The Effect of Boron on the Microstructure and Properties of Refractory Metal Intermetallic Composites (RM(Nb)ICs) Based on Nb-24Ti-xSi (x = 16, 17 or 18 at.%) with Additions of Al, Cr or Mo
Abstract
:1. Introduction
2. Experimental Section
3. Results
3.1. As Cast Alloys
3.2. Heat Treated Alloys
3.3. Oxidation
4. Discussion
4.1. Macrosegregation
4.2. Microstructures
4.3. Hardness
4.4. Oxidation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Alloy | Element | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Nb | Ti | Si | Al | Cr | Mo | B | Ge | Sn | Ref. | |
JG3 | bal. | 24 | 18 | 5 | 5 | 2 | - | - | - | [17] |
KZ3 | bal. | 24 | 18 | - | - | - | - | - | - | [16] |
KZ4 | bal. | 24 | 18 | - | 5 | - | - | - | - | [16] |
KZ5 | bal. | 24 | 18 | 5 | 5 | - | - | - | - | [16] |
KZ7 | bal. | 24 | 18 | 5 | - | - | - | - | - | [16] |
OHS1 | bal. | 24 | 18 | 5 | 5 | - | - | 5 | 5 | [23] |
TT1 | bal. | 24 | 18 | - | - | - | 8 | - | - | [12] |
ZF3 | bal. | 24 | 18 | - | - | - | - | 5 | - | [33] |
ZF4 | bal. | 24 | 18 | - | 5 | - | - | 5 | - | [30] |
ZF5 | bal. | 24 | 18 | 5 | - | - | - | 5 | - | [31] |
ZF6 | bal. | 24 | 18 | 5 | 5 | - | - | 5 | - | [32] |
ZX4 | bal. | 24 | 18 | - | 5 | - | - | - | 5 | [22] |
ZX6 | bal. | 24 | 18 | 5 | - | - | - | - | 5 | [22] |
ZX8 | bal. | 24 | 18 | 5 | 5 | - | - | - | 5 | [22] |
Alloy and Condition | Phase | Parameter | |||
---|---|---|---|---|---|
Si + B (at.%) | Si/B | Si + B + Al (at.%) | <Nb/<Si> | ||
TT2-AC | T2 | 38.2 | 2 | - | 1.6 |
- | Ti rich T2 | 37.1 | 3.8 | - | 1.7 |
TT2-HT | T2 | 37.2 | 1.9 | - | 1.7 |
- | Ti rich T2 * | 34.1 to 37 Average 35.6 | 1, 3.8, 6.3 Average 3.7 | - | 1.7 to 1.9 Average 1.8 |
TT3-AC | T2 | - | 1.9 | 38.6 | 1.6 |
- | Ti rich T2 | - | 4 | 39 | 1.56 |
- | T2 very rich in Ti | - | 5 | 37.5 | 1.67 |
TT3-HT | T2 | - | 2.6 | 38.5 | 1.6 |
- | Ti rich T2 | - | 6.1 | 37.7 | 1.65 |
TT4-AC | T2 | - | 4.3 | 38.2 | 1.62 |
- | Ti rich T2 | - | 6.4 | 36.7 | 1.72 |
- | D88 | 40.8 | 0.6 | - | 1.45 |
TT4-HT | T2 | - | 5.5 | 39 | 1.56 |
- | D88 | 42.7 | 0.5 | - | 1.3 |
TT8-AC | T2 | - | 2.5 | 38.9 | 1.57 |
- | Ti rich T2 | - | 3.3 | 37.7 | 1.65 |
- | D88 | 42.6 | 0.4 | - | 1.35 |
TT8-HT | T2 | - | 6.2 | 37.3 | 1.68 |
- | Ti rich T2 | - | 4.1 | 38.3 | 1.61 |
- | D88 | 40 | 0.5 | - | 1.5 |
References
