(RE)Ba2Cu3O7−δ and the Roeser-Huber Formula
Abstract
:1. Introduction
2. Material and Model
2.1. REBCO Unit Cell
2.2. The Roeser–Huber Approach
3. Results and Discussion
3.1. Explanation of the Variation in YBCO Using the Oxygen Clusters
3.2. Discussion of the -Pinning and the Minimal Size Clusters
3.3. (RE)BCO Compounds
3.4. Effect of LRE-Ba-Solid Solution and the Spatial Variation of
3.5. Strain-Controlled in Coated Conductors and High Pressure Effects
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McMillan, W.L. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev. 1968, 167, 331–334. [Google Scholar] [CrossRef]
- Seiden, P.E. Calculation of the Superconducting Transition Temperature. Phys. Rev. 1968, 168, 403–408. [Google Scholar] [CrossRef]
- Kessel, W. On a general formula for the transition temperature of superconductors. Z. Naturforsch. 1974, 29, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Pickett, W.E. Electronic structure of the high-temperature oxide superconductor. Rev. Mod. Phys. 1989, 61, 433–512. [Google Scholar] [CrossRef]
- Nowotny, H.; Hittmair, O. Calculation of the transition temperature Tc of superconductors. Phys. Stat. Solidi B 1979, 91, 647–656. [Google Scholar] [CrossRef]
- Gomez, J.A.; Larkin, I.; Schwingenschlögl, U. First-principles calculations of the YBa2Cu3O7/PrBa2Cu3O7 interface. Math. Comput. Simul. 2010, 80, 1499–1508. [Google Scholar] [CrossRef]
- Lopez, G.M.; Filippetti, A.; Mantega, M.; Fiorentini, V. First-principles calculation of electronic and structural properties of YBa2Cu3O6+y. Phys. Rev. B 2010, 82, 195122. [Google Scholar] [CrossRef]
- Roeser, H.P.; Huber, F.M.; von Schoenermark, M.; Nikoghosyan, A.S. Calculation of the transition temperature of high temperature and bulk superconductors. In Proceedings of the 32nd Conference of IRMMW-THz and 15th Conference of THz Electronics, Cardiff, UK, 3–7 September 2007; pp. 111–112. [Google Scholar]
- Roeser, H.P.; Hetfleisch, F.; Huber, F.M.; Stepper, M.; von Schoenermark, M.F.; Moritz, A.; Nikoghosyan, A.S. A link between critical transition temperature and the structure of superconducting YBa2Cu3O7−δ. Acta Astronaut. 2008, 62, 733–736. [Google Scholar] [CrossRef]
- Roeser, H.P.; Haslam, D.T.; Hetfleisch, F.; Lopez, J.S.; von Schoenermark, M.F.; Stepper, M.; Huber, F.M.; Nikoghosyan, A.S. Electron transport in nanostructures: A key to high temperature superconductivity? Acta Astronaut. 2010, 67, 546–552. [Google Scholar] [CrossRef]
- Roeser, H.P.; Haslam, D.T.; Lopez, J.S.; Stepper, M.; von Schoenermark, M.F.; Huber, F.M.; Nikoghosyan, A.S. Electronic energy levels in high temperature superconductors. J. Supercond. Novel Mag. 2011, 24, 1443–1451. [Google Scholar] [CrossRef] [Green Version]
- Roeser, H.P.; Bohr, A.; Haslam, D.T.; López, J.S.; Stepper, M.; Nikoghosyan, A.S. Size quantization in high-temperature superconducting cuprates and a link to Einstein’s diffusion law. Acta Astronaut. 2012, 76, 37–41. [Google Scholar] [CrossRef]
