High-Temperature Compressive Response of SiCp/6092Al Composites under a Wide Range of Strain Rates
Abstract
:1. Introduction
2. Materials and Experiments
2.1. Material Fabrication
2.2. Experimental Procedures
3. Results and Discussion
3.1. Analysis of Stress Equilibrium and Strain Rate History
3.2. Influence of Temperature on the Stress–Strain Curves
3.3. Dynamic Compressive Deformation and Failure Mechanisms
3.3.1. Specimen Morphology after Compressive Tests
3.3.2. Microscopic Failure Mechanisms
4. Conclusions
- (1)
- The SiCp/6092Al composite was generally insensitive to strain rates at room temperature. However, as the temperature rose to 200 °C, the composite started to exhibit a positive strain-rate-dependent behavior, i.e., the flow stress gradually increased with increasing strain rate. When the temperature reached 350 °C, the strain rate sensitivity of the composite was further improved with a non-monotonical changing trend.
- (2)
- The modulus, yield stress, flow stress, and strain-hardening rate of the SiCp/6092Al composite decreased as the ambient temperature rose, and the flow stress nonlinearly varied with the ambient temperature.
- (3)
- Compared with 6092Al, the SiCp/6092Al composite fabricated in this work not only showed improved strength but also maintained good toughness.
- (4)
- When subjected to impact loading, the dominating failure mode in the SiCp/6092Al composite was characterized by particle failure. The percentage of failed particles tended to decrease as the ambient temperature increased. Furthermore, the failure mode of particles was greatly influenced by the strain rate, that is, particles generally broke apart into large pieces at lower strain rates and they smashed into fine debris at higher strain rates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, Q.; Wang, Z. Prediction of interfacial strength and failure mechanisms in particle-reinforced metal-matrix composites based on a micromechanical model. Eng. Fract. Mech. 2015, 142, 170–183. [Google Scholar] [CrossRef]
- Trofimov, A.; Drach, B.; Sevostianov, I. Effective elastic properties of composites with particles of polyhedral shapes. Int. J. Solids Struct. 2017, 120, 157–170. [Google Scholar] [CrossRef]
- Su, Y.; Ouyang, Q.; Zhang, W.; Li, Z.; Guo, Q.; Fan, G.; Zhang, D. Composite structure modeling and mechanical behavior of particle reinforced metal matrix composites. Mater. Sci. Eng. A 2014, 597, 359–369. [Google Scholar] [CrossRef]
- Liu, Q.; Qi, F.; Wang, Q.; Ding, H.; Chu, K.; Liu, Y.; Li, C. The influence of particles size and its distribution on the degree of stress concentration in particulate reinforced metal matrix composites. Mater. Sci. Eng. A 2018, 731, 351–359. [Google Scholar] [CrossRef]
- Zhang, J.; Ouyang, Q.; Guo, Q.; Li, Z.; Fan, G.; Su, Y.; Jiang, L.; Lavernia, E.J.; Schoenung, J.; Zhang, D. 3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites. Compos. Sci. Technol. 2016, 123, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ramesh, K.T.; Chin, E.S.C. High strain rate response of aluminum 6092/B4C composites. Mater. Sci. Eng. A 2004, 384, 26–34. [Google Scholar] [CrossRef]
- Tan, Z.; Pang, B.; Qin, D.; Shi, J.; Gai, B. The compressive properties of 2024Al matrix composites reinforced with high content SiC particles at various strain rates. Mater. Sci. Eng. A 2007, 489, 302–309. [Google Scholar] [CrossRef]
