Effects of the Addition of Co or Ni Atoms on Structure and Magnetism of FeB Amorphous Alloy: Ab Initio Molecular Dynamics Simulation
Abstract
:1. Introduction
2. Calculation Method
3. Results and Discussions
3.1. Effects of the Local Geometric Symmetry on the Magnetism of the FeCoB Amorphous Alloys
3.2. Influence of the Charge Distribution on the Magnetism of the FeCoB and FeNiB Amorphous Alloys
3.3. Effects of Neighboring Atoms on the Magnetism of the FeCoB and FeNiB Amorphous Alloys
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klement, W.; Willens, R.H.; Duwez, P. Non-crystalline structure in solidified gold–silicon alloys. Nature 1960, 187, 869–870. [Google Scholar] [CrossRef]
- Duwez, P.; Lin, S.C.H. Amorphous ferromagnetic phase in iron-carbon-phosphorus alloys. J. Appl. Phys. 1967, 38, 4096–4097. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.S.; Krause, J.T.; Coleman, E. Elastic constants, hardness and their implications to flow properties of metallic glasses. J. Non-Cryst. Solids 1975, 18, 157–171. [Google Scholar] [CrossRef]
- Koch, C.C.; Cavin, O.B.; McKamey, C.G.; Scarbrough, J.O. Preparation of ‘‘amorphous’’ Ni60Nb40 by mechanical alloying. Appl. Phys. Lett. 1983, 43, 1017–1019. [Google Scholar] [CrossRef]
- Schwarz, R.B.; Johnson, W.L. Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals. Phys. Rev. Lett. 1983, 51, 415–418. [Google Scholar] [CrossRef] [Green Version]
- Johnson, W.L. Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 1986, 30, 81–134. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, T.; Masumoto, T. Al-La-Ni amorphous alloys with a wide supercooled liquid region. Mater. Trans. JIM 1989, 30, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Johnson, W.L. Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 1999, 24, 42–56. [Google Scholar] [CrossRef]
- Tejedor, M.; Hernando, B.; Sánchez, M.L. Magnetization processes in metallic glasses for fluxgate sensors. J. Magn. Magn. Mater. 1995, 140–144, 349–350. [Google Scholar] [CrossRef]
- Zhukov, A.; Cobeño, A.F.; Gonzalez, J.; Blanco, J.M.; Aragoneses, P.; Dominguez, L. Magnetoelastic sensor of liquid level based on magnetoelastic properties of Co-rich microwires. Sens. Actuator A-Phys. 2000, 81, 129–133. [Google Scholar] [CrossRef]
- Sasada, I.; Shiokawa, M. Noise characteristics of Co-based amorphous tapes to be applied as magnetic shielding shell for magnetic shaking. IEEE Trans. Magn. 2003, 39, 3435–3437. [Google Scholar] [CrossRef]
- Corb, B.W.; O’Handley, R.C.; Grant, N.J. Chemical bonding, magnetic moments, and local symmetry in transition-metal—metalloid alloys. Phys. Rev. B 1983, 27, 636–641. [Google Scholar] [CrossRef]
- Williams, A.R.; Moruzzi, V.L.; Malozemoff, A.P.; Terakura, K. Generalized Slater-Pauling curve for transition-metal magnets. IEEE Trans. Magn. 1983, 19, 1983–1988. [Google Scholar] [CrossRef]
- Messmer, R.P. Local electronic structure of amorphous metal alloys using cluster models. Evidence for specific metalloid-metal interactions. Phys. Rev. B 1981, 23, 1616–1623. [Google Scholar] [CrossRef]
- Stein, F.; Dietz, G. Structural dependence of the magnetic moment in microcrystalline and amorphous Fe-P alloys. J. Magn. Magn. Mater. 1989, 81, 294–298. [Google Scholar] [CrossRef]
- Chikazumi, S. Physics of Ferromagnetism, 2nd ed.; Oxford University Press: Oxford, UK, 1997; p. 174. [Google Scholar]
- Bardos, D.I. Mean magnetic moments in bcc Fe–Co Alloys. J. Appl. Phys. 1969, 40, 1371–1372. [Google Scholar] [CrossRef]
- Collins, M.F.; Forsyth, J.B. The magnetic moment distribution in some transition metal alloys. Philos. Mag. 1963, 8, 401–410. [Google Scholar] [CrossRef]
- O’Handley, R.C.; Hasegawa, R.; Ray, R.; Chou, C.P. Ferromagnetic properties of some new metallic glasses. Appl. Phys. Lett. 1976, 29, 330–332. [Google Scholar] [CrossRef]
