Recent Progress in Multiphase Thermoelectric Materials
Abstract
:1. Introduction
2. Energy Filtering
2.1. Energy Filtering by Metal Secondary Phases
2.2. Energy Filtering by Semiconducting Secondary Phases
3. Modulation Doping
4. Phonon Scattering
5. Models to Estimate the Transport Properties
6. Magnetic Effects
6.1. Magnetic Semiconductors
6.2. Magnetic Dopants in Non-Magnetic Semiconductors
6.3. Secondary Magnetic Phases
7. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Biswas, K.; He, J.; Blum, I.D.; Wu, C.I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Vining, C.B. An Inconvenient Truth about Thermoelectrics. Nat. Mater. 2009, 8, 83–85. [Google Scholar] [CrossRef]
- Tritt, T.M.; Boettner, H.; Chen, L. Thermoelectrics: Direct Solar Thermal Energy Conversion. MRS Bull. 2008, 33, 366–368. [Google Scholar] [CrossRef] [Green Version]
- Cutler, M.; Mott, N.F. Observation of Anderson Localization in an Electron Gas. Phys. Rev. 1969, 181, 1336–1340. [Google Scholar] [CrossRef]
- Siemens, M.E.; Li, Q.; Yang, R.; Nelson, K.A.; Anderson, E.H.; Murnane, M.M.; Kapteyn, H.C. Quasi-Ballistic Thermal Transport from Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-Ray Beams. Nat. Mater. 2010, 9, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Delaire, O.; Ma, J.; Marty, K.; May, A.F.; McGuire, M.A.; Du, M.H.; Singh, D.J.; Podlesnyak, A.; Ehlers, G.; Lumsden, M.D.; et al. Giant Anharmonic Phonon Scattering in PbTe. Nat. Mater. 2011, 10, 614–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Zeng, L.; Minnich, A.J.; Dresselhaus, M.S.; Chen, G. Spectral Mapping of Thermal Conductivity through Nanoscale Ballistic Transport. Nat. Nanotechnol. 2015, 10, 701–706. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, Y.; Wu, H.; Li, J.; Li, Y.; McKenna, M.; He, J.; Liu, F.; Pennycook, S.J.; Zeng, X. Entropy Engineering of SnTe: Multi-Principal-Element Alloying Leading to Ultralow Lattice Thermal Conductivity and State-of-the-Art Thermoelectric Performance. Adv. Energy Mater. 2018, 8, 1802116. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, H.; Wu, Y.; Liu, X.J.; Lu, Z.P. Thermoelectric High-Entropy Alloys with Low Lattice Thermal Conductivity. RSC Adv. 2016, 6, 52164–52170. [Google Scholar] [CrossRef]
- Wei, P.C.; Liao, C.N.; Wu, H.J.; Yang, D.; He, J.; Biesold-McGee, G.V.; Liang, S.; Yen, W.T.; Tang, X.; Yeh, J.W.; et al. Thermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performance. Adv. Mater. 2020, 32, e1906457. [Google Scholar] [CrossRef]
- Joshi, G.; Lee, H.; Lan, Y.; Wang, X.; Zhu, G.; Wang, D.; Gould, R.W.; Cuff, D.C.; Tang, M.Y.; Dresselhaus, M.S.; et al. Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-Type Silicon Germanium Bulk Alloys. Nano Lett. 2008, 8, 4670–4674. [Google Scholar] [CrossRef]
- Wang, X.W.; Lee, H.; Lan, Y.C.; Zhu, G.H.; Joshi, G.; Wang, D.Z.; Yang, J.; Muto, A.J.; Tang, M.Y.; Klatsky, J.; et al. Enhanced Thermoelectric Figure of Merit in Nanostructured N-Type Silicon Germanium Bulk Alloy. Appl. Phys. Lett. 2008, 93, 193121. [Google Scholar] [CrossRef]
- Lan, Y.C.; Minnich, A.J.; Chen, G.; Ren, Z.F. Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach. Adv. Funct. Mater. 2010, 20, 357–376. [Google Scholar] [CrossRef]
- Ren, Z.; Poudel, B.E.D.; Chen, G.; Lan, Y.; Wang, D.; Hao, Q.; Dresselhaus, M.; Ma, Y.I.; Yan, X.; Chen, X.; et al. Methods for High Figure-of-Merit in Nanostructured Thermoelectric Materials. U.S. Patent 8865995B2, 21 October 2014. [Google Scholar]
- Yu, B.; Zebarjadi, M.; Wang, H.; Lukas, K.; Wang, H.; Wang, D.; Opeil, C.; Dresselhaus, M.; Chen, G.; Ren, Z. Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites. Nano Lett. 2012, 12, 2077–2082. [Google Scholar] [CrossRef]
- Wang, H.; Cao, X.; Takagiwa, Y.; Snyder, G.J. Higher Mobility in Bulk Semiconductors by Separating the Dopants from the Charge-Conducting Band—A Case Study of Thermoelectric PbSe. Mater. Horiz. 2015, 2, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Thesberg, M.; Pourfath, M.; Kosina, H.; Neophytou, N. The Influence of Non-Idealities on the Thermoelectric Power Factor of Nanostructured Superlattices. J. Appl. Phys. 2015, 118, 224301. [Google Scholar] [CrossRef] [Green Version]
- Rhyee, J.S.; Lee, K.H.; Lee, S.M.; Cho, E.; Kim, S.I.; Lee, E.; Kwon, Y.S.; Shim, J.H.; Kotliar, G. Peierls Distortion as a Route to High Thermoelectric Performance in In(4)Se(3-Delta) Crystals. Nature 2009, 459, 965–968. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, R.; Chen, G.; Dresselhaus, M.S. Optimal Bandwidth for High Efficiency Thermoelectrics. Phys. Rev. Lett. 2011, 107, 226601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G.J. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States. Science 2008, 321, 554–557. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Liu, Z.; Ren, Z. Size Effect in Thermoelectric Materials. npj Quant. Mater. 2016, 1, 16028. [Google Scholar] [CrossRef]
- Zeng, G.; Bowers, J.E.; Zide, J.M.O.; Gossard, A.C.; Kim, W.; Singer, S.; Majumdar, A.; Singh, R.; Bian, Z.; Zhang, Y.; et al. ErAs:InGaAs/InGaAlAs Superlattice Thin-Film Power Generator Array. Appl. Phys. Lett. 2006, 88, 113502. [Google Scholar] [CrossRef] [Green Version]
- Zebarjadi, M.; Joshi, G.; Zhu, G.; Yu, B.; Minnich, A.; Lan, Y.; Wang, X.; Dresselhaus, M.; Ren, Z.; Chen, G. Power Factor Enhancement by Modulation Doping in Bulk Nanocomposites. Nano Lett. 2011, 11, 2225–2230. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.R.; Gu, B.F.; Chen, Y.B.; He, Y.J.; Sun, J.L. Enhancement of the Thermoelectric Power Factor of MnSi1.7 Film by Modulation Doping of Al and Cu. Appl. Phys. A Mater. 2014, 114, 943–949. [Google Scholar] [CrossRef]
- Gu, Y.; Ai, W.; Zhao, Y.; Pan, L.; Lu, C.; Zong, P.; Hu, X.; Xu, Z.; Wang, Y. Remarkable Thermoelectric Property Enhancement in Cu2SnS3–CuCo2S4 Nanocomposites via 3D Modulation Doping. J. Mater. Chem. A 2021, 9, 16928–16935. [Google Scholar] [CrossRef]
- Wu, L.H.; Li, X.; Wang, S.Y.; Zhang, T.S.; Yang, J.; Zhang, W.Q.; Chen, L.D.; Yang, J.H. Resonant Level-Induced High Thermoelectric Response in Indium-Doped GeTe. NPG Asia Mater. 2017, 9, e343. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Wang, H.; Liu, W.S.; Wang, H.Z.; Yu, B.; Zhang, Q.; Tian, Z.T.; Ni, G.; Lee, S.; Esfarjani, K.; et al. Enhancement of Thermoelectric Figure-of-Merit by Resonant States of Aluminium Doping in Lead Selenide. Energy Environ. Sci. 2012, 5, 5246–5251. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.; Lundstrom, M.S. Computational Study of Energy Filtering Effects in One-Dimensional Composite Nano-Structures. J. Appl. Phys. 2012, 111, 024508. [Google Scholar] [CrossRef] [Green Version]
- Yamini, A.; Li, T.; Mitchell, D.R.G.; Cairney, J.M. Elemental Distributions within Multiphase Quaternary Pb Chalcogenide Thermoelectric Materials Determined through Three-Dimensional Atom Probe Tomography. Nano Energy 2016, 26, 157–163. [Google Scholar] [CrossRef]
- Aminorroaya Yamini, S.; Mitchell, D.R.; Avdeev, M. In Situ Characterisation of Nanostructured Multiphase Thermoelectric Materials at Elevated Temperatures. Phys. Chem. Chem. Phys. 2016, 18, 32814–32819. [Google Scholar] [CrossRef]
- Byrnes, J.; Mitchell, D.R.G.; Yamini, S.A. Thermoelectric Performance of Thermally Aged Nanostructured Bulk Materials-a Case Study of Lead Chalcogenides. Mater. Today Phys. 2020, 13, 100190. [Google Scholar] [CrossRef]
- Gao, Y.-H.; Chen, H.; Liu, N.; Zhang, R.-Z. Criteria for Power Factor Improvement in Thermoelectric Composite. Results Phys. 2018, 11, 915–919. [Google Scholar] [CrossRef]
- Hu, Q.; Qiu, W.; Chen, L.; Chen, J.; Yang, L.; Tang, J. Realize High Thermoelectric Properties in N-Type Bi2Te2.7Se0.3/Y2O3 Nanocomposites by Constructing Heterointerfaces. ACS Appl. Mater. Interfaces 2021, 13, 38526–38533. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.T.T.; Vo, P.T.N.; Ta, H.K.T.; Lai, H.T.; Tran, V.C.; Doan, T.L.H.; Duong, A.T.; Lee, C.T.; Nair, P.K.; Zulueta, Y.A.; et al. Improved Thermoelectric Power Factor Achieved by Energy Filtering in ZnO: Mg/ZnO Hetero-Structures. Thin Solid Films 2021, 721, 138537. [Google Scholar] [CrossRef]