- Zhu, D.; Wu, G.; Chen, G.; Zhang, Q. Dynamic deformation behavior of a high reinforcement content TiB2/Al composite at high strain rates. Mater. Sci. Eng. A 2008, 487, 536–540. [Google Scholar] [CrossRef]
- Tan, Z.; Pang, B.; Gai, B.; Wu, G.; Jia, B. The dynamic mechanical response of SiC particulate reinforced 2024 aluminum matrix composites. Mater. Lett. 2007, 61, 4606–4609. [Google Scholar] [CrossRef]
- Zhang, H.; Ramesh, K.T.; Chin, E.S.C. Effects of interfacial debonding on the rate-dependent response of metal matrix composites. Acta Metall. Mater. 2005, 53, 4687–4700. [Google Scholar] [CrossRef]
- Li, Y.; Ramesh, K.T.; Chin, E.S.C. Comparison of the plastic deformation and failure of A359/SiC and 6061-T6/Al2O3 metal matrix composites under dynamic tension. Mater. Sci. Eng. A 2004, 371, 359–370. [Google Scholar] [CrossRef]
- Li, Y.; Ramesh, K.T. Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal–matrix composites at high rates of strain. Acta Metall. Mater. 1998, 46, 5633–5646. [Google Scholar] [CrossRef]
- Bao, G.; Lin, Z. High strain rate deformation in particle reinforced metal matrix composites. Acta Metall. Mater. 1996, 44, 1011–1019. [Google Scholar] [CrossRef]
- Yadav, S.; Chichili, D.R.; Ramesh, K.T. The mechanical response of a 6061-T6 Al/Al2O3 metal matrix composite at high rates of deformation. Acta Metall. Mater. 1995, 43, 4453–4464. [Google Scholar] [CrossRef]
- Chichili, D.R.; Ramesh, K.T. Dynamic failure mechanisms in a 6061-T6 Al-Al2O3 metal-matrix composite. Int. J. Solids Struct. 1995, 32, 2609–2626. [Google Scholar] [CrossRef]
- San Marchi, C.; Cao, F.; Kouzeli, M.; Mortensen, A. Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum. Mater. Sci. Eng. A 2002, 337, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Huang, X.; Zhao, K.; Zhu, Z.; Zhu, X.; An, L. Effect of reinforcement particle size on quasistatic and dynamic mechanical properties of Al-Al2O3 composites. J. Alloy. Compd. 2019, 797, 1367–1371. [Google Scholar] [CrossRef]
- Jo, M.C.; Choi, J.H.; Yoo, J.; Lee, D.; Shin, S.; Jo, I.; Lee, S.-K.; Lee, S. Novel dynamic compressive and ballistic properties in 7075-T6 Al-matrix hybrid composite reinforced with SiC and B4C particulates. Compos. Part B Eng. 2019, 174, 107041. [Google Scholar] [CrossRef]
- Lee, H.; Choi, J.H.; Jo, M.C.; Lee, D.; Shin, S.; Jo, I.; Lee, S.-K.; Lee, S. Effects of SiC particulate size on dynamic compressive properties in 7075-T6 Al-SiCp composites. Mater. Sci. Eng. A 2018, 738, 412–419. [Google Scholar] [CrossRef]
- Lee, H.; Sohn, S.S.; Jeon, C.; Jo, I.; Lee, S.-K.; Lee, S. Dynamic compressive deformation behavior of SiC-particulate-reinforced A356 Al alloy matrix composites fabricated by liquid pressing process. Mater. Sci. Eng. A. 2017, 680, 368–377. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, H.; Cai, M.; Liu, L.; Zhai, P. The dynamic properties of SiCp/Al composites fabricated by spark plasma sintering with powders prepared by mechanical alloying process. Mater. Sci. Eng. A 2009, 527, 218–224. [Google Scholar] [CrossRef]
- Owolabi, G.M.; Odeshi, A.G.; Singh, M.N.K.; Bassim, M.N. Dynamic shear band formation in Aluminum 6061-T6 and Aluminum 6061-T6/Al2O3 composites. Mater. Sci. Eng. A 2007, 457, 114–119. [Google Scholar] [CrossRef]
