Experimental and Numerical Assessment of Supporting Road Signs Masts Family for Compliance with the Standard EN 12767
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Object
2.2. Injury Metrics
2.3. Test Setup
2.4. Numerical Model
3. Experimental Results
4. Numerical Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Organisation for Economic Co-operation and Development (OECD)/International Transport Forum (ITF). Road Safety Annual Report; OECD/ITF: Paris, France, 2020. [Google Scholar]
- Savino, G.; Lot, R.; Massaro, M.; Rizzi, M.; Symeonidis, I.; Will, S.; Brown, J. Active Safety Systems for Powered Two-Wheelers: A Systematic Review. Traffic Inj. Prev. 2020, 21, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Untaroiu, C. Numerical Investigation of Occupant Injury Risks in Car-to-End Terminal Crashes Using Dummy-Based Injury Criteria and Vehicle-Based Crash Severity Metrics. Accid. Anal. Prev. 2020, 145, 105700. [Google Scholar] [CrossRef]
- Danek, W.; Gąsiorek, D. Comparison of the Value of Passive Safety Coefficients for Car Crash with Lighting Column Made of Aluminum or Composite Material Based on Numerical Simulation. MATEC Web Conf. 2019, 285, 00002. [Google Scholar] [CrossRef]
- Xu, T.; Sheng, X.; Zhang, T.; Liu, H.; Liang, X.; Ding, A. Development and Validation of Dummies and Human Models Used in Crash Test. Appl. Bionics Biomech. 2018, 2018, 3832850. [Google Scholar] [CrossRef]
- Tsoi, A.H.; Gabler, H.C. Evaluation of Vehicle-Based Crash Severity Metrics. Traffic Inj. Prev. 2015, 16, S132–S139. [Google Scholar] [CrossRef] [PubMed]
- Cichański, A.; Stopel, M. Experimental Validation of the Numerical Model of a Testing Platform Impact on a Road Mast. In Proceedings of the Solid State Phenomena; Trans Tech Publications Ltd.: Bäch, Switzerland, 2015; Volume 224, pp. 222–225. [Google Scholar]
- Glassbrenner, D.; Starnes, M. Lives Saved Calculations for Seat Belts and Frontal Air Bags; National Highway Trafic Safety Administration: Washington, DC, USA, 2009.
- Gabauer, D.; Gabler, H.C. Evaluation of Threshold Values of Acceleration Severity Index by Using Event Data Recorder Technology. Transp. Res. Rec. 2005, 1904, 37–45. [Google Scholar] [CrossRef]
- Shojaati, M. Correlation between Injury Risk and Impact Severity Index ASI. In Proceedings of the 3rd Swiss Transport Research Conference, Monte Verita, Ascona, Switzerland, 19–21 March 2003; pp. 19–21. [Google Scholar]
- Sturt, R.; Fell, C. The Relationship of Injury Risk to Accident Severity in Impacts with Roadside Barriers. Int. J. Crashworthiness 2009, 14, 165–172. [Google Scholar] [CrossRef]
- Burbridge, A.; Troutbeck, R. A Model for Predicting Acceleration Severity Index in Impacts with Road Safety Barriers. Int. J. Crashworthiness 2019, 24, 442–452. [Google Scholar] [CrossRef]
- Gabauer, D.J.; Gabler, H.C. Comparison of Roadside Crash Injury Metrics Using Event Data Recorders. Accid. Anal. Prev. 2008, 40, 548–558. [Google Scholar] [CrossRef] [Green Version]
- European Comitte for Standarization. Road Restraint Systems—Part 1: Terminology and General Criteria for Test Methods; EN 1317-1:2010; European Comitte for Standarization: Brussels, Belgium, 2010. [Google Scholar]
- Jung, W.Y.; Noh, M.H.; Lee, S.Y. Estimation of THIV for Car Crash against Attachable Roadside Barriers Made of the High Strength Steel. Appl. Mech. Mater. 2015, 751, 222–227. [Google Scholar] [CrossRef]
- Dinnella, N.; Chiappone, S.; Guerrieri, M. The Innovative “NDBA” Concrete Safety Barrier Able to Withstand Two Subsequent TB81 Crash Tests. Eng. Fail. Anal. 2020, 115, 104660. [Google Scholar] [CrossRef]
- International Organization for Standardization. Road Vehicles—Traffic Accident Analysis—Part 3: Guidelines for the Interpretation of Recorded Crash Pulse Data to Determine Impact Severity; ISO/TR 12353-3:2013; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- Wang, Q.; Gan, S.; Chen, W.; Li, Q.; Nie, B. A Data-Driven, Kinematic Feature-Based, near Real-Time Algorithm for Injury Severity Prediction of Vehicle Occupants. Accid. Anal. Prev. 2021, 156, 106149. [Google Scholar] [CrossRef]
- Bance, I.; Yang, S.C.; Zhou, Q.; Li, S.B.; Nie, B.B. A Framework for Rapid On-Board Deterministic Estimation of Occupant Injury Risk in Motor Vehicle Crashes with Quantitative Uncertainty Evaluation. Sci. China Technol. Sci. 2021, 64, 521–534. [Google Scholar] [CrossRef]
- La Torre, F.; Erginbas, C.; Thomson, R.; Amato, G.; Pengal, B.; Stefan, C.; Hemmings, G. Selection of the Most Appropriate Roadside Vehicle Restraint System—The SAVeRS Project. Transp. Res. Procedia 2016, 14, 4237–4246. [Google Scholar] [CrossRef] [Green Version]
