 15618–15625. [Google Scholar] [CrossRef] [PubMed]
- Amalric-Popescu, D.; Bozon-Verduraz, F. SnO2-supported palladium catalysts: Activity in deNOx at low temperature. Catal. Lett. 2000, 64, 125–128. [Google Scholar] [CrossRef]
- Yuasa, M.; Kida, T.; Shimanoe, K. Preparation of a stable sol suspension of Pd-loaded SnO2 nanocrystals by a photochemical deposition method for highly sensitive semiconductor gas sensors. ACS Appl. Mater. Inter. 2012, 4, 4231–4236. [Google Scholar] [CrossRef] [PubMed]
- Avila, J.I.; Matelon, R.J.; Trabol, R.; Favre, M.; Lederman, D.; Volkmann, U.G.; Cabrera, A.L. Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy. J. Appl. Phys. 2010, 107, 023504. [Google Scholar] [CrossRef]
- Koziej, D.; Hübner, M.; Barsan, N.; Weimar, U.; Sikora, M.; Grunwaldt, J.-D. Operando X-ray absorption spectroscopy studies on Pd-SnO2 based sensors. Phys. Chem. Chem. Phys. 2009, 11, 8620–8625. [Google Scholar] [CrossRef]
- Marikutsa, A.V.; Rumyantseva, M.N.; Gaskov, A.M.; Konstantinova, E.A.; Grishina, D.A.; Deygen, D.M. CO and NH3 sensor properties and paramagnetic centers of nanocrystalline SnO2 modified by Pd and Ru. Thin Solid Film. 2011, 520, 904–908. [Google Scholar] [CrossRef]
- Kutukov, P.; Rumyantseva, M.; Krivetskiy, V.; Filatova, D.; Batuk, M.; Hadermann, J.; Khmelevsky, N.; Aksenenko, A.; Gaskov, A. Influence of mono- and bimetallic PtOx, PdOx, PtPdOx clusters on CO sensing by SnO2 based gas sensors. Nanomaterials 2018, 8, 917. [Google Scholar] [CrossRef] [Green Version]
- Takeguchi, T. Strong chemical interaction between PdO and SnO2 and the influence on catalytic combustion of methane. Appl. Catal. A Gen. 2003, 252, 205–214. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Liu, L.; Xu, X.; Wang, Z.; Wang, W.; Zheng, W.; Dong, B.; Wang, C. Enhancement of hydrogen monitoring properties based on Pd–SnO2 composite nanofibers. Sens. Actuators B Chem. 2010, 147, 111–115. [Google Scholar] [CrossRef]
- Suematsu, K.; Shin, Y.; Hua, Z.; Yoshida, K.; Yuasa, M.; Kida, T.; Shimanoe, K. Nanoparticle cluster gas sensor: Controlled clustering of SnO2 nanoparticles for highly sensitive toluene detection. ACS Appl. Mater. Interfaces 2014, 6, 5319–5326. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Wang, J.; Qiao, Q.; Liu, Z.; Li, X. Mechanism for acetone sensing property of Pd-loaded SnO2 nanofibers prepared by electrospinning: Fermi-level effects. J. Mater. Sci. 2015, 50, 2605–2615. [Google Scholar] [CrossRef]
- Shao, S.; Wu, H.; Wang, S.; Hong, Q.; Koehn, R.; Wu, T.; Rao, W.-F. Highly crystalline and ordered nanoporous SnO2 thin films with enhanced acetone sensing property at room temperature. J. Mater. Chem. C 2015, 3, 10819–10829. [Google Scholar] [CrossRef]
- Xu, C.N.; Tamaki, J.; Miura, N.; Yamazoe, N. Nature of sensitivity promotion in Pd-loaded SnO2 gas sensor. J. Electrochem. Soc. 1996, 143, L148–L150. [Google Scholar] [CrossRef]
- Yin, X.-T.; Guo, X.-M. Selectivity and sensitivity of Pd-loaded and Fe-doped SnO2 sensor for CO detection. Sens. Actuators B Chem. 2014, 200, 213–218. [Google Scholar] [CrossRef]
