Residual Adhesive Removal Methods for Rebonding of Debonded Orthodontic Metal Brackets: Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Selection
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, T.; Rahman, N.A.; Alam, M.K. Assessment of in Vivo Bond Strength Studies of the Orthodontic Bracket-Adhesive System: A Systematic Review. Eur. J. Dent. 2018, 12, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Tsichlaki, A.; Chin, S.Y.; Pandis, N.; Fleming, P.S. How Long Does Treatment with Fixed Orthodontic Appliances Last? A Systematic Review. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 308–318. [Google Scholar] [CrossRef]
- Knox, J.; Hubsch, P.; Jones, M.L.; Middleton, J. The Influence of Bracket Base Design on the Strength of the Bracket–Cement Interface. J. Orthod. 2000, 27, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Bakhadher, W.; Halawany, H.; Talic, N.; Abraham, N.; Jacob, V. Factors Affecting the Shear Bond Strength of Orthodontic Brackets—A Review of In Vitro Studies. Acta Med. 2015, 58, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Roelofs, T.; Merkens, N.; Roelofs, J.; Bronkhorst, E.; Breuning, H. A Retrospective Survey of the Causes of Bracket- and Tube-Bonding Failures. Angle Orthod. 2017, 87, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, I.V.; de Miranda Ladewig, V.; Almeida-Pedrin, R.R.; Cardoso, M.A.; Santiago Junior, J.F.; de Castro Ferreira Conti, A.C. The Association between Patient’s Compliance and Age with the Bonding Failure of Orthodontic Brackets: A Cross-Sectional Study. Prog. Orthod. 2018, 19, 11. [Google Scholar] [CrossRef] [Green Version]
- Sukhia, H.R.; Sukhia, R.H.; Mahar, A. Bracket De-Bonding and Breakage Prevalence in Orthodontic Patients. Pak. Oral. Dent. J. 2011, 31, 1–5. [Google Scholar]
- Koo, B.C.; Chung, C.-H.; Vanarsdall, R.L. Comparison of the Accuracy of Bracket Placement between Direct and Indirect Bonding Techniques. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 346–351. [Google Scholar] [CrossRef]
- Mui, B.; Rossouw, P.E.; Kulkarni, G.V. Optimization of a Procedure for Rebonding Dislodged Orthodontic Brackets. Angle Orthod. 1999, 69, 276–281. [Google Scholar] [CrossRef]
- Yassaei, S.; Aghili, H.; KhanPayeh, E.; Goldani Moghadam, M. Comparison of Shear Bond Strength of Rebonded Brackets with Four Methods of Adhesive Removal. Lasers Med. Sci. 2014, 29, 1563–1568. [Google Scholar] [CrossRef]
- Sohrabi, A.; Jafari, S.; Kimyai, S.; Rikhtehgaran, S. Er,Cr:YSGG Laser as a Novel Method for Rebonding Failed Ceramic Brackets. Photomed. Laser Surg. 2016, 34, 483–486. [Google Scholar] [CrossRef] [Green Version]
- Halwai, H.K.; Kamble, R.H.; Hazarey, P.V.; Gautam, V. Evaluation and Comparision of the Shear Bond Strength of Rebonded Orthodontic Brackets with Air Abrasion, Flaming, and Grinding Techniques: An in Vitro Study. Orthodontics 2012, 13, e1–e9. [Google Scholar] [PubMed]
- Bahnasi, F.I.; Abd-Rahman, A.N.; Abu-Hassan, M.I. Effects of Recycling and Bonding Agent Application on Bond Strength of Stainless Steel Orthodontic Brackets. J. Clin. Exp. Dent. 2013, 5, e197–e202. [Google Scholar] [CrossRef] [PubMed]