- Koblischka, M.R.; Roth, S.; Koblischka-Veneva, A.; Karwoth, T.; Wiederhold, A.; Zeng, X.L.; Fasoulas, S.; Murakami, M. Relation between Crystal Structure and Transition Temperature of Superconducting Metals and Alloys. Metals 2020, 10, 158. [Google Scholar] [CrossRef] [Green Version]
- Rohlf, J.W. Modern Physics from α to Z0; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Stanev, V.; Oses, C.; Kusne, A.G.; Rodriguez, E.; Paglione, J.; Curtarolo, S.; Takeuchi, I. Machine learning modeling of superconducting critical temperature. npj Comput. Mater. 2018, 4, 29. [Google Scholar] [CrossRef]
- Zeng, S.; Zhao, Y.; Geng, L.; Wang, R.; Wang, X.; Ni, J. Atom table convolutional neural networks for an accurate prediction of compounds properties. npj Comput. Mater. 2019, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, K.; Horide, T. An acceleration search method of higher Tc superconductors by a machine learning algorithm. Appl. Phys. Express 2019, 12, 073003. [Google Scholar] [CrossRef]
- Hutcheon, M.J.; Shipley, A.M.; Needs, R.J. Predicting novel superconducting hydrides using machine learning approaches. Phys. Rev. B 2020, 101, 144505. [Google Scholar] [CrossRef]
- Lee, D.; You, D.; Lee, D.; Li, X.; Kim, S. Machine-Learning-Guided Prediction Models of Critical Temperature of Cuprates. J. Phys. Chem. Lett. 2021, 12, 6211–6217. [Google Scholar] [CrossRef]
- Blatter, G.; Feigel’man, M.V.; Geshkenbein, V.B.; Larkin, A.I.; Vinokur, V.M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 1994, 66, 1125–1388. [Google Scholar] [CrossRef]
- Erb, A.; Genoud, J.-Y.; Marti, F.; Däumling, M.; Walker, E.; Flükiger, R. Reversible suppression of the so-called fishtail effect in ultra pure single crystals of YBa2Cu3O7−δ achieved by proper oxygenation. J. Low Temp. Phys. 1996, 105, 1023–1028. [Google Scholar] [CrossRef]
- Koblischka, M.R.; van Dalen, A.J.J.; Higuchi, T.; Sawada, K.; Yoo, S.-I.; Murakami, M. Observation of multiple peaks in the magnetization curves of NdBa2Cu3O7 single crystals. Phys. Rev. B 1996, 54, R6893–R6896. [Google Scholar] [CrossRef]
- Milos, J.; Půst, L.; Dlouhý, D.; Koblischka, M.R. Fishtail shape in the magnetic hysteresis loop for superconductor: Interplay between different pinning mechanisms. Phys. Rev. B 1997, 55, 3276–3284. [Google Scholar] [CrossRef] [Green Version]
- Koblischka, M.R.; Murakami, M. Pinning mechanisms in bulk high-Tc superconductors. Supercond. Sci. Technol. 2000, 13, 738–744. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimnsional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Koblischka-Veneva, A.; Sakai, N.; Tajima, S.; Murakami, M. YBCO. Handbook of Superconducting Materials; Cardwell, D.A., Ginley, D.S., Eds.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- ICDD PDF Data Base. Available online: https://www.icdd.com (accessed on 26 September 2021).
- Materials Project Database V2019.05. Available online: https://materialsproject.org/ (accessed on 15 September 2021).
