Suitability of Blending Rice Husk Ash and Calcined Clay for the Production of Self-Compacting Concrete: A Review
Abstract
:1. Introduction
2. Research Gap
3. Properties of Rice Husk Ash (RHA) and Calcined Clays
4. Mix Design of Self-Compacting Concrete (SCC) with Rice Husk Ash and/or Calcined Clays
5. Fresh Properties of SCC
5.1. Rheological Properties of SCC
5.2. Rheological Properties of SCC with RHA or Metakaolin (MK)
6. Hardened Properties of SCC
6.1. Compressive Strength
6.2. Ultrasonic Pulse Velocity
6.3. Modulus of Elasticity
6.4. Shrinkage and Creep
7. Durability Properties
7.1. Water Absorption and Sorptivity
7.2. Porosity
7.3. Chloride Penetration Resistance
7.4. Resistance to Magnesium Sulfate
7.5. Carbonation
7.6. Freeze-Thaw
8. Discussion
9. Conclusions
- Metakaolin was found to be the most commonly used calcined clay for the production of SCC thus far. The suitability of other clayey materials such as calcined clay waste, calcined red mud, and calcined common clays with low kaolinite content for the production of SCC was not yet explored.
- Rice husk ash and metakaolin are pozzolanic materials and have the potentials to be used as supplementary cementitious materials in self-compacting concrete production. The potentials of rice husk ash as a viscosity-modifying agent in concrete production is also established.
- Both rice husk ash and metakaolin have high water demand compared to cement. Therefore, their use as a supplementary cementitious material in SCC entails the application of a high dosage of superplasticizers.
- Rice husk ash was found to be very effective in increasing self-compacting concrete strength due to its high content of reactive amorphous silica and higher specific surface area. Metakaolin, on the other hand, was also found to improve early strength development due to its fast pozzolanic reaction.
- The optimal replacement level for both the binary blend with RHA and MK is usually between 15 and 20 wt.%. However, with a ternary blend with RHA and MK, larger cement replacements of between 20 to 40 wt.% are possible.
- Studies on the effect of ternary blends of rice husk ash and metakaolin on shrinkage and creep behavior of SCC were not found by the authors.
- Although researchers have presented results of the durability of SCC produced with a blend of rice husk ash and metakaolin, there is a need to further study the effect of these materials on porosity, carbonation and freeze-thaw resistance of SCC.
- The review disclosed a lack of knowledge when it comes to the use of low-kaolinitic calcined clays as sole SCM or together with rice husk ash which could be a very promising combination for e.g., several countries in Africa.
- Greenhouse gas emissions and environmental problems could be reduced by partially replacing cement with RHA and metakaolin.
10. Proposal for Further Investigation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, M.H.; Dawda, N. Advancement in Self Compacting Concrete: A Review of Last Few Decades. Int. J. Adv. Eng. Res. Dev. 2017, 50–54, 50–54. [Google Scholar]
- Okamura, H. Self-Compacting High-Performance Concrete. Concr. Int. 1997, 19, 50–54. [Google Scholar]
- Okamura, H.; Ozawa, K. Mix-design for self-compacting concrete. Concr. Libr. JSCE 1995, 19, 107–120. [Google Scholar]
- Shi, C.; Wu, Z.; Lv, K.; Wu, L. A review on mixture design methods for self-compacting concrete. Constr Build. Mater. 2015, 84, 387–398. [Google Scholar] [CrossRef]
- Su, N.; Hsu, K.C.; Chai, H.W. A simple mix design method for self-compacting concrete. Cem. Concr. Res. 2001, 31, 1799–1807. [Google Scholar] [CrossRef]
- Liu, M. Wider Application of Additions in Self-Compacting Concrete. Ph.D. Thesis, University College London, London, UK, 2009; p. 392. [Google Scholar]
- Ouchi, M.; Hibino, M.; Okamura, H. Effect of superplasticizer on self-compactability of fresh concrete. Transp Res. Rec 1997, 1574, 37–40. [Google Scholar] [CrossRef]
- Şahmaran, M.; Christianto, H.A.; Yaman, I.O. The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars. Cem. Concr. Compos. 2006, 28, 432–440. [Google Scholar] [CrossRef]
- Leemann, A.; Winnefeld, F. The effect of viscosity modifying agents on mortar and concrete. Cem. Concr. Compos. 2007, 29, 341–349. [Google Scholar] [CrossRef]
- Memon, S.A.; Shaikh, M.A.; Akbar, H. Utilization of Rice Husk Ash as viscosity modifying agent in Self Compacting Concrete. Constr Build. Mater. 2011, 25, 1044–1048. [Google Scholar] [CrossRef]
- Sari, M.; Prat, E.; Labastire, J.F. High strength self-compacting concrete original solutions associating organic and inorganic admixtures. Cem. Concr. Res. 1999, 29, 813–818. [Google Scholar] [CrossRef]
- Leung, H.Y.; Kim, J.; Nadeem, A.; Jaganathan, J.; Anwar, M.P. Sorptivity of self-compacting concrete containing fly ash and silica fume. Constr Build. Mater. 2016, 113, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Sonebi, M.; Bartos, P.J.M. Bond and interfacial properties of reinforcement in self-compacting concrete. Mater. Struct. /Mater. Et Constr. 2004, 37, 442–448. [Google Scholar] [CrossRef]
- Uysal, M.; Sumer, M. Performance of self-compacting concrete containing different mineral admixtures. Constr Build. Mater. 2011, 25, 4112–4120. [Google Scholar] [CrossRef]
- Ramanathan, P.; Baskar, I.; Muthupriya, P.; Venkatasubramani, R. Performance of self-compacting concrete containing different mineral admixtures. KSCE J. Civ. Eng. 2013, 17, 465–472. [Google Scholar] [CrossRef]