- Al Maaitah, E.F.; Alomari, S.; Abu Alhaija, E.S.; Safi, A.A.M. The Effect of Different Bracket Base Cleaning Method on Shear Bond Strength of Rebonded Brackets. J. Contemp. Dent. Pract. 2013, 14, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Achio, T. A Comparative Study of Shear Debonding Strengh between New Brackets, Air-Abrasion and Recycled Brackets: An In Vitro Analysis. Odovtos-Int. J. Dent. Sci. 2015, 17, 59–69. [Google Scholar]
- Guarita, M.K.; Moresca, A.H.K.; Losso, E.M.; Moro, A.; Moresca, R.C.; Correr, G.M. Effect of Different Surface Treatments for Ceramic Bracket Base on Bond Strength of Rebonded Brackets. Braz. Dent. J. 2015, 26, 61–65. [Google Scholar] [CrossRef]
- Ishida, K.; Endo, T.; Shinkai, K.; Katoh, Y. Shear Bond Strength of Rebonded Brackets after Removal of Adhesives with Er,Cr:YSGG Laser. Odontology 2011, 99, 129–134. [Google Scholar] [CrossRef]
- Elshafay, A.; Omran, E.S.; Abdelkhalek, M.; El-Badry, M.O.; Eisa, H.G.; Fala, S.Y.; Dang, T.; Ghanem, M.A.T.; Elbadawy, M.; Elhady, M.T.; et al. Reporting Quality in Systematic Reviews of in Vitro Studies: A Systematic Review. Curr. Med. Res. Opin. 2019, 35, 1631–1641. [Google Scholar] [CrossRef]
- Bourgi, R.; Hardan, L.; Rivera-Gonzaga, A.; Cuevas-Suárez, C.E. Effect of Warm-Air Stream for Solvent Evaporation on Bond Strength of Adhesive Systems: A Systematic Review and Meta-Analysis of in Vitro Studies. Int. J. Adhes. Adhes. 2021, 105, 102794. [Google Scholar] [CrossRef]
- Regan, D.; van Noort, R.; O’Keeffe, C. The Effects of Recycling on the Tensile Bond Strength of New and Clinically Used Stainless Steel Orthodontic Brackets: An In Vitro Study. Br. J. Orthod. 1990, 17, 137–145. [Google Scholar] [CrossRef]
- Basudan, A.M.; Al-Emran, S.E. The Effects of In-Office Reconditioning on the Morphology of Slots and Bases of Stainless Steel Brackets and on the Shear/Peel Bond Strength. J. Orthod. 2001, 28, 231–236. [Google Scholar] [CrossRef]
- Wendl, B.; Muchitsch, P.; Pichelmayer, M.; Droschl, H.; Kern, W. Comparative Bond Strength of New and Reconditioned Brackets and Assessment of Residual Adhesive by Light and Electron Microscopy. Eur. J. Orthod. 2011, 33, 288–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, R.; Endo, T.; Shimooka, S. Effects of Tooth Bleaching on Shear Bond Strength of Brackets Rebonded with a Self-Etching Adhesive System. Odontology 2011, 99, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Atsu, S.; Catalbas, B.; Gelgor, I.E.; Atsü, S.; Çatalbaş, B.; Gelgör, I.E. Effects of Silica Coating and Silane Surface Conditioning on the Bond Strength of Rebonded Metal and Ceramic Brackets. J. Appl. Oral. Sci. 2011, 19, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansal, N.; Valiathan, A.; Bansal, K. The Effects of Various In-Office Reconditioning Methods on Shear Bond Strength, Morphology of Slots and Bases of Stainless Brackets: An in Vitro Study. J. Indian Orthod. Soc. 2011, 45, 175–182. [Google Scholar] [CrossRef]
