A Study of Adhesion in Foamed WMA Binder-Aggregate Systems Using Boiling Water Stripping Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Experiment
- Type of the asphalt binder:
- ○
- PGB—50/70 paving-grade bitumen
- ○
- PMB—45/80–55 polymer-modified bitumen
- Source of the asphalt binder:
- ○
- A—source A
- ○
- B—source B
- Form of the binder while it was added to the aggregates:
- ○
- N—non-foamed
- ○
- F—foamed
- Temperature at which the aggregates were coated:
- ○
- H—hot, corresponding to hot-mix asphalt mixing temperatures:
- ▪
- 150 °C when the 50/70 PGB binders were used
- ▪
- 165 °C when the 45/80–55 PMB binder were used
- ○
- W—warm, corresponding to warm-mix asphalt mixing temperatures:
- ▪
- 130 °C when the 50/70 PGB binder were used
- ▪
- 145 °C when the 45/80–55 PMB binder were used
- Type of the aggregate used:
- ○
- L—limestone
- ○
- Q—quartzite
2.2. Materials
2.3. Methods
2.3.1. Sample Preparation and Execution of Boiling Water Stripping Tests
2.3.2. Digital Image Capture and Analysis
- Image acquisition under repeatable, controlled, artificial lighting using a ring light;
- Use of a distinct background color for ease of its removal in post-processing, should it be necessary;
- Placing the sample aggregates without gaps for mitigating the background reflections;
- Each sample was photographed once, then it was flipped, and its underside was photographed again to obtain more data per sample; this also would decrease any potential bias of the initial sample arrangement.
2.3.3. Conventional Testing of Bituminous Binders
2.3.4. Fourier-Transform Infrared Spectrometric Analysis
3. Results
3.1. Properties of the Asphalt Binders
3.2. Results of the Boiling Water Stripping Tests
4. Discussion
5. Conclusions
- Repeatable lighting conditions with uniform lighting and mitigation of shadows are recommended;
- Careful selection and preparation of the workplace is required to mitigate color contaminated light reflections (e.g., blue color from the sky, other colors from clothes, furniture, etc.);
- Precise arrangement of the aggregate particles without visible gaps is highly recommended for reliable classification of the reflective surfaces of asphalt binder; when gaps are present, the background reflects off the asphalt binder, which makes it difficult to distinguish from the binder, regardless of the background color;
- When artificial lighting is used and color analysis is made, use of lighting with high color reproduction index (CRI) is advised.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Remišová, E.; Decký, M.; Mikolaš, M.; Hájek, M.; Kovalčík, L.; Mečár, M. Design of Road Pavement Using Recycled Aggregate. IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 022016. [Google Scholar] [CrossRef] [Green Version]
- Bańkowski, W.; Krol, J.; Gałązka, K.; Liphardt, A.; Horodecka, R. Design and verification of bituminous mixtures with the increased content of reclaimed asphalt pavement. IOP Conf. Ser. Mater. Sci. Eng. 2018, 356, 012009. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Polaczyk, P.; Park, H.; Jiang, X.; Hu, W.; Huang, B. Performance evaluation of temperature effect on hot in-place recycling asphalt mixtures. J. Clean. Prod. 2020, 277, 124093. [Google Scholar] [CrossRef]
- Raschia, S.; Moghaddam, T.B.; Perraton, D.; Baaj, H.; Carter, A.; Graziani, A. Effect of RAP Source on Compactability and Behavior of Cold-Recycled Mixtures in the Small Strain Domain. J. Mater. Civ. Eng. 2021, 33, 04021030. [Google Scholar] [CrossRef]
- Skotnicki, Ł.; Kuźniewski, J.; Szydło, A. Research on the Properties of Mineral–Cement Emulsion Mixtures Using Recycled Road Pavement Materials. Materials 2021, 14, 563. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Hu, W.; Polaczyk, P.; Han, B.; Xiao, R.; Zhang, M.; Huang, B. Rheological and aging characteristics of the recycled asphalt binders with different rejuvenator incorporation methods. J. Clean. Prod. 2020, 262, 121249. [Google Scholar] [CrossRef]
- Jurczak, R.; Mieczkowski, P.; Budziński, B. Potential of Using Imidazoline in Recycled Asphalt Pavement. Balt. J. Road Bridg. Eng. 2019, 14, 521–542. [Google Scholar] [CrossRef]
- Czapik, P.; Zapała-Sławeta, J.; Owsiak, Z.; Stępień, P. Hydration of cement by-pass dust. Constr. Build. Mater. 2019, 231, 117139. [Google Scholar] [CrossRef]
- Owsiak, Z.; Czapik, P.; Zapała-Sławeta, J. Properties of a Three-Component Mineral Road Binder for Deep-Cold Recycling Technology. Materials 2020, 13, 3585. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Iwański, M.M.; Mrugała, J. Basic Performance of Fibre Reinforced Asphalt Concrete with Reclaimed Asphalt Pavement Produced In Low Temperatures with Foamed Bitumen. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032092. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A. Laboratory testing of low temperature asphalt concrete produced in foamed bitumen technology with fiber reinforcement. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Radziszewski, P.; Sarnowski, M.; Plewa, A.; Pokorski, P. Properties of Asphalt Concrete with Basalt-Polymer Fibers. Arch. Civ. Eng. 2018, 64, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Abtahi, S.M.; Sheikhzadeh, M.; Hejazi, S.M. Fiber-reinforced asphalt-concrete—A review. Constr. Build. Mater. 2010, 24, 871–877. [Google Scholar] [CrossRef]
- D’Angelo, J.A.; Harm, E.E.; Bartoszek, J.C.; Baumgardner, G.L. Warm-Mix Asphalt: European Practice; Federal Highway Administration: Washington, DC, USA, 2008.