- Van Der Vurst, F.; Grünewald, S.; Feys, D.; Lesage, K.; Vandewalle, L.; Vantomme, J.; De Schutter, G. Effect of the mix design on the robustness of fresh self-compacting concrete. Cem. Concr. Compos. 2017, 82, 190–201. [Google Scholar] [CrossRef]
- Rigueira, J.W.; Garciá-Taengua, E.; Serna-Ros, P. Self-consolidating concrete robustness in continuous production regarding fresh and hardened state properties. ACI Mater. J. 2009, 106, 301–307. [Google Scholar] [CrossRef]
- Westerholm, M.; Lagerblad, B.; Silfwerbrand, J.; Forssberg, E. Influence of fine aggregate characteristics on the rheological properties of mortars. Cem. Concr. Compos. 2008, 30, 274–282. [Google Scholar] [CrossRef]
- Nunes, S.; Oliveira, P.M.; Coutinho, J.S.; Figueiras, J. Rheological characterization of SCC mortars and pastes with changes induced by cement delivery. Cem. Concr. Compos. 2011, 33, 103–115. [Google Scholar] [CrossRef]
- Feys, D.; De Schutter, G.; Khayat, K.H.; Verhoeven, R. Changes in rheology of self-consolidating concrete induced by pumping. Mater. Struct./Mater. Constr. 2016, 49, 4657–4677. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, W. SCC for Sub-Saharan Africa Based on Local Raw Materials–Material Development, Optimisation, and Application Concept. In Proceedings of the International Conference on Rheology and Processing of Construction Materials—International Symposium on Self-Compacting Concrete, Dresden, Germany, 8–11 September 2019; pp. 60–67. [Google Scholar] [CrossRef]
- Barkat, A.; Kenai, S.; Menadi, B.; Kadri, E.; Soualhi, H. Effects of local metakaolin addition on rheological and mechanical performance of self-compacting limestone cement concrete. J. Adhes. Sci. Technol. 2019, 33, 963–985. [Google Scholar] [CrossRef]
- Ozawa, K.; Maekawa, K.; Okamura, H. Development of High Performance Concrete. J. Fac. Eng. Univ. Tokyo B 1992, 41, 381–439. [Google Scholar]
- Brouwers, H.J.H.; Radix, H.J. Self-compacting concrete: Theoretical and experimental study. Cem. Concr. Res. 2005, 35, 2116–2136. [Google Scholar] [CrossRef]
- Rozière, E.; Granger, S.; Turcry, P.; Loukili, A. Influence of paste volume on shrinkage cracking and fracture properties of self-compacting concrete. Cem. Concr. Compos. 2007, 29, 626–636. [Google Scholar] [CrossRef] [Green Version]
- Bouzoubaâ, N.; Lachemi, M. Self-compacting concrete incorporating high volumes of class F fly ash: Preliminary results. Cem. Concr. Res. 2001, 31, 413–420. [Google Scholar] [CrossRef]
- Yazici, H. The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete. Constr Build. Mater. 2008, 22, 456–462. [Google Scholar] [CrossRef]
- Gesoğlu, M. Influence of steam curing on the properties of concretes incorporating metakaolin and silica fume. Mater. Struct 2009, 43, 1123–1134. [Google Scholar] [CrossRef]
- Saak, A.W.; Jennings, H.M.; Shah, S.P. New Methodology for Designing Self-Compacting Concrete. ACI Mater. J. 2001, 98, 429–439. [Google Scholar] [CrossRef]
- Kannan, V. Relationship between ultrasonic pulse velocity and compressive strength of self compacting concrete incorporate rice husk ash and metakaolin. Asian J. Civ. Eng. 2015, 16, 1077–1088. [Google Scholar]
- Chopra, D.; Siddique, R.; Kunal. Strength, permeability and microstructure of self-compacting concrete containing rice husk ash. Biosyst. Eng. 2015, 130, 72–80. [Google Scholar] [CrossRef]
- Siddique, R.; Khan, M.I. Supplementary Cementing Materials; Springer: Berlin/Heidelberg, Germany, 2011; p. 287. ISBN 978-3-642-17865-8. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Özbay, E. Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures. Constr Build. Mater. 2010, 24, 1878–1887. [Google Scholar] [CrossRef]
- Madandoust, R.; Mousavi, S.Y. Fresh and hardened properties of self-compacting concrete containing metakaolin. Constr Build. Mater. 2012, 35, 752–760. [Google Scholar] [CrossRef]
- Miller, S.A.; John, V.M.; Pacca, S.A.; Horvath, A. Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 2018, 114, 115–124. [Google Scholar] [CrossRef]
- Schmidt, W.; Commeh, M.; Olonade, K.; Schiewer, G.L.; Dodoo-Arhin, D.; Dauda, R.; Fataei, S.; Tawiah, A.T.; Mohamed, F.; Thiedeitz, M.; et al. Sustainable circular value chains: From rural waste to feasible urban construction materials solutions. Dev. Built Environ. 2021, 6, 100047. [Google Scholar] [CrossRef]
- Msinjili, N.S.; Schmidt, W.; Rogge, A.; Kühne, H.-C. Optimising available resources for production of good concrete prop. In Proceedings of the 2nd International Conference on Advances in Cement and Concrete Technology in Africa, Dar es Salaam, Tanzania, 27–29 January 2016; pp. 323–331. [Google Scholar]
- Ede, A.N.; Olofinnade, O.M.; Joshua, O.; Nduka, D.O.; Oshogbunu, O.A. Influence of bamboo fiber and limestone powder on the properties of self-compacting concrete. Cogent Eng. 2020, 7, 1721410. [Google Scholar] [CrossRef]
- Adeniyi, F.I.; Ogundiran, M.B.; Hemalatha, T.; Hanumantrai, B.B. Characterization of raw and thermally treated Nigerian kaolinite-containing clays using instrumental techniques. SN Appl. Sci. 2020, 2, 821. [Google Scholar] [CrossRef] [Green Version]
- Akindahunsi, A.A.; Avet, F.; Scrivener, K. The Influence of some calcined clays from Nigeria as clinker substitute in cementitious systems. Case Stud. Constr. Mater. 2020, 13, e00443. [Google Scholar] [CrossRef]
- Bediako, M.; Purohit, S.S.; Kevern, J.T. Investigation into Ghanaian Calcined Clay as Supplementary Cementitious Material. ACI Mater. J. 2017, 114, 889–896. [Google Scholar] [CrossRef]