- Tsakiropoulos, P. Alloys for application at ultra-high temperatures: Nb-silicide in situ composites. Challenges, breakthroughs and opportunities. Prog. Mater. Sci. 2020, 123, 100714. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. Refractory Metal (Nb) Intermetallic Composites, High Entropy Alloys, Complex Concentrated Alloys and the Alloy Design Methodology NICE—Mise-en-scène Patterns of Thought and Progress. Materials 2021, 14, 989. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. On Nb Silicide Based Alloys: Alloy Design and Selection. Materials 2018, 11, 844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsakiropoulos, P. On the Nb silicide based alloys: Part I—The bcc Nb solid solution. J. Alloy. Compd. 2017, 708, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Tsakiropoulos, P. On Nb silicide based alloys: Part II. J. Alloys Compd. 2018, 748, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Tsakiropoulos, P. On the Alloying and Properties of Tetragonal Nb5Si3 in Nb-Silicide Based Alloys. Materials 2018, 11, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsakiropoulos, P. Alloying and Properties of C14–NbCr2 and A15–Nb3X (X = Al, Ge, Si, Sn) in Nb–Silicide-Based Alloys. Materials 2018, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Tsakiropoulos, P. Alloying and Hardness of Eutectics with Nbss and Nb5Si3 in Nb-silicide Based Alloys. Materials 2018, 11, 592. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.-H.; Yeh, J.-W. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Nowotny, H.; Benesovky, F.; Rudy, E.; Wittmann, A. Aufban und Zunderverhalten von Niob-Bor-Silicium Legierungen. Monatch. Chem. 1960, 91, 975–990. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, Y.; Guo, X.; Zhang, C.; Chang, Y.A. Austin Chang, Experimental investigation on the phase equilibria of the Nb-Ti-Si-B system at 1500 °C. J. Phase Equilibria Diffus. 2011, 32, 407–411. [Google Scholar] [CrossRef]
- Thandorn, T.; Tsakiropoulos, P. Study of the role of B addition on the microstructure of the Nb-24Ti-18Si-8B alloy. Intermetallics 2010, 18, 1033–1038. [Google Scholar] [CrossRef]
- Schlesinger, M.E.; Okamoto, H.; Gokhale, A.B.; Abbaschian, R. The Nb-Si (Niobium-Silicon) system. J. Phase Equilibria Diffus. 1993, 14, 502–509. [Google Scholar] [CrossRef]
- Okamoto, H. Phase Diagrams for Binary Alloys; Desk Handbook; ASM International: Metals Park, OH, USA, 2000. [Google Scholar]
- Katrych, S.; Grytsiv, A.; Bondar, A.; Rogl, P.; Velikanova, T.; Bohn, M. Structural materials: Metal-silicon-boron. The Nb rich corner of the Nb-Si-B system. J. Solid State Chem. 2004, 177, 493–497. [Google Scholar] [CrossRef]
- Zelenitsas, K.; Tsakiropoulos, P. Study of the role of Cr and Al additions in the microstructure of Nb-Ti-Si in situ composites. Intermetallics 2005, 13, 1079–1095. [Google Scholar] [CrossRef]
- Geng, J.; Tsakiropoulos, P.; Shao, G. The effects of Ti and Mo additions on the microstructure of Nb-silicide based in situ composites. Intermetallics 2006, 14, 227–235. [Google Scholar] [CrossRef]