- Iwanski, M.; Chomicz-Kowalska, A. Moisture and Frost Resistance of the Recycled Base Rehabilitated with the Foamed Bitumen Technology/Odpornosc Na Oddziaływanie Wody I Mrozu Podbudowy W Technologii Recyklingu Z Asfaltem Spienionym. Arch. Civ. Eng. 2012, 58, 185–198. [Google Scholar] [CrossRef]
- Behnood, A. A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties. J. Clean. Prod. 2020, 259, 120817. [Google Scholar] [CrossRef]
- Polaczyk, P.; Ma, Y.; Xiao, R.; Hu, W.; Jiang, X.; Huang, B. Characterization of aggregate interlocking in hot mix asphalt by mechanistic performance tests. Road Mater. Pavement Des. 2021, 22, S498–S513. [Google Scholar] [CrossRef]
- Rizvi, M.A.; Khan, A.H.; Rehman, Z.U.; Inam, A.; Masoud, Z. Evaluation of Linear Deformation and Unloading Stiffness Characteristics of Asphalt Mixtures Incorporating Various Aggregate Gradations. Sustainability 2021, 13, 8865. [Google Scholar] [CrossRef]
- Renken, P.; Büchler, S.; Falchetto, A.C.; Wang, D.; Wistuba, M.P. Warm Mix Asphalt—A German Case Study. Asph. Paving Technol. 2018, 87, 685–716. [Google Scholar] [CrossRef]
- Prowell, B.D.; Hurley, G.C. Warm-Mix Asphalt: Best Practices, 3rd ed.; National Asphalt Paving Association: Lanham, MD, USA, 2012. [Google Scholar]
- Ali, A.; Abbas, A.; Nazzal, M.; Alhasan, A.; Roy, A.; Powers, D. Effect of temperature reduction, foaming water content, and aggregate moisture content on performance of foamed warm mix asphalt. Constr. Build. Mater. 2013, 48, 1058–1066. [Google Scholar] [CrossRef]
- Remišová, E.; Holý, M. Changes of Properties of Bitumen Binders by Additives Application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032003. [Google Scholar] [CrossRef] [Green Version]
- Iwański, M.M.; Chomicz-Kowalska, A.; Maciejewski, K. Resistance to Moisture-Induced Damage of Half-Warm-Mix Asphalt Concrete with Foamed Bitumen. Materials 2020, 13, 654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwański, M.; Chomicz-Kowalska, A.; Mazurek, G.; Buczyński, P.; Cholewińska, M.; Iwański, M.; Maciejewski, K.; Ramiączek, P. Effects of the Water-Based Foaming Process on the Basic and Rheological Properties of Bitumen 70/100. Materials 2021, 14, 2803. [Google Scholar] [CrossRef] [PubMed]
- Woszuk, A.; Zofka, A.; Bandura, L.; Franus, W. Effect of zeolite properties on asphalt foaming. Constr. Build. Mater. 2017, 139, 247–255. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M.M.; Janus, K. Effects of zeolites and hydrated lime on volumetrics and moisture resistance of foamed warm mix asphalt concrete. Bull. Polish Acad. Sci. Tech. Sci. 2021, e136731. [Google Scholar] [CrossRef]
- Ghabchi, R.; Singh, D.; Zaman, M. Laboratory evaluation of stiffness, low-temperature cracking, rutting, moisture damage, and fatigue performance of WMA mixes. Road Mater. Pavement Des. 2014, 16, 334–357. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Maciejewski, K. Performance and viscoelastic assessment of high-recycle rate cold foamed bitumen mixtures produced with different penetration binders for rehabilitation of deteriorated pavements. J. Clean. Prod. 2020, 258, 120517. [Google Scholar] [CrossRef]
- Pucułek, M.; Liphardt, A.; Radziszewski, P. Evaluation of the possibility of reduction of highly modified binders technological temperatures. Arch. Civ. Eng. 2020, 67, 557–570. [Google Scholar] [CrossRef]
- Rubio, M.C.; Martínez, G.; Baena, L.; Moreno, F. Warm mix asphalt: An overview. J. Clean. Prod. 2012, 24, 76–84. [Google Scholar] [CrossRef]
- Iwański, M.M. Synergistic Effect of F–T Synthetic Wax and Surface-Active Agent Content on the Properties and Foaming Characteristics of Bitumen 50/70. Materials 2021, 14, 300. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M.M. Study of the Simultaneous Utilization of Mechanical Water Foaming and Zeolites and Their Effects on the Properties of Warm Mix Asphalt Concrete. Materials 2020, 13, 357. [Google Scholar] [CrossRef] [Green Version]