- Park, W.; Hwang, H.; Kim, S.; Park, S.; Jang, K.-S. Optimized Thermoelectric Performance of Carbon Nanoparticle–Carbon Nanotube Heterostructures by Tuning Interface Barrier Energy. ACS Appl. Mater. Interfaces 2021, 13, 7208–7215. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Yun, J.H.; Kim, G.; Lee, J.E.; Park, S.-D.; Reith, H.; Schierning, G.; Nielsch, K.; Ko, W.; Li, A.-P.; et al. Synergetic Enhancement of Thermoelectric Performance by Selective Charge Anderson Localization–Delocalization Transition in n-Type Bi-Doped PbTe/Ag2Te Nanocomposite. ACS Nano 2019, 13, 3806–3815. [Google Scholar] [CrossRef]
- Wang, C.; Lin, S.; Chen, H.; Zhao, Y.; Zhao, L.; Wang, H.; Huo, D.; Chen, X. Thermoelectric Performance of Si80Ge20−xSbx Based Multiphase Alloys with Inhomogeneous Dopant Distribution. Energy Convers. Manag. 2015, 94, 331–336. [Google Scholar] [CrossRef]
- Wu, D.; Pei, Y.; Wang, Z.; Wu, H.; Huang, L.; Zhao, L.-D.; He, J. Significantly Enhanced Thermoelectric Performance in N-Type Heterogeneous BiAgSeS Composites. Adv. Funct. Mater. 2014, 24, 7763–7771. [Google Scholar] [CrossRef]
- Ahmad, K.; Wan, C.; Al-Eshaikh, M.A.; Kadachi, A.N. Enhanced Thermoelectric Performance of Bi2Te3 Based Graphene Nanocomposites. Appl. Surf. Sci. 2019, 474, 2–8. [Google Scholar] [CrossRef]
- Wolf, M.; Menekse, K.; Mundstock, A.; Hinterding, R.; Nietschke, F.; Oeckler, O.; Feldhoff, A. Low Thermal Conductivity in Thermoelectric Oxide-Based Multiphase Composites. J. Electron. Mater. 2019, 48, 7551–7561. [Google Scholar] [CrossRef]
- Manimozhi, T.; Kavirajan, S.; Harish, S.; Archana, J.; Kamala Bharathi, K.; Senthil Kumar, E.; Navaneethan, M. Anharmonicity and Low-Thermal Conductivity in the Multi-Phase Composition of Cu3Bi0.75Sb0.25S3. Mater. Lett. 2021, 304, 130399. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, G.; Wang, R.; Zhou, X.; Chen, Z.; Yin, C.; Tang, M.; Hu, Q.; Tang, J.; Ang, R. Ga-Doping-Induced Carrier Tuning and Multiphase Engineering in n-Type PbTe with Enhanced Thermoelectric Performance. ACS Appl. Mater. Interfaces 2018, 10, 22401–22407. [Google Scholar] [CrossRef]
- Sun, P.; Oeschler, N.; Johnsen, S.; Iversen, B.B.; Steglich, F. Thermoelectric Properties of the Narrow-Gap Semiconductors FeSb2 and RuSb2: A Comparative Study. J. Phys. Conf. Ser. 2009, 150, 012049. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Canulescu, S.; Sun, P.J.; Steglich, F.; Pryds, N.; Schou, J.; Iversen, B.B. Growth and Thermoelectric Properties of FeSb2 Films Produced by Pulsed Laser Deposition. Appl. Phys. A Mater. 2011, 104, 883–887. [Google Scholar] [CrossRef] [Green Version]
- Tsujii, N.; Mori, T.; Isoda, Y. Phase Stability and Thermoelectric Properties of CuFeS2-Based Magnetic Semiconductor. J. Electron. Mater. 2014, 43, 2371–2375. [Google Scholar] [CrossRef]
- Motohashi, T.; Naujalis, E.; Ueda, R.; Isawa, K.; Karppinen, M.; Yamauchi, H. Simultaneously Enhanced Thermoelectric Power and Reduced Resistivity of NaxCo2O4 by Controlling Na Nonstoichiometry. Appl. Phys. Lett. 2001, 79, 1480–1482. [Google Scholar] [CrossRef]
- Wen, Q.; Chang, C.; Pan, L.; Li, X.T.; Yang, T.; Guo, H.H.; Wang, Z.H.; Zhang, J.; Xu, F.; Zhang, Z.D.; et al. Enhanced Thermoelectric Performance of BiCuSeO by Increasing Seebeck Coefficient through Magnetic Ion Incorporation. J. Mater. Chem. A 2017, 5, 13392–13399. [Google Scholar] [CrossRef]
- Xiao, C.; Li, K.; Zhang, J.J.; Tong, W.; Liu, Y.W.; Li, Z.; Huang, P.C.; Pan, B.C.; Su, H.B.; Xie, Y. Magnetic Ions in Wide Band Gap Semiconductor Nanocrystals for Optimized Thermoelectric Properties. Mater. Horiz. 2014, 1, 81–86. [Google Scholar] [CrossRef]
- Liu, K.G.; Li, J. Thermoelectric Properties of Bulk FeSb2 and the Composite of FeSb2 and CoSb3 Prepared by Sintering. Appl. Mech. Mater. 2011, 71–78, 3741–3744. [Google Scholar] [CrossRef]
- Tan, G.; Shi, F.; Hao, S.; Chi, H.; Bailey, T.P.; Zhao, L.D.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. J. Am. Chem. Soc. 2015, 137, 11507–11516. [Google Scholar] [CrossRef] [PubMed]
- Hébert, S.; Daou, R.; Maignan, A.; Das, S.; Banerjee, A.; Klein, Y.; Bourgès, C.; Tsujii, N.; Mori, T. Thermoelectric Materials Taking Advantage of Spin Entropy: Lessons from Chalcogenides and Oxides. Sci. Technol. Adv. Mater. 2021, 22, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Cui, W.; Sang, X.; Hu, F.; Wei, P.; Zhu, W.; Nie, X.; Zhang, Q.; Zhao, W. Enhanced Thermoelectric Performance and Atomic-Resolution Interfacial Structures in BiSbTe Thermo-Electro-Magnetic Nanocomposites Incorporating Magnetocaloric LaFeSi Nanoparticles. J. Mater. 2021, 7, 998–1006. [Google Scholar] [CrossRef]
- Ioffe, A.F.; Stil’bans, L.S.; Iordanishvili, E.K.; Stavitskaya, T.S.; Gelbtuch, A.; Vineyard, G. Semiconductor Thermoelements and Thermoelectric Cooling. Phys. Today 1959, 12, 42. [Google Scholar] [CrossRef]
- Popescu, A.; Woods, L.M.; Martin, J.; Nolas, G.S. Model of Transport Properties of Thermoelectric Nanocomposite Materials. Phys. Rev. B 2009, 79, 205302. [Google Scholar] [CrossRef] [Green Version]
- Medlin, D.L.; Snyder, G.J. Interfaces in Bulk Thermoelectric Materials: A Review for Current Opinion in Colloid and Interface Science. Curr. Opin. Colloid Interface Sci. 2009, 14, 226–235. [Google Scholar] [CrossRef]
- Heremans, J.P.; Thrush, C.M.; Morelli, D.T. Thermopower Enhancement in Lead Telluride Nanostructures. Phys. Rev. B 2004, 70, 115334. [Google Scholar] [CrossRef]
- Kishimoto, K.; Yamamoto, K.; Koyanagi, T. Influences of Potential Barrier Scattering on the Thermoelectric, Properties of Sintered n-Type PbTe with a Small Grain Size. Jpn. J. Appl. Phys. 2003, 42, 501–508. [Google Scholar] [CrossRef]
- Hu, Q.J.; Zhang, Y.; Zhang, Y.W.; Li, X.J.; Song, H.Z. High Thermoelectric Performance in Cu2Se/CDs Hybrid Materials. J. Alloy. Compd. 2020, 813, 152204. [Google Scholar] [CrossRef]
- Shakouri, A.; Lee, E.Y.; Smith, D.L.; Narayanamurti, V.; Bowers, J. Thermoelectric Effects in Submicron Heterostructure Barriers. Microscale Thermophys. Eng. 1998, 2, 37–47. [Google Scholar] [CrossRef]
- Bahk, J.H.; Bian, Z.X.; Shakouri, A. Electron Energy Filtering by a Nonplanar Potential to Enhance the Thermoelectric Power Factor in Bulk Materials. Phys. Rev. B 2013, 87, 075204. [Google Scholar] [CrossRef]
- Rowe, D.M.; Min, G. Multiple Potential Barriers as a Possible Mechanism to Increase the Seebeck Coefficient and Electrical Power Factor. AIP Conf. Proc. 1994, 316, 339–342. [Google Scholar]
- Whitlow, L.W.; Hirano, T. Superlattice Applications to Thermoelectricity. J. Appl. Phys. 1995, 78, 5460–5466. [Google Scholar] [CrossRef]
- Zianni, X.; Narducci, D. Parametric Modeling of Energy Filtering by Energy Barriers in Thermoelectric Nanocomposites. J. Appl. Phys. 2015, 117, 035102. [Google Scholar] [CrossRef]
- Ziman, J.M. Electrons and Phonons: The Theory of Transport Phenomena in Solids; Oxford University Press: Oxford, UK, 2001; ISBN 978-0-19-170993-7. [Google Scholar]
- Jeong, C.; Kim, R.; Luisier, M.; Datta, S.; Lundstrom, M. On Landauer versus Boltzmann and Full Band versus Effective Mass Evaluation of Thermoelectric Transport Coefficients. J. Appl. Phys. 2010, 107, 023707. [Google Scholar] [CrossRef] [Green Version]
- Faleev, S.V.; Leonard, F. Theory of Enhancement of Thermoelectric Properties of Materials with Nanoinclusions. Phys. Rev. B 2008, 77, 214304. [Google Scholar] [CrossRef] [Green Version]
- Gayner, C.; Amouyal, Y. Energy Filtering of Charge Carriers: Current Trends, Challenges, and Prospects for Thermoelectric Materials. Adv. Funct. Mater. 2019, 30, 1901789. [Google Scholar] [CrossRef]
- Singha, A.; Muralidharan, B. Incoherent Scattering Can Favorably Influence Energy Filtering in Nanostructured Thermoelectrics. Sci. Rep. 2017, 7, 7879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narducci, D.; Selezneva, E.; Cerofolini, G.; Frabboni, S.; Ottaviani, G. Impact of Energy Filtering and Carrier Localization on the Thermoelectric Properties of Granular Semiconductors. J. Solid State Chem. 2012, 193, 19–25. [Google Scholar] [CrossRef]
- Zhang, D.; Lei, J.; Guan, W.; Ma, Z.; Wang, C.; Zhang, L.; Cheng, Z.; Wang, Y. Enhanced Thermoelectric Performance of BiSbTe Alloy: Energy Filtering Effect of Nanoprecipitates and the Effect of SiC Nanoparticles. J. Alloys Compd. 2019, 784, 1276–1283. [Google Scholar] [CrossRef]
- Liu, S.Q.; Kong, J.H.; Chen, H.M.; He, C.B. Interfacial Energy Barrier Tuning for Enhanced Thermoelectric Performance of PEDOT Nanowire/SWNT/PEDOT:PSS Ternary Composites. ACS Appl. Energy Mater. 2019, 2, 8843–8850. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Zhang, Q.K.; Deng, S.P.; Zhou, B.; Wang, B.; Chen, Z.Q.; Qi, N.; Tang, X.F. Enhanced Thermoelectric Performance of Polythiophene/Carbon Nanotube-Based Composites. J. Electron. Mater. 2020, 49, 2371–2380. [Google Scholar] [CrossRef]