- Yang, Y.; Chang, Y.; Tan, L.; Cao, W. Multiphase equilibria in the metal-rich region of the Mo–Ti–Si–B system: Thermodynamic prediction and experimental validation. Acta Mater. 2005, 53, 1711–1720. [Google Scholar] [CrossRef]
- Tsakiropoulos, P. On the macrosegregation of silicon in niobium silicide based alloys. Intermetallics 2014, 55, 95–101. [Google Scholar] [CrossRef]
- Bewlay, B.P.; Whiting, P.W.; Davis, A.W.; Briant, C.L. Creep Mechanisms in Niobium-Silicide Based In-Situ Composites. MRS Proc. 1998, 552, 6111. [Google Scholar] [CrossRef]
- Zacharis, E.; Utton, C.; Tsakiropoulos, P. A Study of the Effects of Hf and Sn on the Microstructure, Hardness and Oxidation of Nb-18Si Silicide Based Alloys without Ti Addition. Materials 2018, 11, 2447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Utton, C.; Tsakiropoulos, P. A Study of the Effect of 5 at.% Sn on the Micro-Structure and Isothermal Oxidation at 800 and 1200 °C of Nb-24Ti-18Si Based Alloys with Al and/or Cr Additions. Materials 2020, 13, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Negrete, O.; Tsakiropoulos, P. On the Microstructure and Isothermal Oxidation at 800 and 1200 °C of the Nb-24Ti-18Si-5Al-5Cr-5Ge-5Sn (at.%) Silicide-Based Alloy. Materials 2020, 13, 722. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Utton, C.; Tsakiropoulos, P. On the Microstructure and Properties of Nb-12Ti-18Si-6Ta-2.5W-1Hf (at.%) Silicide-Based Alloys with Ge and Sn Additions. Materials 2020, 13, 1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Utton, C.; Tsakiropoulos, P. On the Microstructure and Properties of Nb-12Ti-18Si-6Ta-5Al-5Cr-2.5W-1Hf Nb-Silicide Based Alloys with Ge and Sn Additions (at.%). Materials 2020, 13, 3719. [Google Scholar] [CrossRef] [PubMed]
- Ghadyani, M.; Utton, C.; Tsakiropoulos, P. Microstructures and Isothermal Oxidation of the Alumina Scale Forming Nb1.7Si2.4Ti2.4Al3Hf0.5 and Nb1.3Si2.4Ti2.4Al3.5Hf0.4 Alloys. Materials 2019, 12, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savitskiy, E.M.; Baron, V.V.; Bychkova, M.I.; Bakuta, S.A.; Gladyshev, E.I.S. Phase diagram and properties of Nb- 795 Mo-Si alloys, Russian Metallurgy, Translated from Izvestiya Akademii Nauk SSSR. Metally 1965, 2, 91–96. [Google Scholar]
- Sun, Z.; Yang, Y.; Guo, X.; Zhang, C.; Chang, Y.A. Thermodynamic modelling of the Nb-rich corner in the Nb-Si-B system. Intermetallics 2011, 19, 26–34. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, X. Effects of B addition on the microstructure and properties of Nb silicide based ultrahigh temperature alloys. Intermetallics 2015, 57, 83–92. [Google Scholar] [CrossRef]