- Bishara, S.E.; VonWald, L.; Laffoon, J.F.; Warren, J.J. The Effect of Repeated Bonding on the Shear Bond Strength of a Composite Resin Orthodontic Adhesive. Angle Orthod. 2000, 70, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Chacko, P.K.; Kodoth, J.; John, J.; Kumar, K. Recycling Stainless Steel Orthodontic Brackets with Er:YAG Laser—An Environmental Scanning Electron Microscope and Shear Bond Strength Study. J. Orthod. Sci. 2013, 2, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.H.; Fadem, B.W.; Levitt, H.L.; Mante, F.K. Effects of Two Adhesion Boosters on the Shear Bond Strength of New and Rebonded Orthodontic Brackets. Am. J. Orthod. Dentofac. Orthop. 2000, 118, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Grabouski, J.K.; Staley, R.N.; Jakobsen, J.R. The Effect of Microetching on the Bond Strength of Metal Brackets When Bonded to Previously Bonded Teeth: An in Vitro Study. Am. J. Orthod. Dentofac. Orthop. 1998, 114, 452–460. [Google Scholar] [CrossRef]
- Gupta, N.; Kumar, D.; Palla, A. Evaluation of the Effect of Three Innovative Recyling Methods on the Shear Bond Strength of Stainless Steel Brackets-an in Vitro Study. J. Clin. Exp. Dent. 2017, 9, e550–e555. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Maheshwari, A.; Lall, R.; Navit, P.; Singh, R.; Navit, S. Comparative Evaluation of Shear Bond Strength of Recycled Brackets Using Different Methods: An In Vitro Study. Int. J. Oral Health Dent. 2014, 6, 5–11. [Google Scholar]
- Lew, K.K.; Chew, C.L.; Lee, K.W. A Comparison of Shear Bond Strengths between New and Recycled Ceramic Brackets. Eur. J. Orthod. 1991, 13, 306–310. [Google Scholar] [CrossRef]
- Lunardi, N.; Gameiro, G.H.; de Araújo Magnani, M.B.; Nouer, D.F.; de Siqueira, V.C.; Consani, S.; Pereira-Neto, J.S. The Effect of Repeated Bracket Recycling on the Shear Bond Strength of Different Orthodontic Adhesives. Braz. J. Oral Sci. 2008, 7, 1648–1652. [Google Scholar]
- Montasser, M.A.; Drummond, J.L.; Roth, J.R.; Al-Turki, L.; Evans, C.A. Rebonding of Orthodontic Brackets. Angle Orthod. 2008, 78, 537–544. [Google Scholar] [CrossRef]
- Jimenez, E.E.O.; Hilgenberg, S.P.; Rastelli, M.C.; Pilatti, G.L.; Orellana, B.; Coelho, U. Rebonding of Unused Brackets with Different Orthodontic Adhesives. Dent. Press J. Orthod. 2012, 17, 69–76. [Google Scholar] [CrossRef]
- Quick, A.N.; Harris, A.M.P.; Joseph, V.P. Office Reconditioning of Stainless Steel Orthodontic Attachments. Eur. J. Orthod. 2005, 27, 231–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regan, D.; LeMasney, B.; van Noort, R. The Tensile Bond Strength of New and Rebonded Stainless Steel Orthodontic Brackets. Eur. J. Orthod. 1993, 15, 125–135. [Google Scholar] [CrossRef]
- Tavares, S.W.; Consani, S.; Nouer, D.F.; de Araújo Magnani, M.B.B.; Nouer, P.R.A.; Martins, L.M. Shear Bond Strength of New and Recycled Brackets to Enamel. Braz. Dent. J. 2006, 17, 44–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harini, T.; Sreedhar, R. Effect of an Adhesion Booster on the Bond Strength of New and Recycled Brackets. Ann. Dent. 2011, III, 20–22. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, J.J.; Ackerman, R.J. Bond Strength of Thermally Recycled Metal Brackets. Am. J. Orthod. Dentofac. Orthop. 1983, 83, 181–186. [Google Scholar] [CrossRef]
- Bahnasi, F.I.; Rahman, A.N.A.A.; Abu-Hassan, M.I. The Impact of Recycling and Repeated Recycling on Shear Bond Strength of Stainless Steel Orthodontic Brackets. Orthod. Waves 2013, 72, 16–22. [Google Scholar] [CrossRef]