- European Comitte for Standarization. Passive Safety of Support Structures for Road Equipment—Requirements and Test Methods; EN 12767:2019; European Comitte for Standarization: Brussels, Belgium, 2019. [Google Scholar]
- Ren, Z.; Vesenjak, M. Computational and Experimental Crash Analysis of the Road Safety Barrier. Eng. Fail. Anal. 2005, 12, 963–973. [Google Scholar] [CrossRef]
- Klasztorny, M.; Zielonka, K.; Nycz, D.B.; Posuniak, P.; Romanowski, R.K. Experimental Validation of Simulated TB32 Crash Tests for SP-05/2 Barrier on Horizontal Concave Arc without and with Composite Overlay. Arch. Civ. Mech. Eng. 2018, 18, 339–355. [Google Scholar] [CrossRef]
- Bruski, D.; Burzyński, S.; Chróścielewski, J.; Jamroz, K.; Pachocki, Ł.; Witkowski, W.; Wilde, K. Experimental and Numerical Analysis of the Modified TB32 Crash Tests of the Cable Barrier System. Eng. Fail. Anal. 2019, 104, 227–246. [Google Scholar] [CrossRef]
- Borkowski, W.; Hryciów, Z.; Rybak, P.; Wysocki, J. Numerical Simulation of the Standard Tb11 And Tb32 Tests for A Concrete Safety Barrier. J. KONES 2010, 17, 63–71. [Google Scholar]
- Pachocki, Ł.; Bruski, D. Modeling, Simulation, and Validation of a TB41 Crash Test of the H2/W5/B Concrete Vehicle Restraint System. Arch. Civ. Mech. Eng. 2020, 20, 1–23. [Google Scholar] [CrossRef]
- Baranowski, P.; Damaziak, K. Numerical Simulation of Vehicle–Lighting Pole Crash Tests: Parametric Study of Factors Influencing Predicted Occupant Safety Levels. Materials 2021, 14, 2822. [Google Scholar] [CrossRef] [PubMed]
- Janszen, G. Vehicle Crash Test against a Lighting Pole: Experimental Analysis and Numerical Simulation. WIT Trans. Built Environ. 2007, 94, 347–356. [Google Scholar]
- Skrzat, A. Numerical Analysis of Passive Safety of Street Lighting Posts. Acta Mech. Slovaca 2012, 16, 48–53. [Google Scholar] [CrossRef]
- Borovkov, A.; Klyavin, O.; Michailov, A.; Petersburg, S.; Kemppinen, M.; Kajatsalo, M. Finite Element Modeling and Analysis of Crash Safe Composite Lighting Columns, Contact-Impact Problem. In Proceedings of the 9th International LS-Dyna Users Conference, Detroit, MI, USA, 4–6 June 2006. [Google Scholar]
- Wach, W. Crash against Mast According to EN 12767 Standard—Uncertainty of Passive Safety Indexes Calculated in Programs for Simulation of Vehicle Accidents. In Proceedings of the 21th Annual Congress of the European Association for Accident Research and Analysis (EVU), Asociatia EVU GRUP Romania, Brasov, Romania, 27–29 September 2012; pp. 195–216. [Google Scholar]
- Heglund, K. Crash Safety of Lightweight Gantry in Aluminium. Struct. Eng. Int. 2006, 4, 363–366. [Google Scholar] [CrossRef]
- Büyük, M.; Atahan, A.O.; Kurucuoǧlu, K. Impact Performance Evaluation of a Crash Cushion Design Using Finite Element Simulation and Full-Scale Crash Testing. Safety 2018, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Budzynski, M.; Jamroz, K.; Wilde, K.; Witkowski, W.; Jelinski, L.; Bruski, D. The Role of Numerical Tests in Assessing Road Restraint System Functionality. Eur. Transp. Res. Rev. 2020, 12, 30. [Google Scholar] [CrossRef]
- Costas, M.; Díaz, J.; Romera, L.E.; Hernández, S.; Tielas, A. Static and Dynamic Axial Crushing Analysis of Car Frontal Impact Hybrid Absorbers. Int. J. Impact Eng. 2013, 62, 166–181. [Google Scholar] [CrossRef]
- Thiyahuddin, M.I.; Thambiratnam, D.P.; Gu, Y.T. Effect of Joint Mechanism on Vehicle Redirectional Capability of Water-Filled Road Safety Barrier Systems. Accid. Anal. Prev. 2014, 71, 60–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stopel, M.; Aleksandrowicz, P.; Skibicki, D. Identification Parameters for Accident Reconstruction Software at Frontal Car Impact. Mater. Test. 2020, 62, 441–447. [Google Scholar] [CrossRef]
- Kononen, D.W.; Flannagan, C.A.C.; Wang, S.C. Identification and Validation of a Logistic Regression Model for Predicting Serious Injuries Associated with Motor Vehicle Crashes. Accid. Anal. Prev. 2011, 43, 112–122. [Google Scholar] [CrossRef]
- Stopel, M.; Cichański, A.; Skibicki, D. Modeling of Prestressed Bolt Connection in Ls-Dyna Crash Test Analysis of Rad Infractructure. In Proceedings of the 23rd International Conference Engineering Mechanics 2017, Svratka, Czech Republic, 15–18 May 2017; pp. 922–925. [Google Scholar]
- Stopel, M.; Skibicki, D.; Cichański, A. Determination of the Johnson-Cook Damage Parameter D4 by Charpy Impact Testing. Mater. Test. 2018, 60, 974–978. [Google Scholar] [CrossRef]
- National Crash Analysis Center, Crash Simulation Vehicle Models. Available online: https://www.nhtsa.gov/ (accessed on 25 May 2019).