- Aprianti, E.; Shafigh, P.; Bahri, S.; Farahani, J.N. Supplementary cementitious materials origin from agricultural wastes–A review. Constr Build. Mater. 2015, 74, 176–187. [Google Scholar] [CrossRef]
- Tulashie, S.K.; Ebo, P.; Ansah, J.K.; Mensah, D. Production of Portland pozzolana cement from rice husk ash. Materialia 2021, 16, 101048. [Google Scholar] [CrossRef]
- Nuruddin, M.F.; Chang, K.Y.; Azmee, N.M. Workability and compressive strength of ductile self compacting concrete (DSCC) with various cement replacement materials. Constr Build. Mater. 2014, 55, 153–157. [Google Scholar] [CrossRef]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Ling, G.; Shui, Z.; Sun, T.; Gao, X.; Wang, Y.; Sun, Y.; Wang, G.; Li, Z. Rheological behavior and microstructure characteristics of SCC incorporating metakaolin and silica fume. Materials 2018, 11, 2576. [Google Scholar] [CrossRef] [Green Version]
- Garg, N.; Skibsted, J. Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay. Cem. Concr. Res. 2016, 79, 101–111. [Google Scholar] [CrossRef]
- Taylor-Lange, S.C.; Lamon, E.L.; Riding, K.A.; Juenger, M.C.G. Calcined kaolinite–bentonite clay blends as supplementary cementitious materials. Appl Clay Sci 2015, 108, 84–93. [Google Scholar] [CrossRef]
- Taylor-Lange, S.C.; Rajabali, F.; Holsomback, N.A.; Riding, K.; Juenger, M.C.G. The effect of zinc oxide additions on the performance of calcined sodium montmorillonite and illite shale supplementary cementitious materials. Cem. Concr. Compos. 2014, 53, 127–135. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, R.; Tyrer, M.; Wong, H.; Cheeseman, C. Sustainable infrastructure development through use of calcined excavated waste clay as a supplementary cementitious material. J. Clean. Prod. 2017, 168, 1180–1192. [Google Scholar] [CrossRef]
- Toledo Filho, R.D.; Gonçalves, J.P.; Americano, B.B.; Fairbairn, E.M.R. Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cem. Concr. Res. 2007, 37, 1357–1365. [Google Scholar] [CrossRef]
- Mohammed, S. Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review. Constr Build. Mater. 2017, 140, 10–19. [Google Scholar] [CrossRef]
- Kavitha, O.R.; Shanthi, V.M. Effect of metakaolin on the properties of self compacting concrete. Intl. J. Earth Sci. Eng. 2015, 8, 1454–1459. [Google Scholar]
- Badogiannis, E.; Tsivilis, S. Exploitation of poor Greek kaolins: Durability of metakaolin concrete. Cem. Concr. Compos. 2009, 31, 128–133. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M. Properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and metakaolin. Mater. Struct. Mater. Constr. 2008, 41, 1519–1531. [Google Scholar] [CrossRef]
- Dadsetan, S.; Bai, J. Mechanical and microstructural properties of self-compacting concrete blended with metakaolin, ground granulated blast-furnace slag and fly ash. Constr Build. Mater. 2017, 146, 658–667. [Google Scholar] [CrossRef]
- Beuntner, N.; Kustermann, A.; Thienel, K.-C. Pozzolanic potential of calcined clay in high-performance concrete. In Proceedings of the International Conference on Sustainable Materials, Systems and Structures–SMSS 2019 New Generation of Construction Materials, Rovinj, Croatia, 20–22 March 2019; pp. 470–477. [Google Scholar]
- Neißer-Deiters, A.; Scherb, S.; Beuntner, N.; Thienel, K.-C. Influence of the calcination temperature on the properties of a mica mineral as a suitability study for the use as SCM. Appl. Clay Sci. 2019, 179, 105168. [Google Scholar] [CrossRef]
- Sposito, R.; Schmid, M.; Beuntner, N.; Scherb, S.; Plank, J.; Thienel, K.-C. Early hydration behavior of blended cementitious systems containing calcined clays and superplasticizer. In Proceedings of the 15th International Congress on the Chemistry of Cement, Prague, Czech Republic, 16–20 September 2019; p. 10. [Google Scholar]
- Maier, M.; Beuntner, N.; Thienel, K.-C. An approach for the evaluation of local raw material potential for calcined clay as SCM, based on geological and mineralogical data: Examples from German clay deposits. In Calcined Clays for Sustainable Concrete–Proceedings of the 3rd International Conference on Calcined Clays for Sustainable Concrete, New Dehli, India; Bishnoi, S., Ed.; Springer: Singapore, 2020; pp. 37–47. ISBN 978-981-15-2806-4. [Google Scholar] [CrossRef]
- Gill, A.S.; Siddique, R. Strength and micro-structural properties of self-compacting concrete containing metakaolin and rice husk ash. Constr. Build. Mater. 2017, 157, 51–64. [Google Scholar] [CrossRef]
- Le, H.T.; Kraus, M.; Siewert, K.; Ludwig, H.M. Effect of macro-mesoporous rice husk ash on rheological properties of mortar formulated from self-compacting high performance concrete. Constr. Build. Mater. 2015, 80, 225–235. [Google Scholar] [CrossRef]
- Xu, W.; Lo, T.Y.; Memon, S.A. Microstructure and reactivity of rich husk ash. Constr. Build. Mater. 2012, 29, 541–547. [Google Scholar] [CrossRef]
- Ganesan, K.; Rajagopal, K.; Thangavel, K. Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete. Constr. Build. Mater. 2008, 22, 1675–1683. [Google Scholar] [CrossRef]
- Tragwerke aus Beton, Stahlbeton und Spannbeton–Teil 2: Beton–Festlegung, Eigenschaften, Herstellung und Konformität–Anwendungsregeln zu DIN EN 206-1 (Concrete, Reinforced and Prestressed Concrete Structures–Part 2: Concrete–Specification, Properties, Production and Conformity–Application Rules for DIN EN 206-1); DIN 1045-2; Beuth-Verlag: Berlin, Germany, 2008; p. 62.