- Kachoei, M.; Mohammadi, A.; Esmaili Moghaddam, M.; Rikhtegaran, S.; Pourghaznein, M.; Shirazi, S. Comparison of Multiple Rebond Shear Strengths of Debonded Brackets after Preparation with Sandblasting and CO2 Laser. J. Dent. Res. Dent. Clin. Dent. Prospects 2016, 10, 148–154. [Google Scholar] [CrossRef]
- Kamisetty, S.K.; Verma, J.K.; Arun, S.; Chandrasekhar, S.; Kumar, A. SBS vs Inhouse Recycling Methods-An Invitro Evaluation. J. Clin. Diagn. Res. 2015, 9, ZC04-8. [Google Scholar] [CrossRef]
- Haro Montero, M.M.; Vicente, A.; Alfonso-Hernández, N.; Jiménez-López, M.; Bravo-González, L.A. Comparison of Shear Bond Strength of Brackets Recycled Using Micro Sandblasting and Industrial Methods. Angle Orthod. 2015, 85, 461–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heravi, F.; Naseh, R.A. Comparative Study between Bond Strength of Rebonded and Recycled Orthodontic Brackets. Dent. Res. J. 2006, 2, 1–6. [Google Scholar]
- Sonis, A.L. Air Abrasion of Failed Bonded Metal Brackets: A Study of Shear Bond Strength and Surface Characteristics as Determined by Scanning Electron Microscopy. Am. J. Orthod. Dentofac. Orthop. 1996, 110, 96–98. [Google Scholar] [CrossRef]
- Huang, T.-H.; Yen, C.-C.; Kao, C.-T. Comparison of Ion Release from New and Recycled Orthodontic Brackets. Am. J. Orthod. Dentofac. Orthop. 2001, 120, 68–75. [Google Scholar] [CrossRef]
- Egan, F.R.; Alexander, S.A.; Cartwright, G.E. Bond Strength of Rebonded Orthodontic Brackets. Am. J. Orthod. Dentofac. Orthop. 1996, 109, 64–70. [Google Scholar] [CrossRef]
- Yassaei, S.; Aghili, H.; Firouzabadi, A.H.; Meshkani, H. Effect of Er: YAG Laser and Sandblasting in Recycling of Ceramic Brackets. J. Lasers Med. Sci. 2017, 8, 17–21. [Google Scholar] [CrossRef] [Green Version]
Search Strategy | |
---|---|
# 1 | Orthodontic bracket OR bracket OR braces OR stainless steel bracket OR recycled bracket. |
# 2 | Rebonded OR rebonding OR reconditioning OR recycling OR recycling methods OR recycled brackets OR rebonded brackets OR electropolishing OR sandblasting OR ultrasonic scaling OR heating OR Er:YAG laser OR CO2 laser |
# 3 | #1 and #2 |
Study | Bracket Used | Tooth Used | Orthodontic Adhesive Used | Storing Conditions | Residual Adhesive Removal Method Used | Secondary Outcome |
---|---|---|---|---|---|---|
Achio, 2015 | Stainless-steel premolar bracket (UnitekTM Gemini Bracket, 3M Unitek, Monorovia, CA, USA) | Human premolar | Transbond™ Plus Self Etching Primer (3M Unitek)/TransbondTM XT Light Cure Composite (3M Unitek) | Thermocycling (500 cycles between 5 °C and 55 °C) | Sandblasting (Al2O3; 50 µm, 90 psi, 10 mm, 10–15 s) | Adhesive remnant index |
Bahnasi, 2013 | Stainless steel upper premolar bracket (UnitekTM Gemini Bracket (3M Unitek) | Human premolar | Light Cure Orthodontic Adhesive Primer (3M Unitek)/TransbondTM XT Light Cure Composite (3M Unitek) | Thermocycling (500 cycles between 5 °C and 55 °C) | Sandblasting (Al2O3; 50 µm, 90 psi, 10 mm, 20–30 s) | Adhesive remnant index |