- Nakazato, K.; Muralidhar, M.; Koshizuka, N.; Inoue, K.; Murakami, M. Effect of growth temperature on superconducting properties of YBa2Cu3Oy bulk superconductors grown by seeded infiltration. Physica C 2014, 504, 4–7. [Google Scholar] [CrossRef]
- Namburi, D.K.; Shi, Y.; Palmer, K.G.; Dennis, A.R.; Durrell, J.H.; Cardwell, D.A. A novel, two-step top seeded infiltration and growth process for the fabrication of single grain, bulk (RE)BCO superconductors. Supercond. Sci. Technol. 2016, 29, 095010. [Google Scholar] [CrossRef]
- Koblischka, M.R.; Koblischka-Veneva, A.; Zeng, X.; Hannachi, E.; Slimani, Y. Micrstructure and fluctuation-induced conductivity of Bi2Sr2CaCu2O8+x (Bi-2212) nanowire fabrics. Crystals 2020, 10, 986. [Google Scholar] [CrossRef]
- Hüfner, S.; Hossain, M.A.; Müller, F. Pseudogap and the superconducting energy in hole-doped high-temperature superconductors. Phys. Rev. B 2008, 78, 014519. [Google Scholar] [CrossRef]
- Hüfner, S.; Müller, F. Gaps of cuprate high temperature superconductors. Physica C 2013, 485, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Fischer, Ø.; Kugler, M.; Maggio-Aprile, I.; Berthod, C.; Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 2007, 79, 353–419. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, H.F.; Andersen, N.H.; Andersen, J.V.; Bohr, H.; Mouritsen, O.G. Relation between superconducting transition temperature and oxygen ordering in YBa2Cu3O6+x. Nature 1991, 349, 594–596. [Google Scholar] [CrossRef]
- Andersen, N.H.; von Zimmermann, M.; Frello, T.; Käll, M.; Mønster, D.; Lindgård, P.-A.; Madsen, J.; Niemöller, T.; Poulsen, H.F.; Schmidt, O.; et al. Superstructure formation and the structural phase diagram of YBa2Cu3O6+x. Physica C 1999, 317–318, 259–269. [Google Scholar] [CrossRef]
- Awaji, S.; Suzuki, T.; Oguro, H.; Watanabe, K.; Matsumoto, K. Strain-controlled critical temperature in REBa2Cu3Oy-coated conductors. Sci. Rep. 2015, 5, 11156. [Google Scholar] [CrossRef] [Green Version]
- Erbe, M.; Cayado, P.; Freitag, W.; Ackermann, K.; Langer, M.; Meledin, A.; Hänisch, J.; Holzapfel, B. Comparative study of CSD-grown REBCO films with different rare earth elements: Processing windows and Tc. Supercond. Sci. Technol. 2020, 33, 094002. [Google Scholar] [CrossRef]
- Andersen, N.H. Relations Between Structural and Superconducting Properties of Bulk and Thin Film High-Tc Materials. Riso research report Riso-R-754(EN) (in English). Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/25/076/25076995.pdf (accessed on 14 October 2021).
- Islam, Z.; Liu, X.; Sinha, S.K.; Lang, J.C.; Moss, S.C.; Haskel, D.; Srajer, G.; Wochner, P.; Lee, D.R.; Haeffner, D.R.; et al. Four-unit-cell superstructure in the optimally doped YBa2Cu3O6.92 superconductor. Phys. Rev. Lett. 2004, 93, 157008. [Google Scholar] [CrossRef] [Green Version]
- de Fontaine, D.; Ozolins, V.; Islam, Z.; Moss, S.C. Origin of modulated structures in YBa2Cu3O6.63: A first-principles approach. Phys. Rev. B 2005, 71, 212504. [Google Scholar] [CrossRef]
- Uimin, G. Order and disorder in the ensemble of Cu-O chain fragments in oxygen-deficient planes of YBa2Cu3O6+x. Phys. Rev. B 1994, 50, 9531–9547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Fontaine, D.; Wille, L.T.; Moss, S.C. Stability analysis of special-point ordering in the basal plane in YBa2Cu3O7−δ. Phys. Rev. B 1987, 36, 5709–5712. [Google Scholar] [CrossRef]