- Zhang, M.H.; Malhotra, V.M. High-Performance Concrete Incorporating Rice Husk Ash as a Supplementary Cementing Material. ACI Mater. J. 1996, 93, 629–636. [Google Scholar] [CrossRef]
- He, J.; Jie, Y.; Zhang, J.; Yu, Y.; Zhang, G. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem. Concr. Compos. 2013, 37, 108–118. [Google Scholar] [CrossRef]
- Van, V.T.A.; Rößler, C.; Bui, D.D.; Ludwig, H.M. Mesoporous structure and pozzolanic reactivity of rice husk ash in cementitious system. Constr. Build. Mater. 2013, 43, 208–216. [Google Scholar] [CrossRef]
- Mohseni, E.; Naseri, F.; Amjadi, R.; Khotbehsara, M.M.; Ranjbar, M.M. Microstructure and durability properties of cement mortars containing nano-TiO2 and rice husk ash. Constr Build. Mater. 2016, 114, 656–664. [Google Scholar] [CrossRef]
- Le, H.T.; Müller, M.; Siewert, K.; Ludwig, H.M. The mix design for self-compacting high performance concrete containing various mineral admixtures. Mater. Des. 2015, 72, 51–62. [Google Scholar] [CrossRef]
- Chao-Lung, H.; Anh-Tuan, B.L.; Chun-Tsun, C. Effect of rice husk ash on the strength and durability characteristics of concrete. Constr. Build. Mater. 2011, 25, 3768–3772. [Google Scholar] [CrossRef]
- Salmang, H.; Scholze, H. Keramik, 7th ed.; Telle, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; p. 1165. ISBN 978-3-540-63273-3. [Google Scholar]
- Okrusch, M.; Matthes, S. Mineralogie—Eine Einführung in die Spezielle Mineralogie, Petrologie und Lagestättenkunde, 8th ed.; Springer Spektrum: Berlin/Heidelberg, Germany, 2010; Volume 728, ISBN 978-3-642-34659-0. [Google Scholar] [CrossRef]
- Danner, T. Reactivity of Calcined Clays. Ph.D. Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 2013; p. 229. [Google Scholar]
- Beuntner, N. Zur Eignung und Wirkungsweise calcinierter Tone als reaktive Bindemittelkomponente in Zement (On the suitability And Mode of Action of Calcined Clays as Reactive Binder Components in Cement). Doctoral Thesis, Universität der Bundeswehr München, Neubiberg, Germany, 2017; p. 207. Available online: https://athene-forschung.unibw.de/121217 (accessed on 19 October 2021).