- Weber, I.C.; Derron, N.; Königstein, K.; Gerber, P.A.; Güntner, A.T.; Pratsinis, S.E. Monitoring lipolysis by sensing breath acetone down to parts-per-billion. Small Sci. 2021, 1, 2100004. [Google Scholar] [CrossRef]
- Güntner, A.T.; Kompalla, J.F.; Landis, H.; Theodore, S.J.; Geidl, B.; Sievi, N.A.; Kohler, M.; Pratsinis, S.E.; Gerber, P.A. Guiding ketogenic diet with breath acetone sensors. Sensors 2018, 18, 3655. [Google Scholar] [CrossRef] [Green Version]
- Güntner, A.T.; Sievi, N.A.; Theodore, S.J.; Gulich, T.; Kohler, M.; Pratsinis, S.E. Noninvasive body fat burn monitoring from exhaled acetone with Si-doped WO3-sensing nanoparticles. Anal. Chem. 2017, 89, 10578–10584. [Google Scholar] [CrossRef] [PubMed]
- Königstein, K.; Abegg, S.; Schorn, A.N.; Weber, I.C.; Derron, N.; Krebs, A.; Gerber, P.A.; Schmidt-Trucksäss, A.; Güntner, A.T. Breath acetone change during aerobic exercise is moderated by cardiorespiratory fitness. J. Breath Res. 2020, 15, 016006. [Google Scholar] [CrossRef]
- Lampe, U.; Gerblinger, J.; Meixner, H. Comparison of transient response of exhaust-gas sensors based on thin films of selected metal oxides. Sens. Actuators B Chem. 1992, 7, 787–791. [Google Scholar] [CrossRef]
- Li, X.; Lu, D.; Shao, C.; Lu, G.; Li, X.; Liu, Y. Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels. Sens. Actuators B Chem. 2018, 258, 436–446. [Google Scholar] [CrossRef]
- Hu, C. Catalytic combustion kinetics of acetone and toluene over Cu0.13Ce0.87Oy catalyst. Chem. Eng. J. 2011, 168, 1185–1192. [Google Scholar] [CrossRef]
- Reed, C.; Lee, Y.-K.; Oyama, S.T. Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation with ozone. J. Phys. Chem. B 2006, 110, 4207–4216. [Google Scholar] [CrossRef] [PubMed]
- Epifani, M.; Arbiol, J.; Pellicer, E.; Comini, E.; Siciliano, P.; Faglia, G.; Morante, J.R. Synthesis and gas-sensing properties of Pd-Doped SnO2 Nanocrystals. A case study of a general methodology for doping metal oxide nanocrystals. Cryst. Growth Des. 2008, 8, 1774–1778. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Wang, J.; Hao, Y.; Du, H.; Li, X. Toluene sensing properties of porous Pd-loaded flower-like SnO2 microspheres. Sens. Actuators B Chem. 2014, 202, 795–802. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, X.; Wang, Y.; Bing, Y.; Qiao, L.; Liang, Z.; Yu, S.; Zeng, Y.; Zheng, W. Pd-loaded SnO2 ultrathin nanorod-assembled hollow microspheres with the significant improvement for toluene detection. Sens. Actuators B Chem. 2017, 243, 465–474. [Google Scholar] [CrossRef]
- Koo, W.-T.; Jang, J.-S.; Choi, S.-J.; Cho, H.-J.; Kim, I.-D. Metal-organic framework templated catalysts: Dual sensitization of PdO–ZnO composite on hollow SnO2 nanotubes for selective acetone sensors. ACS Appl. Mater. Interfaces 2017, 9, 18069–18077. [Google Scholar] [CrossRef]
- Li, G.; Cheng, Z.; Xiang, Q.; Yan, L.; Wang, X.; Xu, J. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuators B Chem. 2019, 283, 590–601. [Google Scholar] [CrossRef]
- Weber, I.C.; Wang, C.-T.; Güntner, A.T. Room-temperature catalyst enables selective acetone sensing. Materials 2021, 14, 1839. [Google Scholar] [CrossRef]