- Li, Z.; Tsakiropoulos, P. Study of the effect of Cr and Ti additions in the microstructure of Nb–18Si–5Ge based in-situ composites. Intermetallics 2012, 26, 18–25. [Google Scholar] [CrossRef]
- Li, Z.; Tsakiropoulos, P. The microstructure of Nb-18Si-5Ge-5Al and Nb-24Ti-18Si-5Ge-5Al in situ composites. J. Alloy. Compd. 2013, 550, 553–560. [Google Scholar] [CrossRef]
- Li, Z.; Tsakiropoulos, P. On The Microstructures and Hardness of The Nb-24Ti-18Si-5Al-5Cr-5Ge and Nb-24Ti-18Si-5Al-5Cr-5Ge-5Hf (at.%) Silicide Based Alloys. Materials 2019, 12, 2655. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tsakiropoulos, P. Study of the effect of Ti and Ge in the microstructure of Nb-24Ti-18Si-5Ge in situ composite. Intermetallics 2011, 19, 1291–1297. [Google Scholar] [CrossRef]
- Zhao, J.; Utton, C.; Tsakiropoulos, P. On the Microstructure and Properties of Nb-18Si-6Mo-5Al-5Cr-2.5W-1Hf Nb-Silicide Based Alloys with Ge, Sn and Ti Additions (at.%). Materials 2020, 13, 4548. [Google Scholar] [CrossRef]
- Geng, J.; Tsakiropoulos, P.; Shao, G. Oxidation of Nb–Si–Cr–Al in situ composites with Mo, Ti and Hf additions. Mater. Sci. Eng. A 2006, 441, 26–38. [Google Scholar] [CrossRef]
- Zelenitsas, K.; Tsakiropoulos, P. Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb–Ti–Si in situ composites at 800 °C. Mater. Sci. Eng. A 2006, 416, 269–280. [Google Scholar] [CrossRef]
- Li, Z.; Tsakiropoulos, P. The Effect of Ge Addition on the Oxidation of Nb-24Ti-18Si Silicide Based Alloys. Materials 2019, 12, 3120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Alloy | Condition | Element | ||||||
---|---|---|---|---|---|---|---|---|
Nb | Ti | Si | Al | Cr | B | Mo | ||
TT2 | nominal | 48 | 24 | 16 | - | 5 | 7 | - |
- | AC | 47.8 | 24.2 | 16.3 | - | 5.2 | 6.5 | - |
- | HT | 47.3 | 24 | 16.5 | - | 5.3 | 6.9 | - |
TT3 | nominal | 48 | 24 | 16 | 5 | - | 7 | - |
- | AC | 49.3 | 23.6 | 15.4 | 4.4 | - | 7.3 | - |
- | HT | 49.5 | 23.2 | 15.6 | 4.4 | - | 7.3 | - |
TT4 | nominal | 40 | 24 | 18 | 5 | 5 | 8 | - |
- | AC | 42.4 | 24.6 | 15.7 | 5 | 5.4 | 6.9 | - |
- | HT | 40.7 | 24 | 17.3 | 4.8 | 4.9 | 8.3 | - |
TT8 | nominal | 42.5 | 24 | 17 | 3.5 | 5 | 6 | 2 |
- | AC | 43.4 | 23 | 17.2 | 3.5 | 4.9 | 6 | 2 |
- | HT | 42.9 | 23.7 | 17.2 | 3.3 | 4.9 | 5.9 | 2.1 |
Alloy | Hardness HValloy | ρ (g/cm3) | Vol.% Nbss | Microhardness HVphase | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Nbss | T2 | |||||||||
AC | HT | AC | HT | AC | HT | AC | HT | AC | HT | |
TT2 | 688 ± 42 622–734 | 680 ± 28 624–708 | 6.71 | 6.72 | 37 | 38 | 472 ± 18 443–496 | 419 ± 39 377–495 | 1346 ± 70 1202–1445 | 1167 ± 84 1015–1265 |