- Kannan, V. Strength and durability performance of self compacting concrete containing self-combusted rice husk ash and metakaolin. Constr. Build. Mater. 2018, 160, 169–179. [Google Scholar] [CrossRef]
- Zhang, M.H.; Lastra, R.; Malhotra, V.M. Rice-husk ash paste and concrete: Some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste. Cem. Concr. Res. 1996, 26, 963–977. [Google Scholar] [CrossRef]
- Dinakar, P.; Manu, S.N. Concrete mix design for high strength self-compacting concrete using metakaolin. Mater. Des. 2014, 60, 661–668. [Google Scholar] [CrossRef]
- Cassagnabère, F.; Diederich, P.; Mouret, M.; Escadeillas, G.; Lachemi, M. Impact of metakaolin characteristics on the rheological properties of mortar in the fresh state. Cem. Concr. Compos. 2013, 37, 95–107. [Google Scholar] [CrossRef]
- Aggarwal, P.; Siddique, R.; Aggarwal, Y.; Gupta, S.M. Self-compacting concrete—Procedure for mix design. Leonardo J. Pract. Technol. 2008, 7, 15–24. [Google Scholar]
- Nepomuceno, M.C.S.; Pereira-De-Oliveira, L.A.; Lopes, S.M.R. Methodology for the mix design of self-compacting concrete using different mineral additions in binary blends of powders. Constr. Build. Mater. 2014, 64, 82–94. [Google Scholar] [CrossRef]
- Khaleel, O.R.; Al-Mishhadani, S.A.; Abdul Razak, H. The Effect of Coarse Aggregate on Fresh and Hardened Properties of Self-Compacting Concrete (SCC). Procedia Eng. 2011, 14, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Sedran, T.; de Larrard, F.; Hourst, F.; Contamines, C. Mix Design of Self-Compacting Concrete (SCC). In Production Methods and Workability of Concrete, 1st ed.; Bartos, P.J.M., Cleland, D.J., Marrs, D.L., Eds.; CRC Press: London, UK, 1996; p. 12. ISBN 9780429077623. [Google Scholar] [CrossRef]
- Petersson, O.; Billberg, P.; Van, B.K. A Model for Self-Compacting Concrete. In Production Methods and Workability of Concrete, 1st ed.; Bartos, P.J.M., Cleland, D.J., Marrs, D.L., Eds.; CRC Press: London, UK, 1996; p. 10. ISBN 9780429077623. [Google Scholar] [CrossRef]
- Feys, D.; Verhoeven, R.; De Schutter, G. Fresh self compacting concrete, a shear thickening material. Cem. Concr. Res. 2008, 38, 920–929. [Google Scholar] [CrossRef]
- Wu, Q.; An, X. Development of a mix design method for SCC based on the rheological characteristics of paste. Constr Build. Mater. 2014, 53, 642–651. [Google Scholar] [CrossRef]
- Abo Dhaheer, M.S.; Al-Rubaye, M.M.; Alyhya, W.S.; Karihaloo, B.L.; Kulasegaram, S. Proportioning of self–compacting concrete mixes based on target plastic viscosity and compressive strength: Part I—mix design procedure. J. Sustain. Cem. Based Mater. 2016, 5, 199–216. [Google Scholar] [CrossRef]
- Li, P.; Ran, J.; Nie, D.; Zhang, W. Improvement of mix design method based on paste rheological threshold theory for self-compacting concrete using different mineral additions in ternary blends of powders. Constr. Build. Mater. 2021, 276. [Google Scholar] [CrossRef]
- Zuo, W.; Liu, J.; Tian, Q.; Xu, W.; She, W.; Feng, P.; Miao, C. Optimum design of low-binder Self-Compacting Concrete based on particle packing theories. Constr. Build. Mater. 2018, 163, 938–948. [Google Scholar] [CrossRef]
- Kheder, G.F.; Al Jadiri, R.S. New method for proportioning self-consolidating concrete based on compressive strength requirements. ACI Mater. J. 2010, 107, 490–497. [Google Scholar] [CrossRef]
- Dinakar, P. Design of self-compacting concrete with fly ash. Mag. Concr. Res. 2012, 64, 401–409. [Google Scholar] [CrossRef]
- Xie, T.; Mohamad Ali, M.S.; Elchalakani, M.; Visintin, P. Modelling fresh and hardened properties of self-compacting concrete containing supplementary cementitious materials using reactive moduli. Constr. Build. Mater. 2021, 272, 121954. [Google Scholar] [CrossRef]
- Kannan, V.; Ganesan, K. Synergic Effect of Pozzolanic Materials on the Structural Properties of Self-Compacting Concrete. Arab. J. Sci. Eng. 2014, 39, 2601–2609. [Google Scholar] [CrossRef]
- Safiuddin, M.; West, J.S.; Soudki, K.A. Flowing ability of the binder pastes formulated from self-compacting concretes incorporating rice husk ash. Kuwait J. Sci. Eng. 2011, 38, 19–36. [Google Scholar] [CrossRef]
- Sfikas, I.P.; Badogiannis, E.G.; Trezos, K.G. Rheology and mechanical characteristics of self-compacting concrete mixtures containing metakaolin. Constr Build. Mater. 2014, 64, 121–129. [Google Scholar] [CrossRef]
- Okamura, H.; Ouchi, M. Self-Compacting Concrete. J. Adv. Concr. Technol. 2003, 1, 5–15. [Google Scholar] [CrossRef]
- EFNARC. In The European Guidelines for Self Compacting Concrete; European Federation of Specialist Construction Chemicals and Concrete Systems: Farnham, UK, 2005.
- Beton—Festlegung, Eigenschaften, Herstellung und Konformität (Concrete—Specification, Performance, Production and Conformity); DIN-EN-206.; Beuth Verlag GmbH: Berlin, Germany, 2017; p. 98.
- Standard Test Method for Rapid Assessment of Static Segregation Resistance of Self-Consolidating Concrete Using Penetration Test; ASTM C1712—20; ASTM International: West Conshohocken, PA, USA, 2020.
