Construction of an n-Body Potential for Revealing the Atomic Mechanism for Direct Alloying of Immiscible Tungsten and Copper
Abstract
:1. Introduction
2. Methods
2.1. Construction of the W-Cu Interatomic Potentials
2.2. Simulation Details
3. Results and Discussion
3.1. Validation of the New W-Cu Potential through the Simulation of Physical Properties
3.2. MD Simulation for Direct Alloying between W and Cu Via the New W-Cu Potential
3.3. Experimental Verification of the New W-Cu Potential
3.4. Fundamental Reason for the Ability of the New Potential to Model the Alloying Behavior of the W-Cu System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryu, S.S.; Kim, Y.D.; Moon, I.H. Dilatometric analysis on the sintering behavior of nanocrystalline W-Cu prepared by mechanical alloying. J. Alloys Compd. 2002, 335, 233–240. [Google Scholar] [CrossRef]
- Chen, P.A.; Shen, Q.; Luo, G.Q.; Wang, C.B.; Li, M.J.; Zhang, L.M.; Li, X.C.; Zhu, B.Q. Effect of interface modification by Cu-coated W powders on the microstructure evolution and properties improvement for Cu-W composites. Surf. Coat. Technol. 2016, 288, 8–14. [Google Scholar] [CrossRef]
- Chen, W.G.; Dong, L.L.; Zhang, H.; Song, J.L.; Deng, N.; Wang, J.J. Microstructure characterization of W-Cu alloy sheets produced by high temperature and high pressure deformation technique. Mater. Lett. 2017, 205, 198–201. [Google Scholar] [CrossRef]
- Boer, F.R.d.; Mattens, W.C.M.; Boom, R.; Miedema, A.R.; Niessen, A.K. Cohesion in Metals. Transition Metal Alloys; North-Holland: Amsterdam, The Netherlands, 1988; 774p. [Google Scholar]
- Liang, C.P.; Wu, C.Y.; Fan, J.L.; Gong, H.R. Structural, thermodynamic, and mechanical properties of WCu solid solutions. J. Phys. Chem. Solids 2017, 110, 401–408. [Google Scholar] [CrossRef]
- Vullers, F.T.N.; Spolenak, R. From solid solutions to fully phase separated interpenetrating networks in sputter deposited “immiscible” W-Cu thin films. Acta Mater. 2015, 99, 213–227. [Google Scholar] [CrossRef]
- Tabrizi, N.S.; Xu, Q.; van der Pers, N.M.; Schmidt-Ott, A. Generation of mixed metallic nanoparticles from immiscible metals by spark discharge. J. Nanopart. Res. 2010, 12, 247–259. [Google Scholar] [CrossRef]
- Ai, Y.P.; Xie, S.K.; Zeng, Y.Y.; Yi, R.X.; Wang, J.T. Research on Cu-W homogeneous film structure prepared by ion beam sputtering. J. Alloys Compd. 2010, 496, 385–387. [Google Scholar] [CrossRef]
- Nastasi, M.; Saris, F.W.; Hung, L.S.; Mayer, J.W. Stability of amorphous Cu/Ta and Cu/W alloys. J. Appl. Phys. 1985, 58, 3052–3058. [Google Scholar] [CrossRef]
- Zhang, D.L. Processing of advanced materials using high-energy mechanical milling. Prog. Mater. Sci. 2004, 49, 537–560. [Google Scholar] [CrossRef]
- Zhang, R.F.; Li, Z.C.; Liu, B.X. Metastable phase formed in immiscible Cu-W multilayers by ion mixing. Jpn. J. Appl. Phys. Part 1 2003, 42, 7009–7012. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Liu, Y.; Wang, Z. Direct diffusion bonding of immiscible tungsten and copper at temperature close to Copper’s melting point. Mater. Des. 2018, 137. [Google Scholar] [CrossRef]
- Huang, Y.; Du, J.; Wang, Z. Progress in research on the alloying of binary immiscible metals. Acta Metall. Sin. 2020, 56, 801–820. [Google Scholar]
- Zhang, J.; Huang, Y.; Wang, Z.; Liu, Y. Thermodynamic mechanism for direct alloying of immiscible tungsten and copper at a critical temperature range. J. Alloys Compd. 2018, 774, 939–947. [Google Scholar] [CrossRef]