Bahnasi, 2013 (b) | Stainless steel upper premolar bracket (UnitekTM Gemini Bracket, 3M Unitek) | Human premolar | Light Cure Orthodontic Adhesive Primer (3M Unitek)/TransbondTM XT Light Cure Composite (3M Unitek) | Thermocycling (500 cycles between 5 °C and 55 °C) | Sandblasting (Al2O3; 50 µm, 90 psi, 10 mm, 20–30 s). Mechanical grinding with a carbide bur with high-speed hand piece. Direct flame with a gas torch flame for 5 s. | Qualitative analysis of the distortion of the base with SEM |
Egan, 1996 | Stainless steel upper premolar brackets (GAC International Inc., New York, NY, USA) | Human premolar | Rely a Bond (Reliance Orthodontic Products Inc., Itasca, IL, USA) and Phase II paste-paste (Reliance Orthodontic Products Inc.) | Distilled water at 37 °C for 1 week | Mechanical grinding with a green stone | Failure mode |
Harini, 2011 | Stainless steel premolar brackets * | Human premolar | All Bon-2 (Bisco Inc., Schaumburg, IL, USA. | Distilled water for 24 h | Direct flame with a soldered torch for 5 s. | Adhesive remnant index |
Heravi, 2006 | Standard Edgewise metal brackets (Dentarum Corp., Ispringen, Germany) | Human upper premolar | No-mix composite (Dentarum Corp., Germany) | Distilled water at 37 °C for 48 h | Mechanical grinding with a tungsten carbide bur with high-speed hand piece | Adhesive remnant index |
Ishida, 2011 | Metal premolar bracket (UnitekTM Victory series, 3M Unitek) | Human premolar | Transbond™ Plus Self Etching Primer (3M Unitek)/TransbondTM XT Light Cure Composite (3M Unitek) | Artificial saliva at 37 °C for 24 h | Er,Cr:YSGG laser (Power output of 3.75 W, wavelength of 2.78 µm, a pulse duration of 140 µs, a frequency of 20 Hz, and air and water levels, each 50%) | Adhesive remnant index |
Kachoei, 2016 | Maxillary central incisors (Ortho-Organizer, Carlsbad, CA, USA) | Bovine upper central incisors | Unite Bonding System (3M Unitek, USA) | Distilled water at 37 °C for 1 week | Sandblasting (Al2O3; 50 um, 5 mm). CO2 laser (wavelength of 10,600 nm and a 3 W output power, for 15 s) | Adhesive remnant index |
Kamissety, 2015 | Stainless steel lower premolar brackets (Gemini, 3M Unitek) | Lower human premolar | Transbond XT adhesive (3M Unitek). | Artificial saliva for 24 h at 37 °C | Mechanical grinding with a green stone with low-speed hand piece. Sandblasting (Al2O3, 50 µm, 10 mm, 90 PSI) Direct flaming with a micro torch Direct flaming with a Bunsen flame | UV/Vis transmittance analysis |
Maaitah, 2013 | Premolar brackets (Omni 0.022′’ Roth, GAC International Inc, New York, NY, USA) | Human premolar teeth | TransbondTM XT Adhesive (3M Unitek) | Thermocycling (500 cycles between 5 °C and 55 °C) | Mechanical grinding with slow speed round tungsten carbide bur. Sandblasting (CoJetTM System Set; 3M Espe) | Adhesive remnant index |
Montero, 2015 | Upper central incisor brackets (UnitekTM Victory series, 3M Unitek) | Bovine upper central incisors | Transbond Plus Self Etching Primer (3M Unitek)/Transbond XT (3M Unitek) | Distilled water at 37 °C for 24 h | Sandblasting (Al2O3; 25 µm, 50 µm, or 110 µm at 5 mm) | SEM observation |
Shahamfar, 2014 | Premolar bracket (Equilibrium, Dentaaurum Inc., Ispringen, Germany) | Human premolar teeth | Light BondTM (Reliance Orthodontic products, IL, USA) | Distilled water at 37 °C for 24 h | Mechanical grinding with slow speed multi blade tungsten carbide bur. | Adhesive remnant index |