- Wallevik, O.H.; Wallevik, J.E. Rheology as a tool in concrete science: The use of rheographs and workability boxes. Cem. Concr. Res. 2011, 41, 1279–1288. [Google Scholar] [CrossRef]
- Diamantonis, N.; Marinos, I.; Katsiotis, M.S.; Sakellariou, A.; Papathanasiou, A.; Kaloidas, V.; Katsioti, M. Investigations about the influence of fine additives on the viscosity of cement paste for self-compacting concrete. Constr Build. Mater. 2010, 24, 1518–1522. [Google Scholar] [CrossRef]
- Ben Aicha, M.; Burtschell, Y.; Alaoui, A.H.; El Harrouni, K.; Jalbaud, O. Correlation between bleeding and rheological characteristics of self-compacting concrete. J. Mater. Civ. Eng. 2017, 29. [Google Scholar] [CrossRef]
- Saleh Ahari, R.; Kemal Erdem, T.; Ramyar, K. Effect of various supplementary cementitious materials on rheological properties of self-consolidating concrete. Constr Build. Mater. 2015, 75, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Benaicha, M.; Hafidi Alaoui, A.; Jalbaud, O.; Burtschell, Y. Dosage effect of superplasticizer on self-compacting concrete: Correlation between rheology and strength. J. Mater. Res. Technol. 2019, 8, 2063–2069. [Google Scholar] [CrossRef]
- Roussel, N. The LCPC BOX: A cheap and simple technique for yield stress measurements of SCC. Mater. Struct. /Mater. Et Constr. 2007, 40, 889–896. [Google Scholar] [CrossRef]
- Rahman, M.E.; Muntohar, A.S.; Pakrashi, V.; Nagaratnam, B.H.; Sujan, D. Self compacting concrete from uncontrolled burning of rice husk and blended fine aggregate. Mater. Des. 2014, 55, 410–415. [Google Scholar] [CrossRef]
- Vivek, S.S.; Dhinakaran, G. Durability characteristics of binary blend high strength SCC. Constr Build. Mater. 2017, 146, 1–8. [Google Scholar] [CrossRef]
- Le, H.T.; Ludwig, H.M. Effect of rice husk ash and other mineral admixtures on properties of self-compacting high performance concrete. Mater. Des. 2016, 89, 156–166. [Google Scholar] [CrossRef]
- Özcan, F.; Kaymak, H. Utilization of Metakaolin and Calcite: Working Reversely in Workability Aspect—As Mineral Admixture in Self-Compacting Concrete. Adv. Civ. Eng. 2018, 2018, 12. [Google Scholar] [CrossRef]
- Kannan, V.; Ganesan, K. Chloride and chemical resistance of self compacting concrete containing rice husk ash and metakaolin. Constr. Build. Mater. 2014, 51, 225–234. [Google Scholar] [CrossRef]
- Sua-iam, G.; Sokrai, P.; Makul, N. Novel ternary blends of Type 1 Portland cement, residual rice husk ash, and limestone powder to improve the properties of self-compacting concrete. Constr. Build. Mater. 2016, 125, 1028–1034. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Guidebook on Non-Destructive Testing of Concrete Structures—Training Course Series No. 17; IAEA–TCS–17; International Atomic Energy Agency: Vienna, Austria, 2002; p. 242. [Google Scholar]
- Molaei Raisi, E.; Vaseghi Amiri, J.; Davoodi, M.R. Influence of rice husk ash on the fracture characteristics and brittleness of self-compacting concrete. Eng. Fract. Mech. 2018, 199, 595–608. [Google Scholar] [CrossRef]
- Barluenga, G.; Puentes, J.; Palomar, I. Early age monitoring of self-compacting concrete with mineral additions. Constr. Build. Mater. 2015, 77, 66–73. [Google Scholar] [CrossRef]
- Ahmad, S.; Adekunle, S.K. Utilization of Limestone Powder and Metakaolin as Mineral Fillers in High-Performance Self-Compacting Concrete. In Calcined Clays for Sustainable Concrete—Proceedings of the 3rd International Conference on Calcined Clays for Sustainable Concrete; Bishnoi, S., Ed.; Springer: Cham, Germany, 2020; Volume 25, pp. 701–712. ISBN 2211-0844. [Google Scholar] [CrossRef]
- Molaei Raisi, E.; Vaseghi Amiri, J.; Davoodi, M.R. Mechanical performance of self-compacting concrete incorporating rice husk ash. Constr. Build. Mater. 2018, 177, 148–157. [Google Scholar] [CrossRef]
- He, Z.H.; Li, L.Y.; Du, S.G. Creep analysis of concrete containing rice husk ash. Cem. Concr. Compos. 2017, 80, 190–199. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Mahdikhani, M.; Ahmadibeni, G. The effect of rice husk ash on mechanical properties and durability of sustainable concretes. Int. J. Civ. Eng. 2009, 7, 83–91. [Google Scholar]
- Megat Johari, M.A.; Brooks, J.J.; Kabir, S.; Rivard, P. Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr. Build. Mater. 2011, 25, 2639–2648. [Google Scholar] [CrossRef]
- Niknezhad, D.; Kamali-Bernard, S.; Mesbah, H.-A. Self-Compacting Concretes with Supplementary Cementitious Materials: Shrinkage and Cracking Tendency. J. Mater. Civ. Eng. 2017, 29. [Google Scholar] [CrossRef]
- Momtazi, A.S.; Ranjbar, M.M.; Balalaei, F.; Nemati, R. The effect of Iran’s metakaolin in enhancing the concrete compressive strength. In Proceedings of the International Conference on Sustainable Construction Materials and Technologies, Coventry, UK, 11–13 June 2007; pp. 116–122. [Google Scholar]