- An, H.; Pusko, M.; Chun, D.; Park, S.; Moon, J. In-Situ Synthesis of Flexible Hybrid Composite Films for Improved Thermoelectric Performance. Chem. Eng. J. 2019, 357, 547–558. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, W.; Zhu, W.; Ma, S.; Li, C.; Mu, X.; Wei, P.; Nie, X.; Zhang, Q.; Zhao, W. Preparation and Thermoelectric Performance of BaTiO3/Bi0.5Sb1.5Te3 Composite Materials. J. Electron. Mater. 2020, 49, 2794–2801. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, S.; Luo, Y.; Xin, J.; Li, S.; Li, W.; Zhao, G.; Yang, J. Ecofriendly Highly Robust Ag8SiSe6-Based Thermoelectric Composites with Excellent Performance Near Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 54653–54661. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Back, S.Y.; Yun, J.H.; Byeon, S.; Jin, H.; Rhyee, J.S. Thermoelectric Properties and Low-Energy Carrier Filtering by Mo Microparticle Dispersion in an n-Type (CuI)0.003Bi2(Te,Se)3 Bulk Matrix. ACS Appl. Mater. Interfaces 2020, 12, 38076–38084. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Yu, Z.K.; Zhou, H.B.; Yang, F.; Zhong, F.; Mao, X.H.; Li, B.Z.; Xin, H.; Gao, C.M.; Wang, L. Promoting the Thermoelectric Performance of Single-Walled Carbon Nanotubes by Inserting Discotic Liquid-Crystal Molecules. ACS Sustain. Chem. Eng. 2021, 9, 1891–1898. [Google Scholar] [CrossRef]
- Davies, J.H. The Physics of Low-Dimensional Semiconductors: An Introduction, 1st ed.; Cambridge University Press: Cambridge, UK, 1997; ISBN 978-0-521-48148-9. [Google Scholar]
- Liu, Y.; Guo, J.; Zhu, E.; Liao, L.; Lee, S.J.; Ding, M.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. Approaching the Schottky-Mott Limit in van Der Waals Metal-Semiconductor Junctions. Nature 2018, 557, 696–700. [Google Scholar] [CrossRef]
- Vashaee, D.; Shakouri, A. Improved Thermoelectric Power Factor in Metal-Based Superlattices. Phys. Rev. Lett. 2004, 92, 106103. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Qin, X.Y. Enhanced Thermoelectric Performance through Energy-Filtering Effects in Nanocomposites Dispersed with Metallic Particles. Appl. Phys. Lett. 2012, 101, 132103. [Google Scholar] [CrossRef]
- Heremans, J.P.; Thrush, C.M.; Morelli, D.T. Thermopower Enhancement in PbTe with Pb Precipitates. J. Appl. Phys. 2005, 98, 063703. [Google Scholar] [CrossRef] [Green Version]
- Ko, D.K.; Kang, Y.; Murray, C.B. Enhanced Thermopower via Carrier Energy Filtering in Solution-Processable Pt-Sb2Te3 Nanocomposites. Nano Lett. 2011, 11, 2841–2844. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, M.Y.; Liang, S. Improved Thermoelectric Performance of Cu2O-Cr/Sn Composite Powder. Chem. Phys. Lett. 2021, 777, 138722. [Google Scholar] [CrossRef]
- Gao, L.; Wang, S.; Liu, R.; Zha, X.; Sun, N.; Wang, S.; Wang, J.; Fu, G. Enhanced Thermoelectric Performance of CdO: Ag Nanocomposites. Dalton Trans. 2016, 45, 12215–12220. [Google Scholar] [CrossRef] [PubMed]
- Milnes, A.G.; Feucht, D.L. Heterojunctions and Metal Semiconductor Junctions; Elsevier: Amsterdam, The Netherlands, 1972; ISBN 978-0-12-498050-1. [Google Scholar]
- Mayergoyz, I.D. Solution of the Nonlinear Poisson Equation of Semiconductor Device Theory. J. Appl. Phys. 1986, 59, 195–199. [Google Scholar] [CrossRef]
- Wu, H.J.; Carrete, J.; Zhang, Z.Y.; Qu, Y.Q.; Shen, X.T.; Wang, Z.; Zhao, L.D.; He, J.Q. Strong Enhancement of Phonon Scattering through Nanoscale Grains in Lead Sulfide Thermoelectrics. NPG Asia Mater. 2014, 6, e108. [Google Scholar] [CrossRef]
- Seto, J.Y.W. The Electrical Properties of Polycrystalline Silicon Films. J. Appl. Phys. 1975, 46, 5247–5254. [Google Scholar] [CrossRef]
- Taylor, W.E.; Odell, N.H.; Fan, H.Y. Grain Boundary Barriers in Germanium. Phys. Rev. 1952, 88, 867–875. [Google Scholar] [CrossRef]
- Zhou, Z.W.; Yang, J.Y.; Jiang, Q.H.; Zhang, D.; Xin, J.W.; Li, X.; Ren, Y.Y.; He, X. Thermoelectric Performance of SnTe with ZnO Carrier Compensation, Energy Filtering, and Multiscale Phonon Scattering. J. Am. Ceram. Soc. 2017, 100, 5723–5730. [Google Scholar] [CrossRef]
- Dou, Y.C.; Qin, X.Y.; Li, D.; Li, L.L.; Zou, T.H.; Wang, Q.Q. Enhanced Thermopower and Thermoelectric Performance through Energy Filtering of Carriers in (Bi2Te3)(0.2)(Sb2Te3)(0.8) Bulk Alloy Embedded with Amorphous SiO2 Nanoparticles. J. Appl. Phys. 2013, 114, 7. [Google Scholar] [CrossRef]
- Fang, T.; Li, X.; Hu, C.; Zhang, Q.; Yang, J.; Zhang, W.; Zhao, X.; Singh, D.J.; Zhu, T. Complex Band Structures and Lattice Dynamics of Bi2Te3-Based Compounds and Solid Solutions. Adv. Funct. Mater. 2019, 29, 1900677. [Google Scholar] [CrossRef]
- Li, Y.; Dou, Y.; Qin, X.; Zhang, J.; Xin, H.; Li, D.; Song, C.; Zou, T.; Liu, Y.; Li, C. Enhanced Thermoelectric Figure of Merit in P-Type β-Zn4Sb3/Bi0.4Sb1.6Te3 Nanocomposites. RSC Adv. 2016, 6, 12243–12248. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Enju, J.; Ono, T. Enhancement of Thermoelectric Properties of Bismuth Telluride Composite with Gold Nano-Particles Inclusions Using Electrochemical Co-Deposition. J. Electrochem. Soc. 2019, 166, D508. [Google Scholar] [CrossRef]
- Madavali, B.; Kim, H.S.; Lee, K.H.; Hong, S.J. Enhanced Seebeck Coefficient by Energy Filtering in Bi-Sb-Te Based Composites with Dispersed Y2O3 Nanoparticles. Intermetallics 2017, 82, 68–75. [Google Scholar] [CrossRef]
- Ravich, I.I. Semiconducting Lead Chalcogenide; Monographs in Semiconductor Physics; Springer: New York, NY, USA, 1970; ISBN 978-1-4684-8609-4. [Google Scholar]
- Zou, T.; Qin, X.; Zhang, Y.; Li, X.; Zeng, Z.; Li, D.; Zhang, J.; Xin, H.; Xie, W.; Weidenkaff, A. Enhanced Thermoelectric Performance of β-Zn4Sb3 Based Nanocomposites through Combined Effects of Density of States Resonance and Carrier Energy Filtering. Sci. Rep. 2015, 5, 17803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Z.; Chen, X.; Zhao, X.; Bai, S.; Huang, X.; Chen, L. Effects of Nano-TiO2 Dispersion on the Thermoelectric Properties Offilled-Skutterudite Ba0.22Co4Sb12. Solid State Sci. 2009, 11, 1612–1616. [Google Scholar] [CrossRef]
- Dette, C.; Perez-Osorio, M.A.; Kley, C.S.; Punke, P.; Patrick, C.E.; Jacobson, P.; Giustino, F.; Jung, S.J.; Kern, K. TiO2 Anatase with a Bandgap in the Visible Region. Nano Lett. 2014, 14, 6533–6538. [Google Scholar] [CrossRef]
- Yang, Y.-X.; Wu, Y.-H.; Zhang, Q.; Cao, G.-S.; Zhu, T.-J.; Zhao, X.-B. Enhanced Thermoelectric Performance of Bi2Se3/TiO2 Composite. Rare Met. 2020, 39, 887–894. [Google Scholar] [CrossRef]
- Ou, C.; Hou, J.; Wei, T.-R.; Jiang, B.; Jiao, S.; Li, J.-F.; Zhu, H. High Thermoelectric Performance of All-Oxide Heterostructures with Carrier Double-Barrier Filtering Effect. NPG Asia Mater. 2015, 7, e182. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, S.; Zhang, H.; Lv, F.; Fan, W.; Wang, W.; Munir, Z.A. Thermoelectric Properties and Transport Mechanism of Pure and Bi-Doped SiNWs-Mg2Si. Phys. Status Solidi A Appl. Mater. Sci. 2018, 215, 1700742. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, K.; Zhang, Y.; Li, X.; Song, H. Enhanced Thermoelectric Properties of Nano SiC Dispersed Bi2Sr2Co2Oy Ceramics. Mater. Res. Express 2018, 5, 045510. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, J.; Fan, Y.; Zhang, Q.; Lu, X.; Fan, S.; Kikuchi, K.; Nomura, N.; Kawasaki, A.; Wang, L.; et al. Uniform Dispersion of SiC in Yb-Filled Skutterudite Nanocomposites with High Thermoelectric and Mechanical Performance. Scr. Mater. 2019, 162, 166–171. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, K.; Liu, J.; Wang, J.; Yan, K.; Liu, P.; Wang, Y. Enhanced Thermoelectric Properties of Nano-SiC Dispersed NaCo2O4 Composites. Funct. Mater. Lett. 2019, 12, 1950009. [Google Scholar] [CrossRef]
- Xia, Y.; Park, J.; Zhou, F.; Ozoliņš, V. High Thermoelectric Power Factor in Intermetallic CoSi Arising from Energy Filtering of Electrons by Phonon Scattering. Phys. Rev. Appl. 2019, 11, 024017. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Basu, R.; Sarkar, P.; Singh, A.; Bohra, A.; Bhattacharya, S.; Bhatt, R.; Meshram, K.N.; Samanta, S.; Bhatt, P.; et al. Enhanced Thermoelectric Figure-of-Merit of p-Type SiGe through TiO2 Nanoinclusions and Modulation Doping of Boron. Materialia 2018, 4, 147–156. [Google Scholar] [CrossRef]
- Felizco, J.C.; Uenuma, M.; Fujii, M.N.; Uraoka, Y. Improved Thermoelectric Power Factor of InGaZnO/SiO Thin Film Transistor via Gate-Tunable Energy Filtering. IEEE Electron Device Lett. 2021, 42, 1236–1239. [Google Scholar] [CrossRef]
