Strain Acquisition Framework and Novel Bending Evaluation Formulation for Compression-Loaded Composites Using Digital Image Correlation
Abstract
:1. Introduction
2. Test Setup and Strain Measurement Method
Strain Post-Processing Techniques
3. Results
Front or Side View, That Is the Question
- Strain results from the side view are found to be more consistent due to a smaller scatter regime in comparison to the front view results, as shown in Figure 5a,b.
- In case of delaminated outer layers, DIC measurements from the front view report local strain values instead of the global laminate behavior.
- Bending is an unfavorable load state which leads to early failure. This state should therefore be monitored so that faulty loaded measurements can be scrapped. For this case, the side view is the preferred viewing point as it allows for a better out of plane deformation observation.
4. Novel Bending Criterion
5. Conclusions
- DIC should be performed on the side view of the specimen because results are more consistent, and delamination of the outer layer cannot block the strain measurement. Furthermore, failure mode assessment and bending state evaluation work better when looking at the side of the specimen.
- A virtual long extensometer results in the preferred approach to extract strain information from the DIC data, as it enables the strain acquisition after first ply failure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shuart, M.J. Failure of compression-loaded multidirectional composite laminates. AIAA J. 1989, 27, 1274–1279. [Google Scholar] [CrossRef]
- Kindervater, C.H. Compression and crush energy absorption behaviour of composite laminates. Ed. Phys. 1986, 289–297. [Google Scholar]
- Kyriakides, S.; Arseculeratne, R.; Perry, E.J.; Liechti, K.M. On the compressive failure of fiber reinforced composites. Int. J. Solids Struct. 1995, 32, 689–738. [Google Scholar] [CrossRef]
- Vogler, T.J.; Kyriakides, S. Initiation and axial propagation of kink bands in fiber composites. Acta Mater. 1997, 45, 2443–2454. [Google Scholar] [CrossRef]
- Soutis, C.; Curtis, P.T. A method for predicting the fracture toughness of CFRP laminates failing by fibre microbuckling. Compos. Part A Appl. Sci. Manuf. 2000, 8, 733–740. [Google Scholar] [CrossRef]
- Camponeschi, E.T. Compression of composite materials: A review. In Composite Materials: Fatigue and Fracture; O’Brien, T.K., Ed.; ASTM International: West Conshohocken, PA, USA, 1991; Volume 3, pp. 529–550. ISBN 978-0-8031-1419-7. [Google Scholar]
- Hsiao, H.M.; Daniel, I.M.; Wooh, S.C. A new compression test method for thick composites. J. Compos. Mater. 1995, 29, 1789–1806. [Google Scholar] [CrossRef]
- Wegner, P.M.; Adams, D.F. Verification of the Combined Load Compression (CLC) Test Method; U.S. Department of Transportation: Washington, DC, USA, 2000.
- Park, I.K. Tensile and Compressive Test Methods for High-Modulus Graphite Fibre-Reinforced Composites. In Proceedings of the International Conference on Carbon Fibres, Their Composites and Applications, London, UK, 2–4 February 1971; Volume 23. [Google Scholar]
- Hofer, K.E.; Rao, P.N. A new static compression fixture for advanced composite materials. J. Test. Eval. 1977, 5, 278–283. [Google Scholar]
- Sendeckyj, G.P.; Wang, S.S.; Johnson, W.S.; Stinchcomb, W.W.; Pagano, N.J.; Berg, J.S.; Adams, D.F. An evaluation of composite material compression test methods. J. Compos. Technol. Res. 1989, 11, 41. [Google Scholar] [CrossRef]
- Tan, S.C. Stress analysis and the testing of celanese and IITRI compression specimens. Compos. Sci. Technol. 1992, 44, 57–70. [Google Scholar] [CrossRef]
- Irion, M.N.; Adams, D.F. Compression creep testing of unidirectional composite materials. Composites 1981, 12, 117–123. [Google Scholar] [CrossRef]
- Adams, D.F.; Welsh, J.S. The wyoming combined loading compression (CLC) test method. J. Compos. Technol. Res. 1997, 19, 123–133. [Google Scholar]
- ASTM. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression Test Fixture; ASTM Standard D6641-09; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- ASTM. Standard Test Method for Compressive Properties of Rigid Plastics; ASTM Standard D695-02; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- DIN Deutsches Institut für Normunge. V. Bestimmung Der Druckeigenschaften in Der Laminatebene; DIN EN ISO 14126-99; DIN Deutsches Institut für Normunge: Berlin, Germany, 2000. [Google Scholar]