- Sadrmomtazi, A.; Barzegar, A. Assessment of the effect of nano-SiO2 on physical and mechanical properties of self-compacting concrete containing rice husk ash. In Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies, Università Politecnica delle Marche, Ancona, Italy, 28—30 June 2010. [Google Scholar]
- Habeeb, G.A.; Mahmud, H.B. Study on Properties of Rice Husk Ash and Its Use as Cement Replacement Material. Mater. Res. 2010, 13, 185–190. [Google Scholar] [CrossRef]
- Shaaban, M. Properties of concrete with binary binder system of calcined dolomite powder and rice husk ash. Heliyon 2021, 7, e06311. [Google Scholar] [CrossRef] [PubMed]
- de Sensale, G.R.; Ribeiro, A.B.; Gonçalves, A. Effects of RHA on autogenous shrinkage of Portland cement pastes. Cem. Concr. Compos. 2008, 30, 892–897. [Google Scholar] [CrossRef]
- Amin, M.; Abdelsalam, B.A. Efficiency of rice husk ash and fly ash as reactivity materials in sustainable concrete. Sustain. Envir. Res. 2019, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wild, S.; Khatib, J.M.; Roose, L.J. Chemical shrinkage and autogenous shrinkage of Portland cement—metakaolin pastes. Adv. Cem Res. 1998, 10, 109–119. [Google Scholar] [CrossRef]
- Brooks, J.J.; Megat Johari, M.A. Effect of metakaolin on creep and shrinkage of concrete. Cem. Concr. Compos. 2001, 23, 495–502. [Google Scholar] [CrossRef]
- Gleize, P.J.P.; Cyr, M.; Escadeillas, G. Effects of metakaolin on autogenous shrinkage of cement pastes. Cem. Concr. Compos. 2007, 29, 80–87. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Mermerdaş, K. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Mater. Struct. 2008, 41, 937–949. [Google Scholar] [CrossRef]
- Poon, C.S.; Lam, L.; Kou, S.C.; Wong, Y.L.; Wong, R. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cem. Concr. Res. 2001, 31, 1301–1306. [Google Scholar] [CrossRef]
- Nesvetaev, G.V.; Koryanova, Y.I.; Kolleganov, A.V. E-Modulus and Creep Coefficient of Self-Compacting Concretes and Concretes with some Mineral Additives. Solid State Phenom. 2018, 284, 963–969. [Google Scholar] [CrossRef]
- CEB-FIP. Model. Code 90; ICE Publishing, Thomas Telford Services Ltd.: London, UK, 1991; ISBN 978-0-7277-1696-5. [Google Scholar] [CrossRef]
- Gholhaki, M.; Kheyroddin, A.; Hajforoush, M.; Kazemi, M. An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials. Constr Build. Mater. 2018, 158, 173–180. [Google Scholar] [CrossRef]
- Gill, A.S.; Siddique, R. Durability properties of self-compacting concrete incorporating metakaolin and rice husk ash. Constr Build. Mater. 2018, 176, 323–332. [Google Scholar] [CrossRef]
- Fediuk, R.S.; Lesovik, V.S.; Svintsov, A.P.; Mochalov, A.V.; Kulichkov, S.V.; Stoyushko, N.Y.; Gladkova, N.A.; Timokhin, R.A. Self-compacting concrete using pretreatmented rice husk ash. Mag. Civ. Eng. 2018, 79, 66–76. [Google Scholar] [CrossRef]
- Badogiannis, E.G.; Sfikas, I.P.; Voukia, D.V.; Trezos, K.G.; Tsivilis, S.G. Durability of Metakaolin Self-Compacting Concrete. Constr Build. Mater. 2015, 82, 133–141. [Google Scholar] [CrossRef]
- Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration; ASTM C1202-19; ASTM International: West Conshohocken, PA, USA, 2019; p. 8.
- Prüfung von Festbeton—Teil 18: Bestimmung des Chloridmigrationskoeffizienten (Testing Hardened Concrete Part 18: Determination of the Chloride Migration Coefficient); DIN EN 12390-18; Beuth-Verlag: Berlin, Germany, 2021; p. 20.
- Rukzon, S.; Chindaprasirt, P. Strength, chloride penetration and corrosion resistance of ternary blends of portland cement self-compacting concrete containing bagasse ash and rice husk-bark ash. Chiang Mai J. Sci. 2018, 45, 1863–1874. [Google Scholar]
- Badogiannis, E.; Kakali, G.; Dimopoulou, G.; Chaniotakis, E.; Tsivilis, S. Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins. Cem. Concr. Compos. 2005, 27, 197–203. [Google Scholar] [CrossRef]
- Kannan, V.; Ganesan, K. Effect of tricalcium aluminate on durability properties of self-compacting concrete incorporating rice husk ash and metakaolin. J. Mater. Civ. Eng. 2016, 28. [Google Scholar] [CrossRef]
- Thomas, R.J.; Lezama, D.; Peethamparan, S. On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing. Cem. Concr. Res. 2017, 91, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Gastaldini, A.L.G.; Isaia, G.C.; Gomes, N.S.; Sperb, J.E.K. Chloride penetration and carbonation in concrete with rice husk ash and chemical activators. Cem. Concr. Compos. 2007, 29, 176–180. [Google Scholar] [CrossRef]
- Praveenkumar, T.R.; Vijayalakshmi, M.M. Microstructural properties of nano-rice husk ash concrete. Nanotechnol. Environ. Eng. 2019, 4. [Google Scholar] [CrossRef]
- Cascudo, O.; Pires, P.; Carasek, H.; de Castro, A.; Lopes, A. Evaluation of the pore solution of concretes with mineral additions subjected to 14 years of natural carbonation. Cem. Concr. Compos. 2021, 115, 103858. [Google Scholar] [CrossRef]