- Bairgi, B.K.; Tarefder, R.A. Effect of Foaming Water Contents on High-Temperature Rheological Characteristics of Foamed Asphalt Binder. In Proceedings of the International Conference on Transportation and Development 2018, Pittsburgh, PA, USA, 15–18 July 2021; pp. 243–251. [Google Scholar]
- Bairgi, B.K.; Mannan, U.A.; Tarefder, R.A. Influence of foaming on tribological and rheological characteristics of foamed asphalt. Constr. Build. Mater. 2019, 205, 186–195. [Google Scholar] [CrossRef]
- Bairgi, B.K.; Mannan, U.A.; Tarefder, R.A. Tribological Evaluation for an In-Depth Understanding of Improved Workability of Foamed Asphalt. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 533–545. [Google Scholar] [CrossRef]
- Maciejewski, K. High Temperature Properties of Paving Grade Bitumens for Foamed Warm-Mix Asphalt in Terms of the Used Additives and Laboratory Short-Term Aging. Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 2019. [Google Scholar]
- Maciejewski, K.; Chomicz-Kowalska, A. Foaming Performance and FTIR Spectrometric Analysis of Foamed Bituminous Binders Intended for Surface Courses. Materials 2021, 14, 2055. [Google Scholar] [CrossRef] [PubMed]
- Sunarjono, S. The Influence of Foamed Bitumen Characteristics on Cold-Mix Asphalt Properties. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2008. [Google Scholar]
- Huang, B.; Zhang, Y.; Shu, X.; Liu, Y.; Penumadu, D.; Ye, X.P. Neutron Scattering for Moisture Detection in Foamed Asphalt. J. Mater. Civ. Eng. 2013, 25, 932–938. [Google Scholar] [CrossRef]
- Martinez-Arguelles, G.; Giustozzi, F.; Crispino, M.; Flintsch, G.W. Investigating physical and rheological properties of foamed bitumen. Constr. Build. Mater. 2014, 72, 423–433. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Luo, Y. Impacts of water content on rheological properties and performance-related behaviors of foamed warm-mix asphalt. Constr. Build. Mater. 2013, 48, 203–209. [Google Scholar] [CrossRef]
- Iwański, M.; Mazurek, G.; Buczyński, P.; Zapała-Sławeta, J. Multidimensional analysis of foaming process impact on 50/70 bitumen ageing. Constr. Build. Mater. 2020, 266, 121231. [Google Scholar] [CrossRef]
- Rahman, M.A.; Ghabchi, R.; Zaman, M.; Ali, S.A. Rutting and moisture-induced damage potential of foamed warm mix asphalt (WMA) containing RAP. Innov. Infrastruct. Solut. 2021, 6, 1–11. [Google Scholar] [CrossRef]
- Shu, X.; Huang, B.; Shrum, E.D.; Jia, X. Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP. Constr. Build. Mater. 2012, 35, 125–130. [Google Scholar] [CrossRef]
- Bairgi, B.K.; Hasan, A.; Tarefder, R.A. Effects of Asphalt Foaming on Damage Characteristics of Foamed Warm Mix Asphalt. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 318–331. [Google Scholar] [CrossRef]
- Cucalon, L.G.; Martin, A.; Arambula, E.; Yin, F.; Estakhri, C.; Park, E.; Epps, J. Moisture susceptibility of Warm-Mix Asphalt. Asph. Pavements 2014, 691–700. [Google Scholar] [CrossRef]
- Xu, S.; Xiao, F.; Amirkhanian, S.; Singh, D. Moisture characteristics of mixtures with warm mix asphalt technologies—A review. Constr. Build. Mater. 2017, 142, 148–161. [Google Scholar] [CrossRef]
- Cucalon, L.G.; Kassem, E.; Little, D.N.; Masad, E. Fundamental evaluation of moisture damage in warm-mix asphalts. Road Mater. Pavement Des. 2016, 18, 258–283. [Google Scholar] [CrossRef]
- Paliukaitė, M.; Vorobjovas, V.; Bulevičius, M.; Andrejevas, V. Evaluation of Different Test Methods for Bitumen Adhesion Properties. Transp. Res. Procedia 2016, 14, 724–731. [Google Scholar] [CrossRef] [Green Version]
- Renken, P.; Wistuba, M.P.; Groeninger, J.; Schindler, K. Adhaesion von Bitumen am Gestein: Verfahren der quantitativen Bestimmung auf Grundlage der Europaeischen Normung. Forsch. Straßenbau Straßenverkehrstechnik 2011, 1043. [Google Scholar]
- Mei, A.; Fusco, R.; Moroni, M.; Fiore, N.; Fontinovo, G.; D’Andrea, A. Affinity between Bitumen and Aggregate in Hot Mix Asphalt by Hyperspectral Imaging and Digital Picture Analysis. Coatings 2021, 11, 648. [Google Scholar] [CrossRef]