- Solá, F.; Dynys, F.W. Probing the Mechanical Properties and Microstructure of WSi2/SixGe1−x Multiphase Thermoelectric Material by Nanoindentation, Electron and Focused Ion Beam Microscopy Methods. J. Alloy. Compd. 2015, 633, 165–169. [Google Scholar] [CrossRef]
- Neophytou, N.; Zianni, X.; Kosina, H.; Frabboni, S.; Lorenzi, B.; Narducci, D. Simultaneous Increase in Electrical Conductivity and Seebeck Coefficient in Highly Boron-Doped Nanocrystalline Si. Nanotechnology 2013, 24, 205402. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.B.; Poudel, B.; Li, W.; Lee, H.; Saparamadu, U.; Nozariasbmarz, A.; Kang, M.G.; Gupta, A.; Heremans, J.J.; Priya, S. Decoupled Phononic-Electronic Transport in Multi-Phase n-Type Half-Heusler Nanocomposites Enabling Efficient High Temperature Power Generation. Mater. Today 2020, 36, 63–72. [Google Scholar] [CrossRef]
- Pakdel, A.; Guo, Q.; Nicolosi, V.; Mori, T. Enhanced Thermoelectric Performance of Bi-Sb-Te/Sb2O3 Nanocomposites by Energy Filtering Effect. J. Mater. Chem. A 2018, 6, 21341–21349. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Liu, F.; He, D.; He, J.; Luo, J.; Xiao, Y.; Pan, F. Effective Atomic Interface Engineering in Bi2Te2.7Se0.3 Thermoelectric Material by Atomic-Layer-Deposition Approach. Nano Energy 2018, 49, 257–266. [Google Scholar] [CrossRef]
- Güneş, E.; Wickleder, M.S.; Müller, E.; Elm, M.T.; Klar, P.J. Improved Thermoelectric Properties of Nanostructured Composites out of Bi1ࢤxSbx Nanoparticles and Carbon Phases. AIP Adv. 2018, 8, 075319. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.S.; Huang, L.L.; Li, D.; Zhang, J.; Qin, X.Y. Enhanced Thermoelectric Performance of Bi0.4Sb1.6Te3 Based Composites with CuInTe2 Inclusions. J. Alloys Compd. 2018, 758, 72–77. [Google Scholar] [CrossRef]
- Cao, R.; Zhu, Z.; Li, X.-J.; Hu, X.; Song, H. Enhanced Thermoelectric Properties of the Lu-Doped and CNT-Dispersed Bi2Te3 Alloy. Appl. Phys. A Mater. Sci. Process. 2019, 125. [Google Scholar] [CrossRef]
- Wan, X.; Liu, Z.; Sun, L.; Jiang, P.; Bao, X. Synergetic Enhancement of Thermoelectric Performance in a Bi0.5Sb1.5Te3/SrTiO3 Heterostructure. J. Mater. Chem. A 2020, 8, 10839–10844. [Google Scholar] [CrossRef]
- Park, N.-W.; Lee, W.-Y.; Yoon, Y.-S.; Kim, G.-S.; Yoon, Y.-G.; Lee, S.-K. Achieving Out-of-Plane Thermoelectric Figure of Merit ZT = 1.44 in a p-Type Bi2Te3/Bi0.5Sb1.5Te3 Superlattice Film with Low Interfacial Resistance. ACS Appl. Mater. Interfaces 2019, 11, 38247–38254. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Liu, G.; Shin, B.; Shan, F. High Thermoelectric Efficiency of P-Type BiSbTe-Based Composites with CuGaTe2 Nanoinclusions. Scr. Mater. 2019, 172, 88–92. [Google Scholar] [CrossRef]
- Lwin, M.L.; Dharmaiah, P.; Min, B.H.; Song, G.; Jung, K.Y.; Hong, S.-J. Tuning of Thermoelectric Transport Properties via the Formation of Hierarchical Structures in Bi-Doped Gd2O3/Bi0.5Sb1.5Te3 Nanocomposites. Int. J. Energy Res. 2021. [Google Scholar] [CrossRef]
- Ahmad, M.; Kodan, N.; Ghosh, A.; Mehta, B.R. The Nature of 2D:3D SnS:Bi2Te3 Interface and Its Effect on Enhanced Electrical and Thermoelectric Properties. J. Alloy. Compd. 2020, 847, 156233. [Google Scholar] [CrossRef]
- Zhao, L.; Qiu, W.; Sun, Y.; Chen, L.; Deng, H.; Yang, L.; Shi, X.; Tang, J. Enhanced Thermoelectric Performance of Bi0.3Sb1.7Te3 Based Alloys by Dispersing TiC Ceramic Nanoparticles. J. Alloy. Compd. 2021, 863, 158376. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, C.; Liu, Y.; Li, M.; Xiao, K.; Guardia, P.; Lee, S.; Han, X.; Ostovari Moghaddam, A.; Josep Roa, J.; et al. Influence of Copper Telluride Nanodomains on the Transport Properties of N-Type Bismuth Telluride. Chem. Eng. J. 2021, 418, 129374. [Google Scholar] [CrossRef]
- Hwang, J.; Lee, M.; Yu, B.-K.; Han, M.-K.; Kim, W.; Kim, J.; Al Rahal Al Orabi, R.; Wang, H.; Acharya, S.; Kim, J.; et al. Enhancement of Thermoelectric Performance in a Non-Toxic CuInTe2/SnTe Coated Grain Nanocomposite. J. Mater. Chem. A 2021, 9, 14851–14858. [Google Scholar] [CrossRef]
- Dharmaiah, P.; Nagarjuna, C.; Sharief, P.; Hong, S.-J. Synergetic Effects of Co-Dispersed Cu and Insulating HfO2 Nanoparticles Enabled High Thermoelectric Figure of Merit in Bi0.5Sb1.5Te3 Composites. Appl. Surf. Sci. 2021, 556, 149783. [Google Scholar] [CrossRef]
- Pei, Y.L.; Wu, H.; Wu, D.; Zheng, F.; He, J. High Thermoelectric Performance Realized in a BiCuSeO System by Improving Carrier Mobility through 3D Modulation Doping. J. Am. Chem. Soc. 2014, 136, 13902–13908. [Google Scholar] [CrossRef]
- Dingle, R.; Störmer, H.L.; Gossard, A.C.; Wiegmann, W. Electron Mobilities in Modulation-doped Semiconductor Heterojunction Superlattices. Appl. Phys. Lett. 1978, 33, 665–667. [Google Scholar] [CrossRef]
- Mimura, T.; Hiyamizu, S.; Fujii, T.; Nanbu, K. A New Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1−xAs Heterojunctions. Jpn. J. Appl. Phys. 1980, 19, L225–L227. [Google Scholar] [CrossRef]
- Pfeiffer, L.; West, K.W.; Stormer, H.L.; Baldwin, K.W. Electron Mobilities Exceeding 107 cm2/V s in Modulation-doped GaAs. Appl. Phys. Lett. 1998, 55, 1888. [Google Scholar] [CrossRef] [Green Version]
- Yamini, S.A.; Mitchell, D.R.G.; Gibbs, Z.M.; Santos, R.; Patterson, V.; Li, S.; Pei, Y.Z.; Dou, S.X.; Snyder, G.J. Heterogeneous Distribution of Sodium for High Thermoelectric Performance of P-Type Multiphase Lead-Chalcogenides. Adv. Energy Mater. 2015, 5, 1501047. [Google Scholar] [CrossRef]
- Tian, Y.; Sakr, M.R.; Kinder, J.M.; Liang, D.; MacDonald, M.J.; Qiu, R.L.J.; Gao, H.-J.; Gao, X.P.A. One-Dimensional Quantum Confinement Effect Modulated Thermoelectric Properties in InAs Nanowires. Nano Lett. 2012, 12, 6492–6497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, J.; Kim, J.-H.; Chen, Z.C.Y.; Xiang, J.; Chen, R. Gate-Modulated Thermoelectric Power Factor of Hole Gas in Ge-Si Core-Shell Nanowires. Nano Lett. 2013, 13, 1196–1202. [Google Scholar] [CrossRef]
- Liang, W.; Hochbaum, A.I.; Fardy, M.; Rabin, O.; Zhang, M.; Yang, P. Field-Effect Modulation of Seebeck Coefficient in Single PbSe Nanowires. Nano Lett. 2009, 9, 1689–1693. [Google Scholar] [CrossRef] [PubMed]
- Curtin, B.M.; Codecido, E.A.; Krämer, S.; Bowers, J.E. Field-Effect Modulation of Thermoelectric Properties in Multigated Silicon Nanowires. Nano Lett. 2013, 13, 5503–5508. [Google Scholar] [CrossRef] [PubMed]
- Neophytou, N.; Thesberg, M. Modulation Doping and Energy Filtering as Effective Ways to Improve the Thermoelectric Power Factor. J. Comput. Electron. 2016, 15, 16–26. [Google Scholar] [CrossRef]
- Zhang, Y.; Brorsson, J.; Qiu, R.; Palmqvist, A.E.C. Enhanced Thermoelectric Performance of Ba8Ga16Ge30 Clathrate by Modulation Doping and Improved Carrier Mobility. Adv. Electron. Mater. 2021, 7, 2000782. [Google Scholar] [CrossRef]
- Rathore, E.; Guin, S.N.; Biswas, K. Enhancement of Thermoelectric Performance of N-Type AgBi1+xSe2 via Improvement of the Carrier Mobility by Modulation Doping. Bull. Mater. Sci. 2020, 43, 315. [Google Scholar] [CrossRef]
- Peng, Y.; Lai, H.; Liu, C.; Gao, J.; Kurosawa, M.; Nakatsuka, O.; Takeuchi, T.; Zaima, S.; Tanemura, S.; Miao, L. Realizing High Thermoelectric Performance in P-Type Si1−x-YGexSny Thin Films at Ambient Temperature by Sn Modulation Doping. Appl. Phys. Lett. 2020, 117, 053903. [Google Scholar] [CrossRef]
- Souda, D.; Shimizu, K.; Ohishi, Y.; Muta, H.; Yagi, T.; Kurosaki, K. High Thermoelectric Power Factor of Si–Mg2Si Nanocomposite Ribbons Synthesized by Melt Spinning. ACS Appl. Energy Mater. 2020, 3, 1962–1968. [Google Scholar] [CrossRef]
- Lee, D.; Zhou, J.; Chen, G.; Shao-Horn, Y. Enhanced Thermoelectric Properties for PEDOT:PSS/Undoped Ge Thin-Film Bilayered Heterostructures. Adv. Electron. Mater. 2019, 5, 1800624. [Google Scholar] [CrossRef]
- Hui, S.; Gao, W.; Lu, X.; Panda, A.; Bailey, T.P.; Page, A.A.; Forrest, S.R.; Morelli, D.T.; Pan, X.; Pipe, K.P.; et al. Engineering Temperature-Dependent Carrier Concentration in Bulk Composite Materials via Temperature-Dependent Fermi Level Offset. Adv. Energy Mater. 2017, 8, 1701623. [Google Scholar] [CrossRef]
- Feng, B.; Li, G.; Pan, Z.; Hu, X.; Liu, P.; He, Z.; Li, Y.; Fan, X. Enhanced Thermoelectric Properties in BiCuSeO Ceramics by Pb/Ni Dual Doping and 3D Modulation Doping. J. Solid State Chem. 2019, 271, 1–7. [Google Scholar] [CrossRef]