- Tang, B.; Wang, H.; Jin, P.; Jiang, X. Constitutive flow behavior and microstructural evolution of 17 vol% SiCp/7055Al composite during compression at elevated temperature. J. Mater. Res. Technol. 2020, 9, 6386–6396. [Google Scholar] [CrossRef]
- Wang, K.; Li, X.; Li, Q.; Shu, G.; Tang, G. Hot deformation behavior and microstructural evolution of particulate-reinforced AA6061/B4C composite during compression at elevated temperature. Mater. Sci. Eng. A 2017, 696, 248–256. [Google Scholar] [CrossRef]
- Chen, S.; Teng, J.; Luo, H.; Wang, Y.; Zhang, H. Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites. Mater. Sci. Eng. A 2017, 697, 194–202. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Cavaliere, P.; Spigarelli, S.; Evangelista, E. Temperature and strain-rate sensitivity parameters: Analysis of the deformed metal matrix composite A359/SiC/20p. J. Mater. Sci. Lett. 2001, 20, 1195–1197. [Google Scholar] [CrossRef]
- Sun, W.; Duan, C.; Yin, W. Development of a dynamic constitutive model with particle damage and thermal softening for Al/SiCp composites. Compos. Struct. 2020, 236, 111856. [Google Scholar] [CrossRef]
- Masuda, T.; Kobayashi, T.; Wang, L.; Toda, H. Effects of Strain Rate on Deformation Behavior of A6061-T6 Aluminum Alloy. Mater. Sci. Forum 2003, 426–432, 285–290. [Google Scholar] [CrossRef]
- Lee, W.-S.; Sue, W.-C.; Lin, C.-F.; Wu, C.-J. The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy. J. Mater. Process. Technol. 2000, 100, 116–122. [Google Scholar] [CrossRef]
- Djapic Oosterkamp, L.; Ivankovic, A.; Venizelos, G. High strain rate properties of selected aluminium alloys. Mater. Sci. Eng. A 2000, 278, 225–235. [Google Scholar] [CrossRef]
- Suo, Y.; Deng, Z.; Wang, B.; Gong, Y.; Jia, P. Constitutive model of metal matrix composites at high strain rates and its application. Mater. Today Commun. 2021, 27, 102328. [Google Scholar] [CrossRef]
- Li, Y.; Ramesh, K.T.; Chin, E.S.C. Viscoplastic deformations and compressive damage in an A359/SiCp metal–matrix composite. Acta Metall. Mater. 2000, 48, 1563–1573. [Google Scholar] [CrossRef]
Flow Stress (MPa) | Room Temperature (RT) | 200 °C | 350 °C |
---|---|---|---|
~1600 s−1 | 535.87 | 513.39 | 346.04 |
~3200 s−1 | 537.39 | 529.10 | 477.71 |
~4300 s−1 | 536.95 | 533.83 | 366.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suo, Y.; Li, J.; Deng, Z.; Wang, B.; Wang, Q.; Ni, D.; Jia, P.; Suo, T. High-Temperature Compressive Response of SiCp/6092Al Composites under a Wide Range of Strain Rates. Materials 2021, 14, 6244. https://doi.org/10.3390/ma14216244
Suo Y, Li J, Deng Z, Wang B, Wang Q, Ni D, Jia P, Suo T. High-Temperature Compressive Response of SiCp/6092Al Composites under a Wide Range of Strain Rates. Materials. 2021; 14(21):6244. https://doi.org/10.3390/ma14216244
Chicago/Turabian StyleSuo, Yongyong, Jintao Li, Zhilun Deng, Bo Wang, Quanzhao Wang, Dingrui Ni, Purong Jia, and Tao Suo. 2021. "High-Temperature Compressive Response of SiCp/6092Al Composites under a Wide Range of Strain Rates" Materials 14, no. 21: 6244. https://doi.org/10.3390/ma14216244
APA StyleSuo, Y., Li, J., Deng, Z., Wang, B., Wang, Q., Ni, D., Jia, P., & Suo, T. (2021). High-Temperature Compressive Response of SiCp/6092Al Composites under a Wide Range of Strain Rates. Materials, 14(21), 6244. https://doi.org/10.3390/ma14216244