TT3 | 630 ± 86 494–757 | 571 ± 54 501–659 | 6.52 | 6.56 | 38 | 42 | 521 ± 34 472–577 | 379 ± 19 352–411 | 1232 ± 72 1116–1334 | 1163 ± 80 1061–1332 |
TT4 | 720 ± 70 642–879 | 607 ± 21 590–659 | 6.41 | 6.41 | 30 | 39 | 563 ± 37 503–631 | 467 ± 15 450–496 | 1247 ± 55 1172–1334 | 1239 ± 40 1200–1332 |
TT8 | 744 ± 60 673–842 | 693 ± 28 622–717 | 6.46 | 6.44 | 39 | 38 | 531 ± 26 487–576 | 461 ± 25 417–495 | 1316 ± 37 1265–1369 | 1209 ± 48 1143–1299 |
Alloy | MACX (at.%) | ||||
---|---|---|---|---|---|
Al | B | Cr | Si | Ti | |
TT2 | - | 4.2 | 2.8 | 3.1 | 3.2 |
TT3 | 2.7 | 4.2 | - | 4.5 | 3.4 |
TT4 | 1.1 | 2.9 | 1.4 | 4.7 | 3.3 |
TT8 | 1.1 | 4.9 | 1.3 | 1.3 | 2.8 |
TT1 [12] | - | 4.4 | - | 4.1 | 5.5 |
Alloy and Condition | Phase | ||||||||
---|---|---|---|---|---|---|---|---|---|
Nbss | T2 | Cr & Ti Rich Phase | Ti Rich Phase | C14-Laves | Nb3Si | D88 | Nbss + T2 Eutectic | TiN | |
TT2-AC | X * | X * | X | X | X | X | - | X | - |
TT2-HT ◊ | X | X * | - | - | - | - | - | - | X ° |
TT3-AC | X * | X * | - | - | - | - | - | X | - |
TT3-HT + | X | X * | - | - | - | - | - | - | - |
TT4-AC | X * | X * | - | - | - | - | X | X | - |
TT4-HT + | X | X | - | - | - | - | X | - | - |
TT8-AC | X * | X * | - | - | - | X | X | X | - |
TT8-HT + | X | X * | - | - | - | - | X | - | X ° |
Alloy and Condition | Phase | Element | ||||||
---|---|---|---|---|---|---|---|---|
Nb | Ti | Si | Al | B | Cr | Mo | ||
TT2-AC | Nbss | 57.2–63.2 60.3 ± 2.4 | 23.7–29 26.6 ± 1.7 | 1.4–1.9 1.6 ± 0.2 | - | 3.6–6.3 5 ± 0.2 | 5.3–7.9 6.5 ± 1 | - |
- | Ti rich Nbss | 38.8–46.6 42.5 ± 3.8 | 36.9–43.9 40.7 ± 1.7 | 1.6–3.5 2.4 ± 0.2 | - | 0.6–3.3 1.8 ± 0.2 | 10.1–14.1 12.6 ± 2.3 | - |
- | Phase rich in Cr & Ti | 14.8–21.9 18.9 ± 2.6 | 40.2–53.9 48.3 ± 1.4 | 3.4–12.9 7.1 ± 2.7 | - | - | 23.4–28.5 25.7 ± 4.5 | - |
- | T2 | 46–48.1 47.1 ± 0.6 | 13.4–15.4 14.3 ± 0.9 | 23.4–26.4 25.3 ± 1 | - | 10.9–14.9 12.9 ± 1.1 | 0.2–0.7 0.4 ± 0.1 | - |
- | Ti rich T2 | 39.1–43.7 41.6 ± 1.2 | 18.6–23.8 20.8 ± 1.6 | 28.1–30.3 29.3 ± 0.7 | - | 5.9–9.4 7.8 ± 1 | 0.2–0.8 0.5 ± 0.1 | - |
TT3-AC | Nbss | 52.9–59.4 55.8 ± 0.6 | 28.6–32.6 30.6 ± 1.2 | 1.6–2 1.8 ± 0.1 | 3.9–8.4 6.8 ± 2.2 | 4–6 5 ± 0.6 | - | - |
- | Ti rich Nbss | 43.4–49.9 47.7 ± 0.6 | 38.7–47.8 42.7 ± 1.6 | 1.7–2 1.9 ± 0.1 | 3.3–5.4 4.5 ± 2.4 | 1.9–4.4 3.2 ± 0.7 | - | - |
- | T2 | 46–48.3 46.9 ± 0.4 | 13.3–15.6 14.4 ± 0.2 | 22.5–26.7 25 ± 1.2 | 0.4–1.2 0.8 ± 0.1 | 10.8–16.2 12.9 ± 1.5 | - | - |
- | Ti rich T2 | 41.3–45.1 42 ± 1.4 | 18.2–19.9 19 ± 0.3 | 29.1–30.4 29.8 ± 0.4 | 0.6–2.7 1.7 ± 0.6 | 6.6–8.6 7.5 ± 0.5 | - | - |
TT4 | Nbss | 46.4–50.1 48.3 ± 2.1 | 29.4–31.6 30.6 ± 1.7 | 1.2–1.7 1.4 ± 0.1 | 7.1–7.7 7.4 ± 0.3 | 2.5–3.9 3.3 ± 0.3 | 7.9–10.1 9 ± 0.4 | - |