- Komačka, J.; Budjačová, E.; Remišová, E. Colour-histogram-based assessment procedure of the rolling bottle test considering the drawbacks in the digital image analysis of bitumen–aggregate systems. Mater. Struct. 2019, 52, 59. [Google Scholar] [CrossRef]
- Grönniger, J.; Wistuba, M.P.; Renken, P. Adhesion in Bitumen-Aggregate-Systems. Road Mater. Pavement Des. 2010, 11, 881–898. [Google Scholar] [CrossRef]
- Júnior, J.L.L.; Babadopulos, L.F.; Soares, J.B. Moisture-induced damage resistance, stiffness and fatigue life of asphalt mixtures with different aggregate-binder adhesion properties. Constr. Build. Mater. 2019, 216, 166–175. [Google Scholar] [CrossRef]
- Lantieri, C.; Lamperti, R.; Simone, A.; Vignali, V.; Sangiorgi, C.; Dondi, G.; Magnani, M. Use of image analysis for the evaluation of rolling bottle tests results. Int. J. Pavement Res. Technol. 2017, 10, 45–53. [Google Scholar] [CrossRef]
- Källén, H.; Heyden, A.; Åström, K.; Lindh, P. Measuring and evaluating bitumen coverage of stones using two different digital image analysis methods. Measurement 2016, 84, 56–67. [Google Scholar] [CrossRef]
- Cui, P.; Wu, S.; Xiao, Y.; Wang, F.; Wang, F. Quantitative evaluation of active based adhesion in Aggregate-Asphalt by digital image analysis. J. Adhes. Sci. Technol. 2019, 33, 1544–1557. [Google Scholar] [CrossRef]
- Petersen, J.C.; Plancher, H. Model studies and interpretive review of the competitive adsorption and water displacement of petroleum asphalt chemical functionalities on mineral aggregate surfaces. Pet. Sci. Technol. 1998, 16, 89–131. [Google Scholar] [CrossRef]
- Plancher, H.; Dorrence, S.M.; Petersen, J.C. Identification of chemical types in asphalts strongly adsorbed at the asphalt-aggregate interface and their relative displacement by water. [Moisture damage to roads]. In Proceedings of the Annual Meeting of the Association of Asphalt Paving Technologists, San Antonio, TX, USA, 21 February 1977. [Google Scholar]
- Hicks, R.G. Moisture Damage in Asphalt Concrete; Transportation Research Board: Washington, DC, USA, 1991; p. 175. [Google Scholar]
- European Committee for Standardization. EN 12697-35: Bituminous Mixtures. Test Methods-Laboratory Mixing; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2016. [Google Scholar]
- European Committee for Standardization. EN 12591: Bitumen and Bituminous Binders-Specifications for Paving Grade Bitumens; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2009. [Google Scholar]
- European Committee for Standardization. EN 14023: Bitumen and Bituminous Binders-Specification Framework for Polymer Modified Bitumens; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2010. [Google Scholar]
- European Committee for Standardization. EN 1426: Bitumen and Bituminous Binders-Determination of Needle Penetration; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2015. [Google Scholar]
- European Committee for Standardization. EN 1427: Bitumen and Bituminous Binders-Determination of the Softening Point-Ring and Ball Method; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2015. [Google Scholar]
- European Committee for Standardization. EN 12593: Bitumen and Bituminous Binders-Determination of the Fraass Breaking Point; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2015. [Google Scholar]
- European Committee for Standardization. EN 13043: Aggregates for Bituminous Mixtures and Surface Treatments for Roads, Airfields and Other Trafficked Areas; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2013. [Google Scholar]
- European Committee for Standardization. EN 12697-11: Bituminous Mixtures. Test Methods-Determination of the Affinity between Aggregate and Bitumen; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2020. [Google Scholar]
- Python. Available online: https://www.python.org/ (accessed on 31 October 2020).