- Zibold, A.; Widder, K.; Merz, M.; Geserich, H.P.; Erb, A.; Müller-Vogt, G.; Kircher, J. Ordering of chain oxygen in single-domain crystals of YBCO. Physica C 1994, 235–240, 1093–1094. [Google Scholar] [CrossRef]
- Mamsurova, L.G.; Trusevich, N.G.; Pigalskiy, K.S.; Vishnev, A.A.; Mamsurov, I.V. Paramagnetism of Copper-Oxygen chains in high-temperature YBa2Cu3O6+δ superconductors. Bull. Russ. Acad. Sci. Phys. 2016, 80, 504–507. [Google Scholar] [CrossRef]
- Pessoa, A.L.; Koblischka-Veneva, A.; Carvalho, C.L.; Zadorosny, R.; Koblischka, M.R. Paramagnetic Meissner effect and current flow in YBCO nanofiber mats. IEEE Trans. Appl. Supercond. 2021, 31, 7200105. [Google Scholar] [CrossRef]
- Cava, R.J.; Batlogg, B.; Rabe, K.M.; Rietman, E.A.; Gallagher, P.K.; Rupp, L.W., Jr. Structural anomalies at the disappearance of superconductivity in Ba2YCu3O7−δ: Evidence for charge transfer from chains to planes. Physica C 1988, 156, 523–527. [Google Scholar] [CrossRef]
- Cava, R.J.; Hewat, A.W.; Hewat, E.A.; Batlogg, B.; Marezio, M.; Rabe, K.M.; Krajewski, J.J.; Peck, W.F., Jr.; Rupp, L.W., Jr. Structural anomalies, oxygen ordering and superconductivity in oxygen deficient Ba2YCu3O7−δ. Physica C 1990, 165, 419–433. [Google Scholar] [CrossRef]
- Cava, R.J.; Batlogg, B.; Chen, C.H.; Rietman, E.A.; Zahurak, S.M.; Werder, D. Oxygen stoichiometry, superconductivity and normal state properties of YBa2Cu3O7−δ. Nature 1987, 329, 423–425. [Google Scholar] [CrossRef]
- Jorgensen, J.D.; Veal, B.W.; Kwok, W.K.; Crabtree, G.W.; Umezawa, A.; Nowicki, L.J.; Paulikas, A.P. Structural and superconducting properties of orthorhombic and tetragonal YBa2Cu3O7−x: The effect of oxygen stoichiometry and ordering on superconductivity. Phys. Rev. B 1987, 36, 5731–5734. [Google Scholar] [CrossRef] [PubMed]
- Suyama, Y.; Matsumoto, M.; Hayakawa, T. Determination of oxygen content of YBa2Cu3O7−y superconductors. In Advances in Superconductivity, 2rd ed.; Ishiguro, T., Kajimura, K., Eds.; Springer: Tokyo, Japan, 1990; pp. 103–105. [Google Scholar]
- Yan, Y.; Blanchin, M.-G.; Picard, C.; Gerdanian, P. Oxygen ordering in YBa2Cu3Ox (7 ≥ z > 6) superconductors with equilibrium defect structure at room temperature. J. Mater. Chem. 1993, 3, 603–607. [Google Scholar] [CrossRef]
- Manca, P.; Sanna, S.; Calestani, G.; Migliori, A.; De Renzi, R.; Allodi, G. Critical chain length and superconductivity emergence in oxygen-equalized pairs of YBa2Cu3O6.30. Phys. Rev. B 2000, 61, 15450–15453. [Google Scholar] [CrossRef] [Green Version]
- Veal, B.W.; You, H.; Paulikas, A.P.; Shi, H.; Fang, Y.; Downey, J.W. Time-dependent superconducting behavior of oxygen-deficient YBa2Cu3Ox: Possible annealing of oxygen vacancies at 300 K. Phys. Rev. B 1990, 42, 4770–4773. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.I.; Mc Callum, R.W. Phase diagram in the Nd-Ba-Cu-O system. Physica C 1993, 210, 147–156. [Google Scholar] [CrossRef]
- Daeumling, M.; Seuntjens, J.M.; Larbalestier, D.C. Oxygen-defect flux pinning, anomalous magnetization and intra-grain granularity in YBa2Cu3O7−δ. Nature 1990, 346, 332–335. [Google Scholar] [CrossRef]
- Gauzzi, A.; Jonsson-Akerman, B.J.; Clerc-Dubois, A.; Pavuna, D. Scaling between superconducting critical temperature and structural coherence length in YBa2Cu3O6.9 films. Europhys. Lett. 2000, 51, 667–673. [Google Scholar] [CrossRef]