- Feng, B.; Li, G.; Pan, Z.; Hu, X.; Liu, P.; Li, Y.; He, Z.; Fan, X. Enhanced Thermoelectric Performances in BiCuSeO Oxyselenides via Er and 3D Modulation Doping. Ceram. Int. 2019, 45, 4493–4498. [Google Scholar] [CrossRef]
- Feng, B.; Li, G.; Pan, Z.; Hu, X.; Liu, P.; He, Z.; Li, Y.; Fan, X. Enhanced Thermoelectric Performance in BiCuSeO Oxyselenides via Ba/Te Dual-Site Substitution and 3D Modulation Doping. J. Solid State Chem. 2018, 266, 297–303. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, L.-D.; Tong, X.; Li, W.; Wu, L.; Tan, Q.; Pei, Y.; Huang, L.; Li, J.-F.; Zhu, Y.; et al. Superior Thermoelectric Performance in PbTe–PbS Pseudo-Binary: Extremely Low Thermal Conductivity and Modulated Carrier Concentration. Energy Environ. Sci. 2015, 8, 2056–2068. [Google Scholar] [CrossRef]
- Rowe, D.M. (Ed.) Thermoelectrics Handbook, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-1-4200-3890-3. [Google Scholar]
- Hong, M.; Wang, Y.; Feng, T.; Sun, Q.; Xu, S.; Matsumura, S.; Pantelides, S.T.; Zou, J.; Chen, Z.G. Strong Phonon-Phonon Interactions Securing Extraordinary Thermoelectric Ge1- XSb XTe with Zn-Alloying-Induced Band Alignment. J. Am. Chem. Soc. 2019, 141, 1742–1748. [Google Scholar] [CrossRef]
- Bao, D.Y.; Chen, J.; Yu, Y.; Liu, W.D.; Huang, L.S.; Han, G.; Tang, J.; Zhou, D.L.; Yang, L.; Chen, Z.G. Texture-Dependent Thermoelectric Properties of Nano-Structured Bi2Te3. Chem. Eng. J. 2020, 388, 124295. [Google Scholar] [CrossRef]
- Alam, H.; Ramakrishna, S. A Review on the Enhancement of Figure of Merit from Bulk to Nano-Thermoelectric Materials. Nano Energy 2013, 2, 190–212. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.G.; Lee, H.; Wang, D.Z.; Ren, Z.F.; Fleurial, J.P.; Gogna, P. New Directions for Low-Dimensional Thermoelectric Materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Chen, X.; Parker, D.; Singh, D.J. Acoustic Impedance and Interface Phonon Scattering in Bi2Te3 and Other Semiconducting Materials. Phys. Rev. B 2013, 87, 045317. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Meisner, G.P.; Chen, L. Strain Field Fluctuation Effects on Lattice Thermal Conductivity of ZrNiSn-Based Thermoelectric Compounds. Appl. Phys. Lett. 2004, 85, 1140–1142. [Google Scholar] [CrossRef]
- Yan, X.; Liu, W.S.; Wang, H.; Chen, S.; Shiomi, J.; Esfarjani, K.; Wang, H.Z.; Wang, D.Z.; Chen, G.; Ren, Z.F. Stronger Phonon Scattering by Larger Differences in Atomic Mass and Size in P-Type Half-Heuslers Hf1-XTixCoSb0.8Sn0.2. Energy Environ. Sci. 2012, 5, 7543–7548. [Google Scholar] [CrossRef]
- Xie, H.; Wang, H.; Fu, C.; Liu, Y.; Snyder, G.J.; Zhao, X.; Zhu, T. The Intrinsic Disorder Related Alloy Scattering in ZrNiSn Half-Heusler Thermoelectric Materials. Sci. Rep. 2014, 4, 6888. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Skove, M.J.; Russell, M.; Tritt, T.M.; Xia, Y.; Ponnambalam, V.; Poon, S.J.; Thadhani, N. Effect of Boundary Scattering on the Thermal Conductivity of TiNiSn-Based Half-Heusler Alloys. Phys. Rev. B 2008, 77, 184203. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Tritt, T.M.; Xia, Y.; Ponnambalam, V.; Poon, S.J.; Thadhani, N. Grain Structure Effects on the Lattice Thermal Conductivity of Ti-Based Half-Heusler Alloys. Appl. Phys. Lett. 2002, 81, 43–45. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Joshi, G.; Liu, W.; Lan, Y.; Wang, H.; Lee, S.; Simonson, J.W.; Poon, S.J.; Tritt, T.M.; Chen, G.; et al. Enhanced Thermoelectric Figure of Merit of P-Type Half-Heuslers. Nano Lett. 2011, 11, 556–560. [Google Scholar] [CrossRef]
- Joshi, G.; Yan, X.; Wang, H.; Liu, W.; Chen, G.; Ren, Z. Enhancement in Thermoelectric Figure-Of-Merit of an N-Type Half-Heusler Compound by the Nanocomposite Approach. Adv. Energy Mater. 2011, 1, 643–647. [Google Scholar] [CrossRef]
- Jiang, P.; Lindsay, L.; Huang, X.; Koh, Y.K. Interfacial Phonon Scattering and Transmission Loss in >1 Μm Thick Silicon-on-Insulator Thin Films. Phys. Rev. B 2018, 97, 195308. [Google Scholar] [CrossRef] [Green Version]
- Klemens, P.G.; Simon, F.E. The Thermal Conductivity of Dielectric Solids at Low Temperatures (Theoretical). Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1951, 208, 108–133. [Google Scholar] [CrossRef]
- Holland, M.G. Analysis of Lattice Thermal Conductivity. Phys. Rev. 1963, 132, 2461–2471. [Google Scholar] [CrossRef]
- Callaway, J. Model for Lattice Thermal Conductivity at Low Temperatures. Phys. Rev. 1959, 113, 1046–1051. [Google Scholar] [CrossRef]
- Limarga, A.M.; Shian, S.; Leckie, R.M.; Levi, C.G.; Clarke, D.R. Thermal Conductivity of Single- and Multi-Phase Compositions in the ZrO2-Y2O3-Ta2O5 System. J. Eur. Ceram. Soc. 2014, 34, 3085–3094. [Google Scholar] [CrossRef]
- Zhao, H.Z.; Pokheral, M.; Zhu, G.H.; Chen, S.; Lukas, K.; Jie, Q.; Opeil, C.; Chen, G.; Ren, Z.F. Dramatic Thermal Conductivity Reduction by Nanostructures for Large Increase in Thermoelectric Figure-of-Merit of FeSb2. Appl. Phys. Lett. 2011, 99, 163101. [Google Scholar] [CrossRef]
- Gurunathan, R.; Hanus, R.; Jeffrey Snyder, G. Alloy Scattering of Phonons. Mater. Horiz. 2020, 7, 1452–1456. [Google Scholar] [CrossRef]
- Nan, C.-W.; Birringer, R. Determining the Kapitza Resistance and the Thermal Conductivity of Polycrystals: A Simple Model. Phys. Rev. B 1998, 57, 8264–8268. [Google Scholar] [CrossRef]
- Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics, 4th ed.; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- James, D.; Lu, X.; Nguyen, A.C.; Morelli, D.; Brock, S.L. Design of Lead Telluride Based Thermoelectric Materials through Incorporation of Lead Sulfide Inclusions or Ligand Stripping of Nanosized Building Blocks. J. Phys. Chem. C 2015, 119, 4635–4644. [Google Scholar] [CrossRef]
- Ahmad, K.; Almutairi, Z.; Wan, C. Thermoelectric Properties of PbTe-Based Graphene Nanocomposite. J. Mater. Sci. Mater. Electron. 2020, 31, 20996–21004. [Google Scholar] [CrossRef]
- Aminorroaya Yamini, S.; Wang, H.; Gibbs, Z.M.; Pei, Y.; Mitchell, D.R.G.; Dou, S.X.; Snyder, G.J. Thermoelectric Performance of Tellurium-Reduced Quaternary p-Type Lead–Chalcogenide Composites. Acta Mater. 2014, 80, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Falkenbach, O.; Hartung, D.; Klar, P.J.; Koch, G.; Schlecht, S. Thermoelectric Properties of Nanostructured Bismuth-Doped Lead Telluride Bix(PbTe)1−x Prepared by Co-Ball-Milling. J. Electron. Mater. 2013, 43, 1674–1680. [Google Scholar] [CrossRef]
- Falkenbach, O.; Schmitz, A.; Hartung, D.; Dankwort, T.; Koch, G.; Kienle, L.; Klar, P.J.; Mueller, E.; Schlecht, S. Effect of Preparation Procedure and Nanostructuring on the Thermoelectric Properties of the Lead Telluride-Based Material System AgPbmBiTe2+m (BLST-m). J. Appl. Phys. 2016, 119, 214310. [Google Scholar] [CrossRef]
- Keshavarz, M.K.; Vasilevskiy, D.; Masut, R.A.; Turenne, S. Synthesis and Characterization of Bismuth Telluride-Based Thermoelectric Nanocomposites Containing MoS2 Nano-Inclusions. Mater. Charact. 2014, 95, 44–49. [Google Scholar] [CrossRef]
- Trawiński, B.; Bochentyn, B.; Gostkowska, N.; Łapiński, M.; Miruszewski, T.; Kusz, B. Structure and Thermoelectric Properties of Bismuth Telluride—Carbon Composites. Mater. Res. Bull. 2018, 99, 10–17. [Google Scholar] [CrossRef]
- Yang, G.; Sang, L.; Yun, F.F.; Mitchell, D.R.G.; Casillas, G.; Ye, N.; See, K.; Pei, J.; Wang, X.; Li, J.; et al. Significant Enhancement of Thermoelectric Figure of Merit in BiSbTe-Based Composites by Incorporating Carbon Microfiber. Adv. Funct. Mater. 2021, 31, 2008851. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, D.; He, D.; Feng, D.; Yin, M.; Qin, X.; He, J. Extraordinary Thermoelectric Performance Realized in N-Type PbTe through Multiphase Nanostructure Engineering. Adv. Mater. 2017, 29, 1703148. [Google Scholar] [CrossRef]
- Sootsman, J.R.; He, J.Q.; Dravid, V.P.; Li, C.P.; Uher, C.; Kanatzidis, M.G. High Thermoelectric Figure of Merit and Improved Mechanical Properties in Melt Quenched PbTe-Ge and PbTe-Ge1−xSix Eutectic and Hypereutectic Composites. J. Appl. Phys. 2009, 105, 083718. [Google Scholar] [CrossRef]
- Gaultois, M.W.; Sparks, T.D.; Borg, C.K.H.; Seshadri, R.; Bonificio, W.D.; Clarke, D.R. Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations. Chem. Mater. 2013, 25, 2911–2920. [Google Scholar] [CrossRef]
- Gaultois, M.W.; Sparks, T.D.; Borg, C.K.H.; Seshadri, R.; Bonificio, W.D.; Clarke, D.R. Energy Materials Datamining. Available online: http://www.mrl.ucsb.edu:8080/datamine/about.jsp (accessed on 23 August 2021).
- Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons: New York, NY, USA, 2018; ISBN 978-1-119-45620-9. [Google Scholar]
- Chung, D.Y.; Hogan, T.; Brazis, P.; Rocci-Lane, M.; Kannewurf, C.; Bastea, M.; Uher, C.; Kanatzidis, M.G. CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications. Science 2000, 287, 1024–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, D.-Y.; Choi, K.-S.; Iordanidis, L.; Schindler, J.L.; Brazis, P.W.; Kannewurf, C.R.; Chen, B.; Hu, S.; Uher, C.; Kanatzidis, M.G. High Thermopower and Low Thermal Conductivity in Semiconducting Ternary K−Bi−Se Compounds. Synthesis and Properties of β-K2Bi8Se13 and K2.5Bi8.5Se14 and Their Sb Analogues. Chem. Mater. 1997, 9, 3060–3071. [Google Scholar] [CrossRef]
- Gascoin, F.; Maignan, A. Order-Disorder Transition in AgCrSe2: A New Route to Efficient Thermoelectrics. Chem. Mater. 2011, 23, 2510–2513. [Google Scholar] [CrossRef]
- Hsu, K.F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J.S.; Uher, C.; Hogan, T.; Polychroniadis, E.K.; Kanatzidis, M.G. Cubic AgPb(m)SbTe(2+m): Bulk Thermoelectric Materials with High Figure of Merit. Science 2004, 303, 818–821. [Google Scholar] [CrossRef]
- Jungwirth, T.; Wunderlich, J.; Olejnik, K. Spin Hall Effect Devices. Nat. Mater. 2012, 11, 382–390. [Google Scholar] [CrossRef]
- Kanatzidis, M.G.; McCarthy, T.J.; Tanzer, T.A.; Chen, L.-H.; Iordanidis, L.; Hogan, T.; Kannewurf, C.R.; Uher, C.; Chen, B. Synthesis and Thermoelectric Properties of the New Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13. Chem. Mater. 1996, 8, 1465–1474. [Google Scholar] [CrossRef]
- Kurosaki, K.; Kosuga, A.; Yamanaka, S. Thermoelectric Properties of Chevrel Phase Mo6Te8-XSx. J. Alloys Compd. 2003, 351, 208–211. [Google Scholar] [CrossRef]
- Kurosaki, K.; Kosuga, A.; Muta, H.; Uno, M.; Yamanaka, S. Ag9TlTe5: A High-Performance Thermoelectric Bulk Material with Extremely Low Thermal Conductivity. Appl. Phys. Lett. 2005, 87, 061919. [Google Scholar] [CrossRef]
- Larouche, S.; Tsai, Y.J.; Tyler, T.; Jokerst, N.M.; Smith, D.R. Infrared Metamaterial Phase Holograms. Nat. Mater. 2012, 11, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Shi, X.; Xu, F.; Zhang, L.; Zhang, W.; Chen, L.; Li, Q.; Uher, C.; Day, T.; Snyder, G.J. Copper Ion Liquid-like Thermoelectrics. Nat. Mater. 2012, 11, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.D.; Costa, A.; Dering, B.; Hoshino, N.; Wu, Y.J.; Thierry, G. Effects of Speed of Word Processing on Semantic Access: The Case of Bilingualism. Brain Lang. 2012, 120, 61–65. [Google Scholar] [CrossRef]
- May, A.F.; Flage-Larsen, E.; Snyder, G.J. Electron and Phonon Scattering in the High-Temperature Thermoelectric La3Te4−zMz (M = Sb,Bi). Phys. Rev. B 2010, 81, 125205. [Google Scholar] [CrossRef] [Green Version]
- McGuire, M.A.; Reynolds, T.K.; DiSalvo, F.J. Exploring Thallium Compounds as Thermoelectric Materials: Seventeen New Thallium Chalcogenides. Chem. Mater. 2005, 17, 2875–2884. [Google Scholar] [CrossRef]
- Ohta, M.; Yamamoto, A.; Obara, H. Thermoelectric Properties of Chevrel-Phase Sulfides Mx Mo6S8 (M: Cr, Mn, Fe, Ni). J. Electron. Mater. 2010, 39, 2117–2121. [Google Scholar] [CrossRef]
- Orava, J.; Greer, A.L.; Gholipour, B.; Hewak, D.W.; Smith, C.E. Characterization of Supercooled Liquid Ge2Sb2Te5 and Its Crystallization by Ultrafast-Heating Calorimetry. Nat. Mater. 2012, 11, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of Electronic Bands for High Performance Bulk Thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Rogers, E.T.; Lindberg, J.; Roy, T.; Savo, S.; Chad, J.E.; Dennis, M.R.; Zheludev, N.I. A Super-Oscillatory Lens Optical Microscope for Subwavelength Imaging. Nat. Mater. 2012, 11, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, S.; Scherrer, H.; Rowe, D. Bismuth Telluride, Antimony Telluride, and Their Solid Solutions. In CRC Handbook of Thermoelectrics; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Sharp, J.W.; Sales, B.C.; Mandrus, D.G.; Chakoumakos, B.C. Thermoelectric Properties of Tl2SnTe5 and Tl2GeTe5. Appl. Phys. Lett. 1999, 74, 3794–3796. [Google Scholar] [CrossRef]
- Skrabek, E.; Trimmer, D.; Rowe, D. Properties of the General TAGS System. In CRC Handbook of Thermoelectrics; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Wan, C.; Wang, Y.; Wang, N.; Koumoto, K. Low-Thermal-Conductivity (MS)1+x(TiS2)2 (M = Pb, Bi, Sn) Misfit Layer Compounds for Bulk Thermoelectric Materials. Materials 2010, 3, 2606–2617. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.H. Metallic Glasses: Family Traits. Nat. Mater. 2012, 11, 275–276. [Google Scholar] [CrossRef]
- Warren, S.C.; Perkins, M.R.; Adams, A.M.; Kamperman, M.; Burns, A.A.; Arora, H.; Herz, E.; Suteewong, T.; Sai, H.; Li, Z.; et al. A Silica Sol-Gel Design Strategy for Nanostructured Metallic Materials. Nat. Mater. 2012, 11, 460–467. [Google Scholar] [CrossRef]
- Cui, J.L.; Xue, H.F.; Xiu, W.J. Preparation and Thermoelectric Properties of P-Type (Ga2Te3)x–(Bi0.5Sb1.5Te3)1−x (X = 0–0.2) Alloys Prepared by Spark Plasma Sintering. Intermetallics 2007, 15, 1466–1470. [Google Scholar] [CrossRef]
- Gayner, C.; Nandihalli, N. Enhancement of Thermoelectric Performance of PbTe by Embedding NaCl. Materialia 2020, 14, 100912. [Google Scholar] [CrossRef]
- Chang, C.-C.; Liu, C.-H.; Wu, C.-C.; Bag, P.; Kuo, Y.-K. Thermoelectric Properties of (HgTe)0.55(PbTe)0.45 Eutectic Composite with In Doping. Mater. Res. Bull. 2020, 129, 110916. [Google Scholar] [CrossRef]
- Nandihalli, N.; Pai, Y.-H.; Liu, C.-J. Thermoelectric Properties of Pb0.833Na0.017(Zn0.85Al0.15)0.15Te-Te Composite. Ceram. Int. 2020, 46, 18683–18689. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, J.; Ming, H.; Lou, X.; Huang, L.; Chen, T.; Zhang, B.; Li, D.; Xin, H.; Qin, X. Enhanced Thermoelectric Performance of PbTe Based Materials by Bi Doping and Introducing MgO Nanoparticles. Appl. Phys. Lett. 2020, 117, 042105. [Google Scholar] [CrossRef]
- Yang, Z.-R.; Liu, C.-J. Thermoelectric Transport in P-Type (Pb0.98Na0.02Te)1−x(Zn0.85Al0.15Te)x-Te Composites Fabricated Using a Combination of Hydrothermal Synthesis and Evacuating-and-Encapsulating Sintering. J. Electron. Mater. 2020, 49, 2954–2961. [Google Scholar] [CrossRef]
- Zhu, T.; Xie, H.; Zhang, C.; Cheng, X.; Zhang, J.; Poudeu, P.F.P.; Tan, G.; Yan, Y.; Liu, W.; Su, X.; et al. Enhanced Mechanical Properties of Na0.02Pb0.98Te/MoTe2 Thermoelectric Composites Through in-Situ-Formed MoTe2. ACS Appl. Mater. Interfaces 2019, 11, 41472–41481. [Google Scholar] [CrossRef]
- Gao, J.; Mao, T.; Lv, T.; Li, Z.; Xu, G. Thermoelectric Performance of N-Type (PbTe)1−x(CoTe)x Composite Prepared by High Pressure Sintering Method. J. Mater. Sci. Mater. Electron. 2018, 29, 5327–5336. [Google Scholar] [CrossRef]
- Ginting, D.; Lin, C.-C.; Rathnam, L.; Hwang, J.; Kim, W.; Al Orabi, R.A.r.; Rhyee, J.-S. Dataset on the Electronic and Thermal Transport Properties of Quaternary Compounds of (PbTe)0.95−x(PbSe)x(PbS)0.05. Data Brief 2017, 13, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Rösch, A.G.; Giunta, F.; Mallick, M.M.; Franke, L.; Gall, A.; Aghassi-Hagmann, J.; Schmalian, J.; Lemmer, U. Improved Electrical, Thermal, and Thermoelectric Properties Through Sample-to-Sample Fluctuations in Near-Percolation Threshold Composite Materials. Adv. Simul. 2021, 4, 2000284. [Google Scholar] [CrossRef]
- Bruggeman, D.A.G. Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen. I. Dielektrizitätskonstanten Und Leitfähigkeiten Der Mischkörper Aus Isotropen Substanzen. Ann. Physik 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Landauer, R. The Electrical Resistance of Binary Metallic Mixtures. J. Appl. Phys. 1952, 23, 779–784. [Google Scholar] [CrossRef]
- Vaney, J.B.; Piarristeguy, A.; Ohorodniichuck, V.; Ferry, O.; Pradel, A.; Alleno, E.; Monnier, J.; Lopes, E.B.; Goncalves, A.P.; Delaizir, G.; et al. Effective Medium Theory Based Modeling of the Thermoelectric Properties of Composites: Comparison between Predictions and Experiments in the Glass-Crystal Composite System Si10As15Te75-Bi0.4Sb1.6Te3. J. Mater. Chem. C 2015, 3, 11090–11098. [Google Scholar] [CrossRef]
- Sonntag, J. Comment on Effective Medium Theory Based Modeling of the Thermoelectric Properties of Composites: Comparison between Predictions and Experiments in the Glass–Crystal Composite System Si10As15Te75-Bi0.4Sb1.6Te3 by J.-B. Vaney et al., J. Mater. Chem. C, 2015, 3, 11090. J. Mater. Chem. C 2016, 4, 10973–10976. [Google Scholar] [CrossRef]
- Angst, S.; Wolf, D.E. Network Theory for Inhomogeneous Thermoelectrics. New J. Phys. 2016, 18, 043004. [Google Scholar] [CrossRef] [Green Version]