- Open CV. Available online: https://pypi.org/project/opencv-python/ (accessed on 10 July 2021).
- Noor, A.I.; Mokhtar, M.H.; Rafiqul, Z.K.; Pramod, K.M. Understanding Color Models: A Review. ARPN J. Sci. Technol. 2012, 2, 265–275. [Google Scholar]
- Phuangsaijai, N.; Jakmunee, J.; Kittiwachana, S. Investigation into the predictive performance of colorimetric sensor strips using RGB, CMYK, HSV, and CIELAB coupled with various data preprocessing methods: A case study on an analysis of water quality parameters. J. Anal. Sci. Technol. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Technical Activities Division. Transportation Research Board A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships. Transp. Res. Circ. 2009. [Google Scholar] [CrossRef]
- Schrader, B. (Ed.) Infrared and Raman Spectroscopy: Methods and Applications; John Wiley & Sons: Hoboken, NJ, USA, 1995; Volume 380, ISBN 3-527-26446-9. [Google Scholar]
- Curtis, C.W.; Hanson, D.I.; Chen, S.T.; Shieh, G.J.; Ling, M. Quantitative determination of polymers in asphalt cements and hot-mix asphalt mixes. Transp. Res. Rec. 1995, 1488, 52–61. [Google Scholar]
- Lamontagne, J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens. Fuel 2001, 80, 483–488. [Google Scholar] [CrossRef]
- Masson, J.F.; Pelletier, L.; Collins, P. Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen. J. Appl. Polym. Sci. 2001, 79, 1034–1041. [Google Scholar] [CrossRef]
- Nasrazadani, S.; Mielke, D.; Springfield, T.; Ramasamy, N. Practical Applications of FTIR to Characterize Paving Materials; Technical Report 0-5608-1; University of North Texas: Denton, TX, 2010. [Google Scholar]
- Fernández-Berridi, M.J.; González, N.; Mugica, A.; Bernicot, C. Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR. Thermochim. Acta 2006, 444, 65–70. [Google Scholar] [CrossRef]
- Yut, I.; Zofka, A. Correlation between rheology and chemical composition of aged polymer-modified asphalts. Constr. Build. Mater. 2014, 62, 109–117. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.; Kiemle, D.J. Spectrometric Identification of Organic Compounds; John Wiley & Sons: New York, NY, USA, 2005; ISBN 978-0-470-61637-6. [Google Scholar]
- Zofka, A.; Maliszewska, D.; Maliszewski, M. Application of FTIR ATR method to examine the polymer content in the modified bitumen and to assess susceptibility of bitumen to ageing. Roads Bridges-Drogi i Mosty 2015, 14, 163–174. [Google Scholar] [CrossRef]
- Huang, S.-C. The influence of aggregate on moisture susceptibility in terms of asphalt-aggregate interactions. In Proceedings of the Sixth International RILEM Symposium on Performance Testing and Evaluation of Bituminous Materials, Zurich, Switzerland, 14–16 April 2003; RILEM Publications SARL: Bagneaux, France, 2003; pp. 177–183. [Google Scholar]
No. | Asphalt Binder Type | Asphalt Binder Source | Form of the Asphalt Binder | Mixing Temperature | Aggregate Type |
---|---|---|---|---|---|
1 | PGB | A | non-foamed | hot | limestone |
2 | PGB | A | non-foamed | hot | quartzite |
3 | PGB | A | non-foamed | warm | limestone |
4 | PGB | A | non-foamed | warm | quartzite |
5 | PGB | A | foamed | hot | limestone |