- Edwards, H.L.; Markert, J.T.; de Lozanne, A.L. Energy gap and surface structure of YBa2Cu3O7−x probed by scanning tunneling microscopy. Phys. Rev. Lett. 1992, 69, 2967–2970. [Google Scholar] [CrossRef]
- Edwards, H.L.; Barr, A.L.; Markert, J.T.; de Lozanne, A.L. Modulations in the CuO chain layer of YBa2Cu3O7−δ: Charge density waves? Phys. Rev. Lett. 1994, 73, 1154–1157. [Google Scholar] [CrossRef] [PubMed]
- Derro, D.J.; Hudson, E.W.; Lang, K.M.; Pan, S.H.; Davis, J.C.; Markert, J.T.; de Lozanne, A.L. Nanoscale one-dimensional scattering resonances in the CuO chains of YBa2Cu3O6+x. Phys. Rev. Lett. 2002, 88, 097002. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.H.; O’Neal, J.P.; Badzey, R.L.; Chamon, C.; Ding, H.; Engelbrecht, J.R.; Wang, Z.; Eisaki, H.; Uchida, S.; Gupta, A.K.; et al. Microscopic electronic inhomogeneity in the high-T-c superconductor Bi2Sr2CaCu2O8+x. Nature 2001, 413, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Lang, K.M.; Madhavan, V.; Hoffman, J.E.; Hudson, E.W.; Eisaki, H.; Uchida, S.; Davis, J.C. Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+δ. Nature 2002, 415, 412–416. [Google Scholar] [CrossRef]
- McElroy, K.; Lee, D.-H.; Hoffman, J.E.; Lang, K.M.; Lee, J.; Hudson, E.W.; Eisaki, H.; Uchida, S.; Davis, J.C. Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 2005, 94, 197005. [Google Scholar] [CrossRef]
- Kohsaka, Y.; Taylor, C.; Fujita, K.; Schmidt, A.; Lupien, C.; Hanaguri, T.; Azuma, M.; Takano, M.; Eisaki, H.; Takagi, H.; et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 2007, 315, 1380. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–757. [Google Scholar] [CrossRef]
- Jia, Y.Q. Crystal radii and effective ionic radii of the rare earth ions. J. Solid State Chem. 1991, 95, 184–187. [Google Scholar] [CrossRef]
- Das, P.; Koblischka, M.R.; Wolf, T.; Adelmann, P.; Hartmann, U. Tc-dependence of energy gap and asymmetry of coherence peaks in NdBa2Cu3O7−δ superconductors. Europhys. Lett. 2008, 84, 47004. [Google Scholar] [CrossRef] [Green Version]
- Roeser, H.P.; Huber, F.M.; von Schoenermark, M.F.; Nikoghosyan, A.S. High temperature superconducting with two doping atoms in La-doped Bi-2201 and Y-doped Bi-2212. Acta Astronaut. 2009, 65, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Allenspach, P.; Mesot, J.; Staub, U.; Guillaume, M.; Furrer, A.; Yoo, S.I.; Kramer, M.J.; Mc Callum, R.W.; Maletta, H.; Blank, H.; et al. Magnetic properties of Nd3+ in Nd-Ba-Cu-O compounds. Z. Phys. B 1994, 95, 301–310. [Google Scholar] [CrossRef]
- Kramer, M.J.; Karion, A.; Dennis, K.W.; Park, M.; Mc Callum, R.W. Enhanced Superconductivity in Nd1−xBa2−xCu3O7−δ by Low Oxygen Partial Pressure Annealing. J. Electron. Mater. 1994, 23, 1117–1120. [Google Scholar] [CrossRef]
- Kramer, M.J.; Yoo, S.I.; Mc Callum, R.W.; Yelon, W.B.; Xie, H.; Allenspach, P. Hole filling, charge transfer and superconductivity in Nd1+xBa2−xCu3O7+δ. Physica C 1994, 219, 145–155. [Google Scholar] [CrossRef]
- Hari Babu, N.; Iida, K.; Shi, Y.; Cardwell, D.A. Fabrication of high performance light rare earth based single-grain superconductors in air. Appl. Phys. Lett. 2005, 87, 202506. [Google Scholar] [CrossRef]