- | Ti rich Nbss | 32.7–39.4 35.6 ± 1.1 | 37–42.5 39.7 ± 0.5 | 1.1–1.5 1.3 ± 0.1 | 6.7–7.3 7 ± 0.4 | 0.3–1.2 0.7 ± 0.4 | 14.1–16.9 15.7 ± 1.4 | - |
- | T2 | 40.5–42.6 41.4 ± 0.3 | 19–20.3 19.7 ± 0.4 | 27.5–29.9 29.1 ± 0.8 | 1.7–2.7 2.3 ± 0.3 | 5.2–8.3 6.8 ± 0.4 | 0.4–1.1 0.7 ± 0.1 | - |
- | Ti rich T2 | 28.5–35.8 32.5 ± 1 | 26.2–33.5 29.3 ± 0.9 | 27.4–29.3 28.3 ± 0.8 | 3.7–4.3 4 ± 0.3 | 3.2–5.5 4.4 ± 0.4 | 0.8–2.2 1.5 ± 0.4 | - |
- | D88 | 44.5–46.9 45.9 ± 0.6 | 11.7–13.3 12.5 ± 0.6 | 14.4–16 15 ± 0.8 | - | 23.5–27 25.6 ± 0.4 | 0.6–1.4 1 ± 0.3 | - |
TT8-AC | Nbss | 42.4–49.9 45.9 ± 2.5 | 26.9–30.9 28.8 ± 1.1 | 1.1–1.5 1.3 ± 0.3 | 6.8–8.5 7.6 ± 0.4 | 0–5.4 1.8 ± 1.4 | 9.1–11.5 10.6 ± 1.4 | 3.5–4.5 4 ± 0.6 |
- | Ti rich Nbss | 30.8–38 34.5 ± 0.7 | 36.4–41.5 38.4 ± 2.1 | 1–1.4 1.2 ± 0.3 | 6–7.3 6.8 ± 0.7 | 0–3.5 1.1 ± 0.8 | 14.2–16.6 15.6 ± 2.2 | 2–2.8 2.4 ± 0.1 |
- | T2 | 36.7–43.5 40.5 ± 1.2 | 18.2–20.8 19.1 ± 0.4 | 24–28 25.6 ± 4.9 | 2.6–3.5 2.9 ± 0.2 | 6.7–15.5 10.4 ± 6.3 | 0.6–1.1 0.8 ± 0.2 | 0.6–0.7 0.7 ± 0.1 |
- | Ti rich T2 | 29.2–32.1 30.7 ± 1.3 | 29.4–31.5 30.2 ± 0.9 | 24.7–27.8 26.4 ± 3.5 | 3–4.2 3.3±0.5 | 6.5–9.5 8 ± 1.1 | 0.3–1 0.9 ± 0.3 | 0.3–0.7 0.5 ± 0.2 |
- | D88 | 41.9–45.2 44.7 ± 2 | 9.2–12.3 10.2 ± 0.6 | 11–13.5 12.4 ± 0.9 | - | 26.4–33.7 30 ± 2.6 | 0.8–1.3 1 ± 0.2 | 1.6–1.8 1.7 ± 0.2 |
TT2-HT | Nbss | 52.1–55.2 53.2 ± 1.2 | 30.1–33.6 31.9 ± 1.6 | 0.3–0.5 0.4 ± 0.1 | - | 2–4.3 3.2 ± 0.5 | 10.2–12 11.3 ± 0.2 | - |
- | T2 * | 46.9–48.6 47.8 ± 1.2 | 13.7–15.2 14.4 ± 1 | 23.3–26 24.5 ± 1.2 | - | 10.7–14.8 12.7 ± 1.5 | 0.3–0.8 0.6 ± 0.1 | - |
TT3-HT | Nbss | 54.8–57.9 56.4 ± 1 | 29.2–32 30.7 ± 1 | 0.3–0.5 0.4 ± 0.1 | 7.5–8.3 7.8 ± 0.6 | 3.8–5.6 4.7 ± 0.6 | - | - |
- | T2 | 41.8–46.2 44.1 ± 2.4 | 16.1–19.7 17.4 ± 2.2 | 25.4–28 26.9 ± 2 | 0.8–1.8 1.4 ± 0.9 | 9–11.7 10.2 ± 2.6 | - | - |
- | Ti rich T2 | 34–36.6 34.8 ± 1.3 | 25–29 27.4 ± 1 | 28–29.5 28.9 ± 0.7 | 3.7–4.5 4.2 ± 0.5 | 3.8–5.9 4.7 ± 0.4 | - | - |
TT4-HT | Nbss | 48.5–50.5 49.8 ± 0.8 | 28.1–29.5 28.6 ± 0.6 | 0.4–0.7 0.5 ± 0.1 | 7.3–7.8 7.6 ± 0.2 | 1.5–4.3 2.8 ± 1 | 10.4–11 10.7 ± 0.2 | - |
- | T2 | 35.8–40 37.7 ± 1.9 | 19.7–24.6 22.3 ± 1.9 | 29.4–31.2 30.2 ± 0.8 | 2.3–3.8 3.3 ± 0.5 | 4.2–6.3 5.5± 0.8 | 0.7–1.4 1 ± 0.2 | - |
- | D88 | 42.7–44.5 43.6 ± 0.8 | 11.6–12.4 11.9 ± 0.3 | 12.9–14.2 13.4 ± 0.5 | - | 28–30.7 29.2 ± 1 | 1.6–2.2 1.9 ± 0.3 | - |
TT8-HT | Nbss | 46.2–48.7 45.6 ± 1 | 23.9–31.5 29.8 ± 2.2 | 0.4–0.6 0.5 ± 0.1 | 7.2–8.2 7.6 ± 0.5 | 0–4.8 1 ± 0.8 | 10.5–11.8 11.2 ± 0.7 | 4.1–4.4 4.3 ± 0.1 |
- | T2 | 35.8–44.5 41 ± 4.6 | 18.7–21.5 20.1 ± 1.4 | 27.1–33.2 29.3 ± 3.4 | 2.7–4.3 3.3 ± 0.8 | 0–8.7 4.7 ± 4.4 | 0.4–1.9 1.1 ± 0.8 | 0.3–0.7 0.5 ± 0.2 |