6 | PGB | A | foamed | hot | quartzite |
7 | PGB | A | foamed | warm | limestone |
8 | PGB | A | foamed | warm | quartzite |
9 | PGB | B | non-foamed | hot | limestone |
10 | PGB | B | non-foamed | hot | quartzite |
11 | PGB | B | non-foamed | warm | limestone |
12 | PGB | B | non-foamed | warm | quartzite |
13 | PGB | B | foamed | hot | limestone |
14 | PGB | B | foamed | hot | quartzite |
15 | PGB | B | foamed | warm | limestone |
16 | PGB | B | foamed | warm | quartzite |
17 | PMB | A | non-foamed | hot | limestone |
18 | PMB | A | non-foamed | hot | quartzite |
19 | PMB | A | non-foamed | warm | limestone |
20 | PMB | A | non-foamed | warm | quartzite |
21 | PMB | A | foamed | hot | limestone |
22 | PMB | A | foamed | hot | quartzite |
23 | PMB | A | foamed | warm | limestone |
24 | PMB | A | foamed | warm | quartzite |
25 | PMB | B | non-foamed | hot | limestone |
26 | PMB | B | non-foamed | hot | quartzite |
27 | PMB | B | non-foamed | warm | limestone |
28 | PMB | B | non-foamed | warm | quartzite |
29 | PMB | B | foamed | hot | limestone |
30 | PMB | B | foamed | hot | quartzite |
31 | PMB | B | foamed | warm | limestone |
32 | PMB | B | foamed | warm | quartzite |
Binder Type | PGB-A (50/70) | PGB-B (50/70) | PMB-A (45/80–55) | PMB-B (45/80–55) |
---|---|---|---|---|
Penetration, EN 1426 [64] (0.1 mm) | 56.6 | 55.8 | 56.5 | 56.7 |
Softening Point, EN 1427 [65] (°C) | 49.4 | 49.5 | 63.3 | 66.2 |
Frass Breaking Point, EN 12593 [66] (°C) | −13 | −15 | −19 | −19 |
Aggregate Type | Limestone | Quartzite |
---|---|---|
Apparent Particle Density, ρa (Mg/m3) | 2.71 | 2.65 |
Oven-Dried Particle Density, ρrd (Mg/m3) | 2.65 | 2.58 |
Saturated and Surface-Dried Particle Density, ρssd (Mg/m3) | 2.69 | 2.60 |
Water Absorbtion, WA (%) | 0.57 | 0.4 |
Resistance to Fragmentation, LA | 23 | 21 |
Resistance to Polishing for Application in Surface Courses, PSV | 38 | 58 |
Resistance to Wear, MDE | 13 | 7 |
Fines Content, f (%) | 1.1 | 1.8 |
Structural Index | Bond | Characteristic Peak Wave Number (cm−1) | Chemical Index Expression: |
---|---|---|---|
Sulfoxide | S=O, stretching | 1030 | |
Carbonyl | C=O, stretching | 1700 | |
Polybutadiene | C-H, oop bending of trans-alkene | 966 | |
Polystyrene | C-H, oop bending in monoakrylated aromatic | 699 | |
Vinyl | =C-H oop bending in vinyl groups | 990, 910 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chomicz-Kowalska, A. A Study of Adhesion in Foamed WMA Binder-Aggregate Systems Using Boiling Water Stripping Tests. Materials 2021, 14, 6248. https://doi.org/10.3390/ma14216248
Chomicz-Kowalska A. A Study of Adhesion in Foamed WMA Binder-Aggregate Systems Using Boiling Water Stripping Tests. Materials. 2021; 14(21):6248. https://doi.org/10.3390/ma14216248
Chicago/Turabian StyleChomicz-Kowalska, Anna. 2021. "A Study of Adhesion in Foamed WMA Binder-Aggregate Systems Using Boiling Water Stripping Tests" Materials 14, no. 21: 6248. https://doi.org/10.3390/ma14216248
APA StyleChomicz-Kowalska, A. (2021). A Study of Adhesion in Foamed WMA Binder-Aggregate Systems Using Boiling Water Stripping Tests. Materials, 14(21), 6248. https://doi.org/10.3390/ma14216248