- Adsit, N. Compression Testing of Graphite/Epoxy. In Proceedings of the Symposium on Compression Testing of Homogeneous Materials and Composites; Chait, R., Papirno, R., Eds.; ASTM International: West Conshohocken, PA, USA, 1983; pp. 175–186. ISBN 978-0-8031-0248-4. [Google Scholar]
- Ivanov, D.; Ivanov, S.; Lomov, S.; Verpoest, I. Strain mapping analysis of textile composites. Opt. Lasers Eng. 2009, 47, 360–370. [Google Scholar] [CrossRef]
- Wang, C.C.-B.; Chahine, N.O.; Hung, C.T.; Ateshian, G.A. Optical determination of anisotropic material properties of bovine articular cartilage in compression. J. Biomech. 2003, 36, 339–353. [Google Scholar] [CrossRef] [Green Version]
- Jerabek, M.; Major, Z.; Lang, R.W. Strain determination of polymeric materials using digital image correlation. Polym. Test. 2010, 29, 407–416. [Google Scholar] [CrossRef]
- Sánchez-Arévalo, F.M.; Pulos, G. Use of digital image correlation to determine the mechanical behavior of materials. Mater. Charact. 2008, 59, 1572–1579. [Google Scholar] [CrossRef]
- Taher, S.T.; Thomsen, O.T.; Dulieu-Barton, J.M.; Zhang, S. Determination of mechanical properties of PVC foam using a modified arcan fixture. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1698–1708. [Google Scholar] [CrossRef]
- Funari, M.F.; Spadea, S.; Lonetti, P.; Lourenço, P.B. On the elastic and mixed-mode fracture properties of pvc foam. Theor. Appl. Fract. Mech. 2021, 112. [Google Scholar] [CrossRef]
- Orell, O.; Vuorinen, J.; Jokinen, J.; Kettunen, H.; Hytönen, P.; Turunen, J.; Kanerva, M. Characterization of elastic constants of anisotropic composites in compression using digital image correlation. Compos. Struct. 2018, 185, 176–185. [Google Scholar] [CrossRef]
- Potluri, P.; Young, R.J.; Rashed, K.; Manan, A.; Shyng, Y.T. Meso-scale strain mapping in UD woven composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1838–1845. [Google Scholar] [CrossRef]
- Anzelotti, G.; Nicoletto, G.; Riva, E. Mesomechanic strain analysis of twill-weave composite lamina under unidirectional in-plane tension. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1294–1301. [Google Scholar] [CrossRef]
- Daggumati, S.; Voet, E.; Van Paepegem, W.; Degrieck, J.; Xu, J.; Lomov, S.V.; Verpoest, I. Local strain in a 5-harness satin weave composite under static tension: Part I–experimental analysis. Compos. Sci. Technol. 2011, 71, 1171–1179. [Google Scholar] [CrossRef] [Green Version]
- Flament, C.; Salvia, M.; Berthel, B.; Crosland, G. Local Strain and damage measurements on a composite with digital image correlation and acoustic emission. J. Compos. Mater. 2016, 50, 1989–1996. [Google Scholar] [CrossRef]
- Junginger, M. Charakterisierung Und Modellierung Unverstärkter Thermoplastischer Kunststoffe Zur Numerischen Simulation von Crashvorgängen. Ph.D. Thesis, Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Inst, München, Germany, 2002. [Google Scholar]
- Krivachy, R. Charakterisierung Und Modellierung Kurzfaserverstärkter Thermoplastischer Kunststoffe Zur Numerischen Simulation von Crashvorgängen. Ph.D. Thesis, Universitätsbibliothek der Universität der Bundeswehr, München, Germany, 2007. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’haen, J.J.A.; May, M.; Knoll, O.; Kerscher, S.; Hiermaier, S. Strain Acquisition Framework and Novel Bending Evaluation Formulation for Compression-Loaded Composites Using Digital Image Correlation. Materials 2021, 14, 5931. https://doi.org/10.3390/ma14205931
D’haen JJA, May M, Knoll O, Kerscher S, Hiermaier S. Strain Acquisition Framework and Novel Bending Evaluation Formulation for Compression-Loaded Composites Using Digital Image Correlation. Materials. 2021; 14(20):5931. https://doi.org/10.3390/ma14205931
Chicago/Turabian StyleD’haen, Jonas J. A., Michael May, Octavian Knoll, Stefan Kerscher, and Stefan Hiermaier. 2021. "Strain Acquisition Framework and Novel Bending Evaluation Formulation for Compression-Loaded Composites Using Digital Image Correlation" Materials 14, no. 20: 5931. https://doi.org/10.3390/ma14205931
APA StyleD’haen, J. J. A., May, M., Knoll, O., Kerscher, S., & Hiermaier, S. (2021). Strain Acquisition Framework and Novel Bending Evaluation Formulation for Compression-Loaded Composites Using Digital Image Correlation. Materials, 14(20), 5931. https://doi.org/10.3390/ma14205931