- Gather, F.; Heiliger, C.; Klar, P.J. NeMo: A Network Model Program for Analyzing the Thermoelectric Properties of Meso and Nanostructured Composite Materials. Prog. Solid State Chem. 2011, 39, 97–107. [Google Scholar] [CrossRef]
- Aboudi, J.; Haj-Ali, R. A Fully Coupled Thermal–Electrical–Mechanical Micromodel for Multi-Phase Periodic Thermoelectrical Composite Materials and Devices. Int. J. Solids Struct. 2016, 80, 84–95. [Google Scholar] [CrossRef]
- Monticelli, A. State Estimation in Electric Power Systems: A Generalized Approach, 1st ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Razavi, B. Fundamentals of Microelectronics, 2nd ed.; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-1-118-15632-2. [Google Scholar]
- Roche, S. Graphene Gets a Better Gap. Nat. Nanotechnol. 2010, 6, 8–9. [Google Scholar] [CrossRef]
- Suh, D.; Lee, S.; Mun, H.; Park, S.H.; Lee, K.H.; Kim, S.W.; Choi, J.Y.; Baik, S. Enhanced Thermoelectric Performance of Bi0.5Sb1.5Te3-Expanded Graphene Composites by Simultaneous Modulation of Electronic and Thermal Carrier Transport. Nano Energy 2015, 13, 67–76. [Google Scholar] [CrossRef]
- Yadav, S.; Chaudhary, S.; Pandya, D.K. Effect of 2D MoS2 and Graphene Interfaces with CoSb3 Nanoparticles in Enhancing Thermoelectric Properties of 2D MoS2-CoSb3 and Graphene-CoSb3 Nanocomposites. Ceram. Int. 2018, 44, 10628–10634. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, H.; Sun, B.; Liu, B.; Liu, H.; Kong, L.; Liu, B.; Jia, X.; Chen, X. Thermoelectric Performance of Graphene Composited BiSbTe Bulks by High Pressure Synthesis. J. Alloys Compd. 2017, 715, 344–348. [Google Scholar] [CrossRef]
- He, Y.; Zhang, T.S.; Shi, X.; Wei, S.H.; Chen, L.D. High Thermoelectric Performance in Copper Telluride. NPG Asia Mater. 2015, 7, e210. [Google Scholar] [CrossRef] [Green Version]
- Sottmann, J.; Valset, K.; Karlsen, O.B.; Tafto, J. Synthesis and Measurement of the Thermoelectric Properties of Multiphase Composites: ZnSb Matrix with Zn4Sb3, Zn3P2, and Cu5Zn8. J. Electron. Mater. 2013, 42, 1820–1826. [Google Scholar] [CrossRef]
- Yamini, S.A.; Brewis, M.; Byrnes, J.; Santos, R.; Manettas, A.; Pei, Y.Z. Fabrication of Thermoelectric Materials—Thermal Stability and Repeatability of Achieved Efficiencies. J. Mater. Chem. C 2015, 3, 10610–10615. [Google Scholar] [CrossRef] [Green Version]
- Aminorroaya Yamini, S.; Mitchell, D.R.G.; Wang, H.; Gibbs, Z.M.; Pei, Y.; Dou, S.X.; Snyder, G.J. Origin of Resistivity Anomaly in P-Type Leads Chalcogenide Multiphase Compounds. AIP Adv. 2015, 5, 053601. [Google Scholar] [CrossRef]
- Shen, J.J.; Hu, L.P.; Zhu, T.J.; Zhao, X.B. The Texture Related Anisotropy of Thermoelectric Properties in Bismuth Telluride Based Polycrystalline Alloys. Appl. Phys. Lett. 2011, 99, 124102. [Google Scholar] [CrossRef]
- Zhao, X.B.; Ji, X.H.; Zhang, Y.H.; Zhu, T.J.; Tu, J.P.; Zhang, X.B. Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-Containing Nanocomposites. Appl. Phys. Lett. 2005, 86, 062111. [Google Scholar] [CrossRef]
- Bailyn, M. Maximum Variational Principle for Conduction Problems in a Magnetic Field, and the Theory of Magnon Drag. Phys. Rev. 1962, 126, 2040–2054. [Google Scholar] [CrossRef]
- Hirohata, A.; Yamada, K.; Nakatani, Y.; Prejbeanu, I.L.; Dieny, B.; Pirro, P.; Hillebrands, B. Review on Spintronics: Principles and Device Applications. J. Magn. Magn. Mater. 2020, 509, 166711. [Google Scholar] [CrossRef]
- Costache, M.V.; Bridoux, G.; Neumann, I.; Valenzuela, S.O. Magnon-Drag Thermopile. Nat. Mater. 2011, 11, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Watzman, S.J.; Duine, R.A.; Tserkovnyak, Y.; Boona, S.R.; Jin, H.; Prakash, A.; Zheng, Y.H.; Heremans, J.P. Magnon-Drag Thermopower and Nernst Coefficient in Fe, Co, and Ni. Phys. Rev. B 2016, 94, 144407. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Nishio-Hamane, D. Magnetic and Thermoelectric Properties of Co2MnT (T = Ga, Si) Heusler Compounds. Phys. B Condens. Matter 2021, 603. [Google Scholar] [CrossRef]
- Saito, T.; Kamishima, S. Magnetic and Thermoelectric Properties of Fe–Ti–Sn Alloys. IEEE Trans. Magn. 2019, 55, 2900104. [Google Scholar] [CrossRef]
- Vikram, F.; Johnson, D.D.; Alam, A. Enhanced Thermoelectric Performance of Mg2Si1−xSnx Codoped with Bi and Cr. Phys. Rev. B 2018, 98, 115204. [Google Scholar] [CrossRef] [Green Version]
- Solomon, G.; Song, E.; Gayner, C.; Martinez, J.A.; Amouyal, Y. Effects of Microstructure and Neodymium Doping on Bi2Te3 Nanostructures: Implications for Thermoelectric Performance. ACS Appl. Nano Mater. 2021, 4, 4419–4431. [Google Scholar] [CrossRef]
- Jena, A.; Lee, S.-C.; Bhattacharjee, S. Tuning the Lattice Thermal Conductivity in Bismuth Telluride via Cr Alloying. Phys. Rev. Appl. 2021, 15, 064023. [Google Scholar] [CrossRef]
- Das, S.; Valiyaveettil, S.M.; Chen, K.-H.; Suwas, S.; Mallik, R.C. Thermoelectric Properties of Mn Doped BiCuSeO. Mater. Res. Express 2019, 6, 086305. [Google Scholar] [CrossRef]
- Diakhate, M.S.; Hermann, R.P.; Mochel, A.; Sergueev, I.; Sondergaard, M.; Christensen, M.; Verstraete, M.J. Thermodynamic, Thermoelectric, and Magnetic Properties of FeSb2: A Combined First-Principles and Experimental Study. Phys. Rev. B 2011, 84, 125210. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Oeschler, N.; Johnsen, S.; Iversen, B.B.; Steglich, F. Narrow Band Gap and Enhanced Thermoelectricity in FeSb2. Dalton Trans. 2010, 39, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Franzen, H.; Sterner, C. The X-Ray Photoelectron Spectra of MnS, MnSe, and MnTe. J. Solid State Chem. 1978, 25, 227–230. [Google Scholar] [CrossRef]
- Podgorny, M.; Oleszkiewicz, J. Electronic Structure of Antiferromagnetic MnTe. J. Phys. C Solid State Phys. 1983, 16, 2547–2557. [Google Scholar] [CrossRef]
- Wasscher, J.D.; Haas, C. Contribution of Magnon-Drag to the Thermoelectric Power of Antiferromagnetic Mn Te. Phys. Lett. 1964, 8, 302–304. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, G.; Wang, C.; Yan, Y.; Zheng, H.; Wang, Y.; Hu, M. Improvement of Thermoelectricity Through Magnetic Interactions in Layered Cr2Ge2Te6. Phys. Status Solidi RRL Rapid Res. Lett. 2018, 12, 1800172. [Google Scholar] [CrossRef]
- Kirkham, M.J.; dos Santos, A.M.; Rawn, C.J.; Lara-Curzio, E.; Sharp, J.W.; Thompson, A.J. Abinitio Determination of Crystal Structures of the Thermoelectric Material MgAgSb. Phys. Rev. B 2012, 85, 144120. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Li, J.; Zhou, B.; Liu, H.; Bu, Z.; Chen, B.; Ang, R.; Li, W. Thermoelectric Properties of P-Type MnSe. J. Alloys Compd. 2019, 789, 953–959. [Google Scholar] [CrossRef]
- Shimizu, S.; Shiogai, J.; Takemori, N.; Sakai, S.; Ikeda, H.; Arita, R.; Nojima, T.; Tsukazaki, A.; Iwasa, Y. Giant Thermoelectric Power Factor in Ultrathin FeSe Superconductor. Nat. Commun. 2019, 10, 825. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Okazaki, R.; Ishiwata, S.; Taniguchi, H.; Okutani, A.; Hagiwara, M.; Terasaki, I. Colossal Seebeck Effect Enhanced by Quasi-Ballistic Phonons Dragging Massive Electrons in FeSb2. Nat. Commun. 2016, 7, 12732. [Google Scholar] [CrossRef]
- Tsujii, N.; Mori, T. High Thermoelectric Power Factor in a Carrier-Doped Magnetic Semiconductor CuFeS2. Appl. Phys. Express 2013, 6, 043001. [Google Scholar] [CrossRef]
- Ang, R.; Khan, A.U.; Tsujii, N.; Takai, K.; Nakamura, R.; Mori, T. Thermoelectricity Generation and Electron-Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent. Angew. Chem. Int. Ed. Engl. 2015, 54, 12909–12913. [Google Scholar] [CrossRef]
- Kikkawa, T.; Reitz, D.; Ito, H.; Makiuchi, T.; Sugimoto, T.; Tsunekawa, K.; Daimon, S.; Oyanagi, K.; Ramos, R.; Takahashi, S.; et al. Observation of Nuclear-Spin Seebeck Effect. Nat. Commun. 2021, 12, 4356. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Takahashi, S.; Harii, K.; Ieda, J.; Koshibae, W.; Ando, K.; Maekawa, S.; Saitoh, E. Observation of the Spin Seebeck Effect. Nature 2008, 455, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Rogado, N.S.; Cava, R.J.; Ong, N.P. Spin Entropy as the Likely Source of Enhanced Thermopower in Na(x)Co2O4. Nature 2003, 423, 425–428. [Google Scholar] [CrossRef] [Green Version]
- Bauer, G.E.; Saitoh, E.; van Wees, B.J. Spin Caloritronics. Nat. Mater. 2012, 11, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.M.; Brechet, S.D.; Ansermet, J.P. Spin Caloritronics, Origin and Outlook. Phys. Lett. A 2017, 381, 825–837. [Google Scholar] [CrossRef]
- Erekhinsky, M.; Casanova, F.; Schuller, I.K.; Sharoni, A. Spin-Dependent Seebeck Effect in Non-Local Spin Valve Devices. Appl. Phys. Lett. 2012, 100, 212401. [Google Scholar] [CrossRef] [Green Version]