- | Ti rich T2 | 30.9–33.7 31.6 ± 1.2 | 25.9–31.2 28.1 ± 2 | 26.4–29.6 28 ± 1.3 | 3.3–3.6 3.5 ± 0.2 | 3.3–11 6.8 ± 4.6 | 1.1–1.8 1.5 ± 0.3 | 0.4–0.5 0.5 ± 0.02 |
- | D88 | 41.2–48.9 44.2 ± 4.3 | 11.4–12.6 12.1 ± 0.7 | 12.4–4.9 13.5 ± 1.5 | - | 19.2–31 26.5 ± 6.4 | 1.5–2.3 2 ± 0.5 | 1.6–1.9 1.7 ± 0.1 |
Alloy | Oxidation Rate Constant | Mass Change ΔW/A (mg/cm2) | Pest Oxidation | Scale Spallation | |||
---|---|---|---|---|---|---|---|
800 °C kl (g/cm2s) | 1200 °C kp (g2/cm4s) | 800 °C | 1200 °C | 800 °C | 800 °C | 1200 °C | |
MASC | 1.53 × 10−7 | 1.58 × 10−8 | 36 (≤65 h) | 80 | MC * | - | Yes |
TT1 | 1.86 × 10−7 | 1.53 × 10−8 | 63 | 80.3 | No | Yes | Yes |
TT2 | 1.89 × 10−7 | 3.32 × 10−8 | 61.4 | 105.6 | No | Yes | Yes |
TT3 | 1.22 × 10−7 | 1.21 × 10−8 | 38.6 | 66.1 | No | Yes | Yes |
TT4 | 8.9 × 10−8 | 3.4 × 10−9 | 27.9 | 34 | No | Yes | Yes |
TT8 | 3 × 10−9 | 3.3 × 10−9 | 1.4 | 30 | No | No | No |
Alloy | MACSi (at.%) | Alloy | MACB (at.%) | Alloy | MACTi (at.%) | |||
---|---|---|---|---|---|---|---|---|
TT4 | 4.7 | TT8 | 4.9 | TT1 | 5.5 | |||
TT3 | 4.5 | TT1 | 4.4 | TT3 | 3.4 | |||
TT1 | 4.1 | TT2 | 4.2 | TT4 | 3.3 | |||
TT2 | 3.1 | TT3 | 4.2 | TT2 | 3.2 | |||
JG3 | 2.6 | TT4 | 2.9 | KZ3 | 3.1 | |||
KZ7 | 2.3 | - | - | TT8 | 2.8 | |||
KZ4 | 1.9 | - | - | KZ7 | 2.3 | |||
KZ3 | 1.6 | - | - | JG3 | 1.5 | |||
TT8 | 1.3 | - | - | KZ4 | 1.4 | |||
KZ5 | 1.3 | - | - | KZ5 | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thandorn, T.; Tsakiropoulos, P. The Effect of Boron on the Microstructure and Properties of Refractory Metal Intermetallic Composites (RM(Nb)ICs) Based on Nb-24Ti-xSi (x = 16, 17 or 18 at.%) with Additions of Al, Cr or Mo. Materials 2021, 14, 6101. https://doi.org/10.3390/ma14206101
Thandorn T, Tsakiropoulos P. The Effect of Boron on the Microstructure and Properties of Refractory Metal Intermetallic Composites (RM(Nb)ICs) Based on Nb-24Ti-xSi (x = 16, 17 or 18 at.%) with Additions of Al, Cr or Mo. Materials. 2021; 14(20):6101. https://doi.org/10.3390/ma14206101
Chicago/Turabian StyleThandorn, Tophan, and Panos Tsakiropoulos. 2021. "The Effect of Boron on the Microstructure and Properties of Refractory Metal Intermetallic Composites (RM(Nb)ICs) Based on Nb-24Ti-xSi (x = 16, 17 or 18 at.%) with Additions of Al, Cr or Mo" Materials 14, no. 20: 6101. https://doi.org/10.3390/ma14206101
APA StyleThandorn, T., & Tsakiropoulos, P. (2021). The Effect of Boron on the Microstructure and Properties of Refractory Metal Intermetallic Composites (RM(Nb)ICs) Based on Nb-24Ti-xSi (x = 16, 17 or 18 at.%) with Additions of Al, Cr or Mo. Materials, 14(20), 6101. https://doi.org/10.3390/ma14206101