- Koblischka, M.R.; Muralidhar, M.; Murakami, M. Flux pinning in ternary (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy melt-processed superconductors. Appl. Phys. Lett. 1998, 73, 2351–2353. [Google Scholar] [CrossRef]
- Koblischka, M.R.; Koblischka-Veneva, A. The Roeser-Huber equation and the calculation of the transition temperature of the NdBCO solid solution. J. Electronic Mater. 2021. submitted. [Google Scholar]
- Welp, U.; Grimsditch, M.; Fleshler, S.; Nessler, W.; Downey, J.; Crabtree, G.W. Effect of uniaxial stress on the superconducting transition in YBa2Cu3Ox. Phys. Rev. Lett. 1992, 69, 2130–2133. [Google Scholar] [CrossRef]
- Sadewasser, S.; Schilling, J.S.; Paulikas, A.P.; Veal, B.W. Pressure dependence of Tc to 17 GPa with and without relaxation effects in superconducting YBa2Cu3Ox. Phys. Rev. B 2000, 61, 741–749. [Google Scholar] [CrossRef]
- Wijngaarden, R.J.; Tristan Jover, D.; Griessen, R. Intrinsic and carrier density effects on the pressure dependence of Tc of high-temperature superconductors. Physica B 1999, 265, 128–135. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Ganguli, A.K. Relation between superconducting properties and structural features of cuprate superconductors. Physica C 1994, 235–240, 9–12. [Google Scholar] [CrossRef]
- Magnuson, M.; Schmitt, T.; Strocov, V.N.; Schlappa, J.; Kalabukhov, A.S.; Duda, L.-C. Self-doping processes between planes and chains in the metal-to-superconductor transition of YBa2Cu3O6.9. Sci. Rep. 2014, 4, 7017. [Google Scholar] [CrossRef] [Green Version]
- Hartman, S.T.; Mundet, B.; Idrobo, J.-C.; Obradors, X.; Puig, T.; Gázquez, J.; Mishra, R. Direct observation of apical oxygen vacancies in the high-temperature superconductor YBa2Cu3O7−x. Phys. Rev. Mater. 2019, 3, 114806. [Google Scholar] [CrossRef] [Green Version]
Material | Lattice Parameter | x (10 m) | (2x) (10 m) | (meV) | ((K)) |
---|---|---|---|---|---|
YBCO ( 0.04) | 0.39 | 2.73 | 2.981 | 25.2 | 93 |
YBCO ( 0.45) | 3.49 | 4.872 | 15.4 | 57 | |
YBCO ( 0.04) | 0.385 | 2.695 | 2.905 | 25.9 | 95.6 |
YBCO ( 0.45) | 3.444 | 4.744 | 15.9 | 58.55 | |
REBCO ( 0.04) | |||||
NdBCO | 3.9128 | 2.7390 | 3.0008 | 25.06 | 92.57 |
SmBCO | 3.904 | 2.7328 | 2.9873 | 25.18 | 92.99 |
EuBCO | 3.8992 | 2.7294 | 2.9799 | 25.24 | 93.22 |
GdBCO | 3.8968 | 2.7278 | 2.9763 | 25.27 | 93.34 |
DyBCO | 3.8887 | 2.7209 | 2.9613 | 25.4 | 93.81 |
YBCO | 3.8863 | 2.7204 | 2.9603 | 25.41 | 93.84 |
HoBCO | 3.8846 | 2.7192 | 2.9577 | 25.43 | 93.92 |
ErBCO | 3.8809 | 2.7166 | 2.9520 | 25.48 | 94.10 |
TmBCO | 3.8758 | 2.7131 | 2.9443 | 25.5 | 94.35 |
YbBCO | 3.8711 | 2.7098 | 2.9371 | 25.6 | 94.58 |
NdBCO SS | av. (a,b) 3.8885 | 3.4780 | 4.8385 | 15.56 | 57.41 |
0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koblischka-Veneva, A.; Koblischka, M.R. (RE)Ba2Cu3O7−δ and the Roeser-Huber Formula. Materials 2021, 14, 6068. https://doi.org/10.3390/ma14206068
Koblischka-Veneva A, Koblischka MR. (RE)Ba2Cu3O7−δ and the Roeser-Huber Formula. Materials. 2021; 14(20):6068. https://doi.org/10.3390/ma14206068
Chicago/Turabian StyleKoblischka-Veneva, Anjela, and Michael Rudolf Koblischka. 2021. "(RE)Ba2Cu3O7−δ and the Roeser-Huber Formula" Materials 14, no. 20: 6068. https://doi.org/10.3390/ma14206068
APA StyleKoblischka-Veneva, A., & Koblischka, M. R. (2021). (RE)Ba2Cu3O7−δ and the Roeser-Huber Formula. Materials, 14(20), 6068. https://doi.org/10.3390/ma14206068