- Marchal, N.; da Camara Santa Clara Gomes, T.; Abreu Araujo, F.; Piraux, L. Large Spin-Dependent Thermoelectric Effects in NiFe-Based Interconnected Nanowire Networks. Nanoscale Res. Lett. 2020, 15, 137. [Google Scholar] [CrossRef]
- Yamanoi, K.; Yafuso, M.; Miyazaki, K.; Kimura, T. Signature of Spin-Dependent Seebeck Effect in Dynamical Spin Injection of Metallic Bilayer Structures. J. Phys. Mater. 2019, 3, 014005. [Google Scholar] [CrossRef]
- Ahmed, F.; Tsujii, N.; Mori, T. Thermoelectric Properties of CuGa1−xMnxTe2: Power Factor Enhancement by Incorporation of Magnetic Ions. J. Mater. Chem. A 2017, 5, 7545–7554. [Google Scholar] [CrossRef]
- Vaney, J.B.; Yamini, S.A.; Takaki, H.; Kobayashi, K.; Kobayashi, N.; Mori, T. Magnetism-Mediated Thermoelectric Performance of the Cr-Doped Bismuth Telluride Tetradymite. Mater. Today Phys. 2019, 9, 100090. [Google Scholar] [CrossRef]
- Acharya, S.; Anwar, S.; Mori, T.; Soni, A. Coupling of Charge Carriers with Magnetic Entropy for Power Factor Enhancement in Mn Doped Sn1.03Te for Thermoelectric Applications. J. Mater. Chem. C 2018, 6, 6489–6493. [Google Scholar] [CrossRef]
- Li, W.; Chen, Z.W.; Lin, S.Q.; Chang, Y.J.; Ge, B.H.; Chen, Y.; Pei, Y.Z. Band and Scattering Tuning for High Performance Thermoelectric Sn1−xMnxTe Alloys. J. Mater. 2015, 1, 307–315. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Tan, X.; Xu, J.; Liu, G.-Q.; Shao, H.; Fu, Y.; Wang, X.; Liu, Z.; Xu, J.; Jiang, H.; et al. Valence Band Engineering and Thermoelectric Performance Optimization in SnTe by Mn-Alloying via a Zone-Melting Method. J. Mater. Chem. A 2015, 3, 19974–19979. [Google Scholar] [CrossRef]
- Graf, T.; Barth, J.; Blum, C.G.F.; Balke, B.; Felser, C.; Klaer, P.; Elmers, H.-J. Phase-Separation-Induced Changes in the Magnetic and Transport Properties of the Quaternary Heusler Alloy Co2Mn1−xTixSn. Phys. Rev. B 2010, 82, 104420. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, J.; Wei, P.; Zhu, W.; Zhao, W.; Xia, A.; Xu, D.; Lei, Y.; Yu, J. Candidate for Magnetic Doping Agent and High-Temperature Thermoelectric Performance Enhancer: Hard Magnetic M-Type BaFe12O19 Nanometer Suspension. ACS Appl. Mater. Interfaces 2019, 11, 45875–45884. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Z.; Wei, P.; Zhang, Q.; Zhu, W.; Su, X.; Tang, X.; Yang, J.; Liu, Y.; Shi, J.; et al. Magnetoelectric Interaction and Transport Behaviours in Magnetic Nanocomposite Thermoelectric Materials. Nat. Nanotechnol. 2017, 12, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Lopez, J.S.; Liu, Y.; Bailey, T.P.; Page, A.A.; Wang, S.; Uher, C.; Poudeu, P.F.P. Coherent Magnetic Nanoinclusions Induce Charge Localization in Half-Heusler Alloys Leading to High-Tc Ferromagnetism and Enhanced Thermoelectric Performance. J. Mater. Chem. A 2019, 7, 11095–11103. [Google Scholar] [CrossRef]
- Vandendriessche, S.; Brullot, W.; Slavov, D.; Valev, V.K.; Verbiest, T. Magneto-Optical Harmonic Susceptometry of Superparamagnetic Materials. Appl. Phys. Lett. 2013, 102, 161903. [Google Scholar] [CrossRef] [Green Version]
- Marghussian, V. Magnetic Properties of Nano-Glass Ceramics. In Nano-Glass Ceramics; Elsevier: Amsterdam, The Netherlands, 2015; pp. 181–223. ISBN 978-0-323-35386-1. [Google Scholar]
- Zhao, W.; Liu, Z.; Sun, Z.; Zhang, Q.; Wei, P.; Mu, X.; Zhou, H.; Li, C.; Ma, S.; He, D.; et al. Superparamagnetic Enhancement of Thermoelectric Performance. Nature 2017, 549, 247–251. [Google Scholar] [CrossRef] [PubMed]
Composition | Fabrication Technique | Ref. |
---|---|---|
Bi0.5Sb1.5Te + (0, 1.0, 2.0, 4.0, and 6.0 wt.%) nanoparticles of Sb2O3 | Casting (Bi0.5Sb1.5Te) + ball milling of Bi0.5Sb1.5Te and commercial powder of Sb2O3+ sintering | [113] |
Bi2Te2.7Se0.3 powder + ~2 nm layer of film of ZnO | Solution-based synthesis of Bi-Te-Se powder + atomic layer deposition of ZnO + hot pressing | [114] |
Bi1−xSbx (x = 0, 0.10, 0.12, 0.13, 0.14, 0.2) + 3 wt.% carbon nanotubes | Ball milling + cold pressing + annealing | [115] |
Bi0.46Sb1.54Te3 + (0, 0.1, 0.2, and 0.3 wt.%) SiC | Ball milling + sintering | [70] |
Bi0.4Sb1.6Te3 + (0.1%, 0.2%, and 0.3 wt.%) CuInTe2 | Casting each phase separately + ball milling + sintering | [116] |
Lu0.1Bi1.9Te3 + (0, 0.0, 0.05, 1) wt.% carbon nanotubes | Hydrothermal synthesis + grinding + hot pressing | [117] |
Bi0.5Sb1.5Te3 + (0, 0.1, 0.2, 0.3, 0.4 wt.%) BaTiO3 | Hydrothermally synthesised BaTiO3 + Commercial ingots of Bi0.5Sb1.5Te3 were grinded and sintered | [74] |
Bi0.5Sb1.5Te3 + SrTiO3 | Bi0.5Sb1.5Te3 films were grown on SrTiO3 substrates by co-sputtering | [118] |
Bi2Te3 + Bi0.5Sb1.5Te3 thin films | Radio-frequency magnetron sputtering of Bi2Te3/Bi0.5Sb1.5Te3 layers on a SiO2/Si(001) substrate | [119] |
Bi0.4Sb1.6Te3 + (0, 0.2, 0.4, and 0.6 vol.%) CuGaTe2 | Vacuum melting + hot pressing | [120] |
Bi0.5Sb1.5Te3 + 2 wt.% (Gd2O3, Gd1.98Bi0.02O3) | Powders for each phase were prepared by induction melting then mixed by spray pyrolysis + sintering | [121] |
Bi2Te3 + (1, 2, and 5 wt.%) SnS | Commercial powders were mixed, cold pressed, and annealed | [122] |
Bi0.3Sb1.7Te3 + (0, 0.25, 0.50, and 0.75 wt.%) TiC | Ball milling + sintering | [123] |
Bi2Te3 + ~4 wt.% of Cu1.5Te | Solution-based synthesis (each phase separately) + hot pressing | [124] |
Coated grains of SnTe with CuInTe2 | CuInTe2 was formed by cation exchange of Sn by Cu and In on the surface of ball-milled SnTe powder | [125] |
Bi0.5Sb1.5Te3-Cu0.07 + (0, 0.5, and 1.0 wt.%) HfO2 | Water atomisation + ball milling + sintering | [126] |
SiGe + (2, 4, 6, 8, 10 wt.%) TiB2 | Ball milling + hot pressing | [108] |
Composition | Fabrication Method | Ref. |
---|---|---|
Ba8(AlxGa1−x)16Ge30 (x = 0, 0.20, 0.23, 0.25, 0.33, 0.50, and 1) | Casting (each phase separately) + ball milling + sintering | [137] |
AgBiSe2 + Bi4Se3 | [138] | |
Cu2SnS3 + (0, 1, 3, and 5% mol) CuCo2S4 | Casting (each phase separately) + ball milling + sintering | [25,139] |
Sia(Mg2Si + x at. % Bi)1−a (a = 0.39, 0.50, 0.56, 0.59, and 0.67; x = 0.3, 0.8, 1.3, 1.8, 2.5) | Bi-doped Mg2Si fabricated using induction melting + melt spinning si + sintering | [140] |
p-type organic conducting polymer PEDOT:PSS + Ge | PEDOT:PSS coated with Ge layer | [141] |
(Ge2Te2)x(CuInTe2)1−x (x = 98, 95, 90, 87.5, 85, 70, 30, and 10%) | Casting + hand milling + hot pressing | [142] |
BiCuSeO + Bi0.8Pb0.2Cu0.8Ni0.2SeO | Each phase was fabricated by Mechanical alloying + ball milling of mixture + sintering | [143] |
BiCuSeO + Bi0.8Er0.2CuSeO | Each phase was fabricated by ball milling + sintering. The final composition was obtained by ball milling + sintering | [144] |
BiCuSeO + Bi0.8Ba0.2CuSe0.8Te0.2O | Each phase was fabricated by mechanical alloying + milling the mixture + sintering | [145] |
Pb(1−x)NaxTe0.65S0.25Se0.1 (x = 0.005, 0.01, 0.0015, 0.02, 0.025, and 0.03) | Casting PbSe and PbS + mixing stoichiometric amounts of PbSe, PbS, Pb, Te, and Na (casting) + sintering | [29] |
Pb0.97Na0.03Te(1−x)Sx (x = 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35) | Casting + hand milling + sintering | [146] |
System | Fabrication Method | Type | Ref. |
---|---|---|---|
CuGa1−xMnxTe2 (x = 0, 0.01, 0.02, and 0.03) | Casting + hand milling + sintering | Magnetic dopant | [264] |
Bi2−xCrxTe3 (x = 0, 0.01, 0.02, 0.05, and 0.10) | Casting + hand milling + sintering | Magnetic dopant | [265] |
Fe3−xTixSn (x = 0, 0.25, 0.5, 0.75) | Casting | Magnetic material | [239] |
Sn1.03−xMnxTe (x = 0, 0.05, 0.07, and 0.1) | Casting + cold pelletising | Magnetic dopant | [266] |
Ba0.3In0.3Co4Sb12 +x BaFe12O19) (x = 0.15%, 0.25%, 0.35%, and 0.45%) | Ball milling + sintering | Magnetic phase | [271] |
Ti0.25Zr0.25Hf0.5(Ni,Fex)Sn0.975Sb0.025 (x = 0, 0.05, 0.01, 0.15) | Casting + hand milling + sintering | Magnetic phase | [272] |
Mn1−xNaxSe (0 ≤ x ≤ 0.03) | Ball milling + annealing + hot pressing | Magnetic material | [251] |
FeSb2 | Hand milling + annealing + hot pressing | Magnetic material | [244] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortulan, R.; Aminorroaya Yamini, S. Recent Progress in Multiphase Thermoelectric Materials. Materials 2021, 14, 6059. https://doi.org/10.3390/ma14206059
Fortulan R, Aminorroaya Yamini S. Recent Progress in Multiphase Thermoelectric Materials. Materials. 2021; 14(20):6059. https://doi.org/10.3390/ma14206059
Chicago/Turabian StyleFortulan, Raphael, and Sima Aminorroaya Yamini. 2021. "Recent Progress in Multiphase Thermoelectric Materials" Materials 14, no. 20: 6059. https://doi.org/10.3390/ma14206059
APA StyleFortulan, R., & Aminorroaya Yamini, S. (2021). Recent Progress in Multiphase Thermoelectric Materials. Materials, 14(20), 6059. https://doi.org/10.3390/ma14206059