- Batzill, M.; Diebold, U. The surface and materials science of tin oxide. Prog. Surf. Sci. 2005, 79, 47–154. [Google Scholar] [CrossRef]
- Marikutsa, A.V.; Rumyantseva, M.N.; Frolov, D.D.; Morozov, I.V.; Boltalin, A.I.; Fedorova, A.A.; Petukhov, I.A.; Yashina, L.V.; Konstantinova, E.A.; Sadovskaya, E.M.; et al. Role of PdOx and RuOy clusters in oxygen exchange between nanocrystalline tin dioxide and the gas phase. J. Phys. Chem. C 2013, 117, 23858–23867. [Google Scholar] [CrossRef]
- Hu, C.; Zhu, Q.; Jiang, Z.; Chen, L.; Wu, R. Catalytic combustion of dilute acetone over Cu-doped ceria catalysts. Chem. Eng. J. 2009, 152, 583–590. [Google Scholar] [CrossRef]
Nominal Loading (mol%) | Loading By ICP-OES (mol%) | Pd Dispersion a (%) | Pd Size a (nm) | Activation Energy b (kJ/mol) |
---|---|---|---|---|
0 | - | - | - | 119.7 |
0.1 | 0.11 | 21.6 | 5.2 | 101.8 |
0.2 | 0.18 | 24.4 | 4.6 | 64.1 |
0.5 | 0.54 | 35.8 | 3.1 | 53.8 |
1 | 1.07 | 36.0 | 3.1 | 41.2 |
3 | 2.60 | 22.8 | 4.9 | 51.5 |
Material | Operating Temp. [°C] | Relative Humidity [%] | Response a (Conc. in ppm) | Equiv. Response at 1 ppm b | LOD [ppm] | Response Time c [s] | Recovery Time c [s] | Reference |
---|---|---|---|---|---|---|---|---|
Pd-SnO2 | 300 °C | Yes, but not specified | 78 (25) | 23.5 | 25 * 1 † | n.a. | n.a. | Epifani et al. [45] (2008) |
Pd-loaded flower-like SnO2 | 250 °C | No R.H. | 10 (10) | 1 | 10 * | 11 (10 ppm) | 30 (10 ppm) | Tian et al. [46] (2014) |
Pd-SnO2 organized | RT | No R.H. | 1.8 (10) | 0.18 | 10 * | 13 | 15 | Shao et al. [34] (2015) |
Pd-SnO2 nanofibers | 275 | No R.H. | 3 (1) | 3 | 1 * | 20 | 40 | Tang et al. [33] (2015) |
Pd-loaded SnO2 ultrathin nanorod-assembled hollow microspheres | 230 | No R.H. | 10.6 (20) | 0.5 | n.a. | n.a. | n.a. | Zhang et al. [47] (2017) |
PdO@ZnO-SnO2 NT | 400 | 95 | 4.1 (1) | 4.1 | 0.1 * 0.01 † | 19.6 | 64 | Koo et al. [48] (2017) |
PdAu-SnO2 nanosheets | 250 | 40–70% | 2.7 (1) | 2.7 | 0.1 * 0.045 † | 5 | 4 | Li et al. [49] (2019) |
Pd-doped SnO2 | 350 | 50 | 7 (1) | 7 | 0.005 * 0.0005 † | 60 (50 ppb) | 138 (50 ppb) | Pineau et al. [18] (2020) |
SnO2 | 325 | 50 | 5.8 (1) | 5.8 | 0.020 * 0.00005 † | 24 | 104 | This work |
0.1% Pd-loaded SnO2 | 237.5 | 50 | 43.2 (1) | 43.2 | 0.020 * 0.00005 † | 26 | 1361 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gschwend, P.M.; Schenk, F.M.; Gogos, A.; Pratsinis, S.E. Acetone Sensing and Catalytic Conversion by Pd-Loaded SnO2. Materials 2021, 14, 5921. https://doi.org/10.3390/ma14205921
Gschwend PM, Schenk FM, Gogos A, Pratsinis SE. Acetone Sensing and Catalytic Conversion by Pd-Loaded SnO2. Materials. 2021; 14(20):5921. https://doi.org/10.3390/ma14205921
Chicago/Turabian StyleGschwend, Pascal M., Florian M. Schenk, Alexander Gogos, and Sotiris E. Pratsinis. 2021. "Acetone Sensing and Catalytic Conversion by Pd-Loaded SnO2" Materials 14, no. 20: 5921. https://doi.org/10.3390/ma14205921
APA StyleGschwend, P. M., Schenk, F. M., Gogos, A., & Pratsinis, S. E. (2021). Acetone Sensing and Catalytic Conversion by Pd-Loaded SnO2. Materials, 14(20), 5921. https://doi.org/10.3390/ma14205921