- Sugita, S.; Yu, Q.; Shoya, M.; Tsukinaga, Y.; lsojima, Y. The Resistance of Rice Husk Ash Concrete to Carbonation, Acid Attack and Chloride Ion Penetration. In Proceedings of the ACI SP 172-3rd ACI International Conference: High-Performance Design and Materials and Recent Advances in Concrete Technology”, Kuala Lumpur, Malaysia, 12 January 1999; pp. 29–44. [Google Scholar] [CrossRef]
- Chatveera, B.; Lertwattanaruk, P. Durability of conventional concretes containing black rice husk ash. J. Env. Manag. 2011, 92, 59–66. [Google Scholar] [CrossRef]
- Antiohos, S.K.; Tapali, J.G.; Zervaki, M.; Sousa-Coutinho, J.; Tsimas, S.; Papadakis, V.G. Low embodied energy cement containing untreated RHA: A strength development and durability study. Constr. Build. Mater. 2013, 49, 455–463. [Google Scholar] [CrossRef]
- Lenka, S.; Panda, K.C. Effect of metakaolin on the properties of conventional and self compacting concrete. Adv. Concr. Constr. 2017, 5, 31–48. [Google Scholar] [CrossRef]
- Bai, J.; Wild, S.; Sabir, B.B. Sorptivity and strength of air-cured and water-cured PC–PFA–MK concrete and the influence of binder composition on carbonation depth. Cem. Concr. Res. 2002, 32, 1813–1821. [Google Scholar] [CrossRef]
- Vejmelková, E.; Pavlíková, M.; Keppert, M.; Keršner, Z.; Rovnaníková, P.; Ondráček, M.; Sedlmajer, M.; Černý, R. High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics. Constr. Build. Mater. 2010, 24, 1404–1411. [Google Scholar] [CrossRef]
- Mirgozar Langaroudi, M.A.; Mohammadi, Y. Effect of nano-clay on the freeze–thaw resistance of self-compacting concrete containing mineral admixtures. Eur. J. Environ. Civ. Eng. 2019, 1–20. [Google Scholar] [CrossRef]
- Park, C.; Salas, A.; Chung, C.W.; Lee, C.J. Freeze-thaw resistance of concrete using acid-leached rice husk ash. KSCE J. Civ. Eng. 2014, 18, 1133–1139. [Google Scholar] [CrossRef]
- Dhinakaran, G.; Sreekanth, B. Physical, mechanical, and durability properties of ternary blend concrete. Sci. Iran. 2018, 25, 2440–2450. [Google Scholar] [CrossRef] [Green Version]
- Duan, P.; Shui, Z.; Chen, W.; Shen, C. Enhancing microstructure and durability of concrete from ground granulated blast furnace slag and metakaolin as cement replacement materials. J. Mater. Res. Technol. 2013, 2, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Nas, M.; Kurbetci, S. Durability properties of concrete containing metakaolin. Adv. Concr. Constr. 2018, 6, 159–175. [Google Scholar] [CrossRef]
- Shi, X.; Yang, Z.; Liu, Y.; Cross, D. Strength and corrosion properties of Portland cement mortar and concrete with mineral admixtures. Constr Build. Mater. 2011, 25, 3245–3256. [Google Scholar] [CrossRef]
- Bumanis, G.; Bajare, D.; Locs, J.; Korjakins, A. Alkali-silica reactivity of foam glass granules in structure of lightweight concrete. Constr Build. Mater. 2013, 47, 274–281. [Google Scholar] [CrossRef]
Materials | Reference | SiO2 (%) | Al2O3 (%) | Fe2O3 (%) | CaO (%) | MgO (%) | Na2O (%) | K2O (%) | LOI (%) | Specific Surface Area (m2/g) | Mean Particles Size (µm) |
---|---|---|---|---|---|---|---|---|---|---|---|
Cement | [77] | 20.21 | 5.06 | 3.18 | 63.30 | 4.20 | 0.09 | 0.52 | 3.07 | 316 Bl | 23.40 |
[64] | 20.25 | 5.04 | 3.16 | 63.61 | 4.56 | 0.08 | 0.51 | 3.12 | 326 Bl | 22.50 | |
[62] | 19.4 | 5.3 | 2.5 | 61.2 | 1.2 | 0.07 | 0.61 | 4.9 | 2.07 B | 7.07 | |
RHA | [77] | 82.05 | 0.45 | 2.21 | 0.62 | 0.62 | 0.95 | 4.43 | 4.97 | 916 Bl | 6.57 |
[64] | 87.32 | 0.22 | 0.28 | 0.48 | 0.28 | 1.02 | 3.14 | 2.10 | 36.47 B | 3.80 | |
[77] | 87.20 | 0.15 | 0.16 | 0.55 | 0.35 | 1.12 | 3.68 | 8.55 | 38.90 B | 7.00 | |
Metakaolin | [77] | 49.50 | 44.23 | 0.92 | 0.17 | 0.08 | 0.10 | 0.02 | 0.32 | 2342 Bl | 3.71 |
[78] | 54.3 | 38.3 | 4.28 | 0.39 | 0.08 | 0.12 | 0.50 | 0.68 | 15.00 B | NR | |
[79] | 56.20 | 37.20 | 1.40 | 1.20 | 0.20 | NR | 1.20 | 2.10 | 18.70 B | 11.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, A.; Thienel, K.-C.; Sposito, R. Suitability of Blending Rice Husk Ash and Calcined Clay for the Production of Self-Compacting Concrete: A Review. Materials 2021, 14, 6252. https://doi.org/10.3390/ma14216252
Muhammad A, Thienel K-C, Sposito R. Suitability of Blending Rice Husk Ash and Calcined Clay for the Production of Self-Compacting Concrete: A Review. Materials. 2021; 14(21):6252. https://doi.org/10.3390/ma14216252
Chicago/Turabian StyleMuhammad, Abubakar, Karl-Christian Thienel, and Ricarda Sposito. 2021. "Suitability of Blending Rice Husk Ash and Calcined Clay for the Production of Self-Compacting Concrete: A Review" Materials 14, no. 21: 6252. https://doi.org/10.3390/ma14216252
APA StyleMuhammad, A., Thienel, K. -C., & Sposito, R. (2021). Suitability of Blending Rice Husk Ash and Calcined Clay for the Production of Self-Compacting Concrete: A Review. Materials, 14(21), 6252. https://doi.org/10.3390/ma14216252