- Lv, X.J.; Guan, C.H.; Han, Z.X.; Zhang, H.B.; Liu, Q.S. The wetting characteristics of copper droplets on tungsten surfaces on atomic scale: A molecular dynamics simulation. Comput. Mater. Sci. 2020, 174, 109487. [Google Scholar] [CrossRef]
- Wei, W.; Chen, L.; Gong, H.R.; Fan, J.L. Strain-stress relationship and dislocation evolution of W-Cu bilayers from a constructed n-body W-Cu potential. J. Phys. Condens. Matter. 2019, 31, 305002. [Google Scholar] [CrossRef]
- Xiu, L.; Wu, J.F. Atomic Diffusion Behavior in W/Cu Diffusion Bonding Process. J. Fusion Energy 2015, 34, 769–773. [Google Scholar] [CrossRef]
- Zhang, R.F.; Kong, L.T.; Gong, H.R.; Liu, B.X. Comparative study of metastable phase formation in the immiscible Cu–W system byab initiocalculation andn-body potential. J. Phys. Condens. Matter. 2004, 16, 5251–5258. [Google Scholar] [CrossRef]
- Gong, H.R.; Kong, L.T.; Lai, W.S.; Liu, B.X. Glass-forming ability determined by ann-body potential in a highly immiscible Cu-W system through molecular dynamics simulations. Phys. Rev. B 2003, 68, 144201. [Google Scholar] [CrossRef]
- Kong, L.T.; Li, X.Y.; Lai, W.S.; Liu, J.B.; Liu, B.X. Interfacial reaction of W/Cu examined by an n-body potential through molecular dynamics simulations. Jpn. J. Appl. Phys. Part 1 2002, 41, 4503–4508. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 81st ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Finnis, M.W.; Sinclair, J.E. A simple empirical N-body potential for transition metals. Philos. Mag. A 1984, 50, 45–55. [Google Scholar] [CrossRef]
- Ackland, G.J.; Finnis, M.W.; Vitek, V. Validity of the second moment tight-binding model. J. Phys. F Met. Phys. 1988, 18, L153–L157. [Google Scholar] [CrossRef]
- Ackland, G.J.; Tichy, G.; Vitek, V.; Finnis, M.W. Simple N-body potentials for the noble metals and nickel. Philos. Mag. A 1987, 56, 735–756. [Google Scholar] [CrossRef]
- Tai, K.P.; Dai, X.D.; Shen, Y.X.; Liu, B.X. Formation and Structural Anomaly of the Metastable Phases in an Immiscible Ag-Mo System Studied by Ion Beam Mixing and Molecular Dynamics Simulation. J. Phys. Chem. B 2005, 110, 595–606. [Google Scholar] [CrossRef]
- Dai, X.D.; Li, J.H.; Guo, H.B.; Liu, B.X. Structural stability and characteristics of the metastable Ag–W phases studied by ab initio and molecular dynamics calculations. J. Appl. Phys. 2007, 101, 063512. [Google Scholar] [CrossRef]
- Bryk, T.; Demchuk, T.; Jakse, N.; Wax, J.F. A Search for Two Types of Transverse Excitations in Liquid Polyvalent Metals at Ambient Pressure: An Ab Initio Molecular Dynamics Study of Collective Excitations in Liquid Al, Tl, and Ni. Front. Phys. 2018, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Arima, T.; Idemitsu, K.; Inagaki, Y.; Tsujita, Y.; Kinoshita, M.; Yakub, E. Evaluation of melting point of UO2 by molecular dynamics simulation. J. Nucl. Mater. 2009, 389, 149–154. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular-Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.Z.; Liang, L.; Lang, L.; Xiao, S.F.; Hu, W.Y.; Deng, H.Q. Molecular dynamics simulations of the characteristics of Mo/Ti interfaces. Comput. Mater. Sci. 2018, 141, 293–301. [Google Scholar] [CrossRef]
- Chen, S.D.; Ke, F.J.; Zhou, M.; Bai, Y.L. Atomistic investigation of the effects of temperature and surface roughness on diffusion bonding between Cu and Al. Acta Mater. 2007, 55, 3169–3175. [Google Scholar] [CrossRef] [Green Version]