- Stopel, M. Determination of ASI and THIV Parameters Based on the Results of Experimental and Numerical Research in Relation to EU Standards. MATEC Web Conf. 2021, 338, 01025. [Google Scholar] [CrossRef]
Index | Test Velocity km/h | Passengers’ Safety Level | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
ASI | 35 | No test reqired | 0.6 | 1 | 1 | 1 |
100 | 0.6 | 1 | 1.2 | 1.4 | ||
THIV, km/h | 35 | 11 | 27 | 27 | 27 | |
100 | 11 | 27 | 33 | 44 |
Component | Yield Strength, Re, MPa | Ultimate Tensile Strength, Rm, Mpa | Elongation, A % | |||
---|---|---|---|---|---|---|
Nominal | Test | Nominal | Test | Nominal | Test | |
Main bars | 355 | 450 | 470–630 | 536 | 22 | 34 |
Lattice bars | 590 | 657 | 19 | |||
Base slab, pad | 448 | 495 | 32 | |||
Joint, screw 5.8 | 400 | 581.1 | 500 | 673.1 | - | - |
T00 | T01 | T02 | T03 | |
---|---|---|---|---|
Surface of the sign, m2 | 2.25 | 4.6 | 7.3 | 9.7 |
The span of main bars, mm | 200 | 250 | 350 | 450 |
Diameter of main bars, mm | 16 | 20 | 24 | 30 |
Diameter of grating bars, mm | 8 | 10 | 12 | 14 |
Joint, screws | M10 | M12 | M16 | M16 |
Km/h | Mast | ASI | THIV | Delta-v |
---|---|---|---|---|
35 | T00 | 0.325 | 7.366 | 17.0 |
T03 | 0.65 | 15.891 | n.d. | |
100 | T00 | 0.348 | 6.142 | 94.6 |
T03 | 0.994 | 19.551 | 77.9 |
km/h | Mast | ASI | THIV | Delta-v |
---|---|---|---|---|
35 | T00 | 0.136 | 3.536 | 32.0 |
T01 | 0.181 | 3.485 | 31.0 | |
T02 | 0.292 | 6.512 | 27.5 | |
T03 | 0.301 | 7.717 | 26.0 | |
100 | T00 | 0.215 | 6.075 | 96.0 |
T01 | 0.294 | 7.515 | 91.5 | |
T02 | 0.455 | 10.988 | 89.0 | |
T03 | 0.474 | 11.089 | 87.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stopel, M.; Cichański, A.; Yague, N.; Kończalski, G. Experimental and Numerical Assessment of Supporting Road Signs Masts Family for Compliance with the Standard EN 12767. Materials 2021, 14, 5999. https://doi.org/10.3390/ma14205999
Stopel M, Cichański A, Yague N, Kończalski G. Experimental and Numerical Assessment of Supporting Road Signs Masts Family for Compliance with the Standard EN 12767. Materials. 2021; 14(20):5999. https://doi.org/10.3390/ma14205999
Chicago/Turabian StyleStopel, Michał, Artur Cichański, Nathalie Yague, and Grzegorz Kończalski. 2021. "Experimental and Numerical Assessment of Supporting Road Signs Masts Family for Compliance with the Standard EN 12767" Materials 14, no. 20: 5999. https://doi.org/10.3390/ma14205999
APA StyleStopel, M., Cichański, A., Yague, N., & Kończalski, G. (2021). Experimental and Numerical Assessment of Supporting Road Signs Masts Family for Compliance with the Standard EN 12767. Materials, 14(20), 5999. https://doi.org/10.3390/ma14205999