Sonis, 1996 | Lower premolar brackets (GAC International, Inc., Central Islip, Long Island, NY, USA) | Lower human premolar | Rely-a-bond (Reliance, Inc., Itasca, IL, USA) | Thermocycling (1000 cycles between 10 °C and 50 °C) | Sandblasting (90 µm; 90 PSI, 15 to 30 s) | Scanning electron micrograph of base surface |
Wheeler, 1983 | Stainless steel premolar brackets | Human premolar | Dyna Bond II Series B (Unitek Corporation, Monrovia, CA, USA) | Non-specified | Heating in an oven for 50 min at 454 °C |
Study | Specimen Randomization | Single Operator | Operator Blinded | Control Group | Standardized Specimens | ARI | Manufacturer’s Instructions | Sample Size Calculation | Risk of Bias |
---|---|---|---|---|---|---|---|---|---|
Achio, 2015 | Yes | No | No | Yes | Yes | Yes | Yes | No | Medium |
Bahnasi, 2013 | No | No | No | Yes | Yes | Yes | Yes | No | Medium |
Bahnasi (b), 2013 | Yes | No | No | Yes | Yes | No | Yes | No | Medium |
Egan, 1996 | No | No | No | Yes | Yes | Yes | Yes | No | Medium |
Harini, 2011 | No | No | No | Yes | Yes | Yes | Yes | No | Medium |
Heravi, 2006 | No | No | No | Yes | Yes | Yes | Yes | No | Medium |
Ishida, 2011 | Yes | Yes | No | Yes | Yes | Yes | Yes | No | Medium |
Kachoei, 2016 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Kamissety, 2015 | No | No | No | Yes | Yes | No | Yes | No | High |
Maaitah, 2013 | Yes | Yes | No | Yes | Yes | Yes | Yes | No | Medium |
Montero, 2015 | Yes | No | No | Yes | Yes | No | Yes | Yes | Medium |
Shahamfar, 2014 | No | No | No | Yes | Yes | Yes | Yes | No | Medium |
Sonis, 1996 | Yes | No | No | Yes | Yes | No | Yes | No | Medium |
Wheeler, 1983 | Yes | Yes | No | Yes | Yes | No | Yes | No | Medium |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grazioli, G.; Hardan, L.; Bourgi, R.; Nakanishi, L.; Amm, E.; Zarow, M.; Jakubowicz, N.; Proc, P.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M. Residual Adhesive Removal Methods for Rebonding of Debonded Orthodontic Metal Brackets: Systematic Review and Meta-Analysis. Materials 2021, 14, 6120. https://doi.org/10.3390/ma14206120
Grazioli G, Hardan L, Bourgi R, Nakanishi L, Amm E, Zarow M, Jakubowicz N, Proc P, Cuevas-Suárez CE, Lukomska-Szymanska M. Residual Adhesive Removal Methods for Rebonding of Debonded Orthodontic Metal Brackets: Systematic Review and Meta-Analysis. Materials. 2021; 14(20):6120. https://doi.org/10.3390/ma14206120
Chicago/Turabian StyleGrazioli, Guillermo, Louis Hardan, Rim Bourgi, Leina Nakanishi, Elie Amm, Maciej Zarow, Natalia Jakubowicz, Patrycja Proc, Carlos Enrique Cuevas-Suárez, and Monika Lukomska-Szymanska. 2021. "Residual Adhesive Removal Methods for Rebonding of Debonded Orthodontic Metal Brackets: Systematic Review and Meta-Analysis" Materials 14, no. 20: 6120. https://doi.org/10.3390/ma14206120
APA StyleGrazioli, G., Hardan, L., Bourgi, R., Nakanishi, L., Amm, E., Zarow, M., Jakubowicz, N., Proc, P., Cuevas-Suárez, C. E., & Lukomska-Szymanska, M. (2021). Residual Adhesive Removal Methods for Rebonding of Debonded Orthodontic Metal Brackets: Systematic Review and Meta-Analysis. Materials, 14(20), 6120. https://doi.org/10.3390/ma14206120