- Gale, W.F.; Totemeier, T.C. Smithells Metals Reference Book; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Simmons, G. Single Crystal Elastic Constants and Calculated Aggregate Progress. J. Grad. Res. Cent. 1965, 34, 273. [Google Scholar]
- Dai, X.D.; Kong, Y.; Li, J.H.; Liu, B.X. Extended Finnis-Sinclair potential for bcc and fcc metals and alloys. J. Phys. Condens. Matter. 2006, 18, 4527–4542. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.F.; Long, J.Y.; Cai, M.Y.; Lin, Y.; Fan, P.X.; Zhang, H.J.; Zhong, M.L. Femtosecond laser fabricated micro/nano interface structures toward enhanced bonding strength and heat transfer capability of W/Cu joining. Mater. Des. 2017, 114, 185–193. [Google Scholar] [CrossRef]
- Benenson, W.; Harris, J.W.; Stocker, H. Handbook of Physics; Springer: New York, NY, USA, 2002. [Google Scholar]
- Richmond, O.; Morrison, H.; Devenpeck, M. Sphere indentation with application to the Brinell hardness test. Int. J. Mech. Sci. 1974, 16, 75–82. [Google Scholar] [CrossRef]
- Zhou, X.W.; Johnson, R.A.; Wadley, H.N.G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 2004, 69, 144113. [Google Scholar] [CrossRef] [Green Version]
Cu-Cu | W-W | W-Cu | ||||
---|---|---|---|---|---|---|
A(eV·Å−1) | 0.732311 | 0.017181 | 1.830783 | 0.009250 | −0.851995 | 0.043304 |
d(Å) | 3.983654 | 0.036376 | 4.414750 | 0.008165 | 4.270928 | 0.069296 |
c(Å) | 3.777141 | 0.010236 | 3.252641 | 0.003195 | 3.761555 | 0.073371 |
c0(eV·Å−2) | 2.126664 | 0.063405 | 55.424876 | 3.755775 | 20.500143 | 1.524143 |
c1(eV·Å−3) | −0.980911 | 0.049285 | −40.097017 | 4.545578 | −26.984701 | 1.276844 |
c2(eV·Å−4) | 0.002647 | 0.000674 | 7.453343 | 1.459553 | 11.890381 | 0.069772 |
c3(eV·Å−5) | 0.012049 | 0.004721 | 0 | 0 | −1.744063 | 0.02767 |
c4(eV·Å−6) | 0.006451 | 0.001685 | 0 | 0 | 0 | 0 |
b(Å−2) | 0.525082 | 0.029941 | 0 | 0 | 0 | 0 |
Cu | W | |||
---|---|---|---|---|
Experimental | Calculated | Experimental | Calculated | |
a (Å) | 3.615 | 3.615 | 3.16475 | 3.165 |
Ec (eV) | 3.54 | 3.540 | 8.66 | 8.660 |
C11 (Mbar) | 1.7 | 1.700 | 5.326 | 5.326 |
C12 (Mbar) | 1.225 | 1.227 | 2.05 | 2.050 |
C44 (Mbar) | 0.758 | 0.759 | 1.631 | 1.631 |
Ev (eV) | 1.28 | 1.294 | 3.95 | 3.551 |
System | Structure | ab Initio Calculation | Present Study | ||
---|---|---|---|---|---|
a (Å) | Ec (eV) | a (Å) | Ec (eV) | ||
Cu3W | L12 | 3.756 | 4.229 | 3.755 | 4.230 |
CuW | B2 | 3.030 | 5.421 | 3.247 | 5.510 |
CuW3 | L12 | 3.910 | 7.041 | 4.132 | 7.213 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, T.; Li, F.; Huang, Y. Construction of an n-Body Potential for Revealing the Atomic Mechanism for Direct Alloying of Immiscible Tungsten and Copper. Materials 2021, 14, 5988. https://doi.org/10.3390/ma14205988
Zeng T, Li F, Huang Y. Construction of an n-Body Potential for Revealing the Atomic Mechanism for Direct Alloying of Immiscible Tungsten and Copper. Materials. 2021; 14(20):5988. https://doi.org/10.3390/ma14205988
Chicago/Turabian StyleZeng, Tao, Fei Li, and Yuan Huang. 2021. "Construction of an n-Body Potential for Revealing the Atomic Mechanism for Direct Alloying of Immiscible Tungsten and Copper" Materials 14, no. 20: 5988. https://doi.org/10.3390/ma14205988
APA StyleZeng, T., Li, F., & Huang, Y. (2021). Construction of an n-Body Potential for Revealing the Atomic Mechanism for Direct Alloying of Immiscible Tungsten and Copper. Materials, 14(20), 5988. https://doi.org/10.3390/ma14205988