- Hooper, H.O.; de Graaf, A.M. Amorphous Magnetism; Plenum Press: New York, NY, USA, 1973; p. 325. [Google Scholar]
- Wang, Y.C.; Zhang, Y.; Takeuchi, A.; Makino, A.; Liang, Y.Y.; Kawazoe, Y. First-principle simulation on the crystallization tendency and enhanced magnetization of Fe76B19P5 amorphous alloy. Mater. Res. Express 2015, 2, 016506. [Google Scholar] [CrossRef]
- Das, S.; Choudhary, K.; Chernatynskiy, A.; Yim, H.C.; Bandyopadhyay, A.K.; Mukherjee, S. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses. J. Phys. Condens. Matter 2016, 28, 216003. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Dong, B.S.; Zhou, S.X.; Li, X.X.; Qin, J.Y. Structural, magnetic, and electronic properties of Fe82Si4B10P4 metallic glass. Sci. Rep. 2018, 8, 5680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dung, N.T.; Cuong, N.C.; Van, D.Q. Study on the effect of doping on lattice constant and electronic structure of bulk AuCu by the density functional theory. J. Multiscale Model. 2019, 11, 2030001. [Google Scholar]
- Van, C.L.; Van, D.Q.; Dung, N.T. Ab initio calculations on the structural and electronic properties of AgAu alloys. ACS Omega 2020, 5, 31391–31397. [Google Scholar]
- Dung, N.T.; Van, C.L. Factors affecting the depth of the earth’s surface on the heterogeneous dynamics of Cu1−xNix alloy, x = 0.1, 0.3, 0.5, 0.7, 0.9 by molecular dynamics simulation method. Mater. Today Commun. 2021, 29, 102812. [Google Scholar]
- Tong, X.; Zhang, Y.; Wang, Y.C.; Liang, X.Y.; Zhang, K.; Zhang, F.; Cai, Y.F.; Ke, H.B.; Wang, G.; Shen, J.; et al. Structural origin of magnetic softening in a Fe-based amorphous alloy upon annealing. J. Mater. Sci. Technol. 2022, 96, 233–240. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Wang, Y.; Perdew, J.P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 1991, 44, 13298–13307. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Medvedev, N.N. The algorithm for three-dimensional Voronoi polyhedral. J. Comput. Phys. 1986, 67, 223–229. [Google Scholar] [CrossRef]
- Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, B. Symmetry and cluster magnetism. Phys. Rev. A 1990, 41, 5691–5694. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Gu, B.L. Electronic-structure calculations of cobalt clusters. Phys. Rev. B 1993, 47, 13611–13614. [Google Scholar] [CrossRef] [PubMed]
- Hafner, J.; Tegze, M.; Becker, C. Amorphous magnetism in Fe-B alloys: First-principles spin-polarized electronic-structure calculations. Phys. Rev. B 1994, 49, 285–298. [Google Scholar] [CrossRef]
- Peng, H.L.; Li, M.Z.; Wang, W.H. Structural signature of plastic deformation in metallic glasses. Phys. Rev. Lett. 2011, 106, 135503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foo, E.N.; Wu, D.H. Coherent-potential approximation for disordered ferromagnetic binary alloys. Phys. Rev. B 1972, 5, 98–101. [Google Scholar] [CrossRef]
- O’Handley, R.C.; Boudreaux, D.S. Magnetic properties of transition metal-metalloid glasses. Phys. Stat. Sol. 1978, 45, 607–615. [Google Scholar] [CrossRef]
x | Average (diff) | Fe80−xCoxB20 | Fe80−xNixB20 | ||||
---|---|---|---|---|---|---|---|
Fe (3d64s2) | Co (3d74s2) | B (2s22p1) | Fe (3d64s2) | Ni (3d84s2) | B (2s22p1) | ||
0 | Average (diff) | 7.88 (−0.12) | / | 3.46 (0.46) | 7.88 (−0.12) | / | 3.46 (0.46) |
10 | Average (diff) | 7.863 (−0.137) | 9.04 (0.04) | 3.46 (0.46) | 7.854 (−0.146) | 10.13 (0.13) | 3.44 (0.44) |
20 | Average (diff) | 7.836 (−0.164) | 9.05 (0.05) | 3.44 (0.44) | 7.828 (−0.172) | 10.11 (0.11) | 3.41 (0.41) |
30 | Average (diff) | 7.818 (−0.182) | 9.04 (0.04) | 3.4 (0.4) | 7.789 (−0.211) | 10.11 (0.11) | 3.36 (0.36) |
40 | Average (diff) | 7.8 (−0.2) | 9.01 (0.01) | 3.38 (0.38) | 7.754 (−0.246) | 10.08 (0.08) | 3.32 (0.32) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Xu, L.; Cao, B.; Duan, H.; Zhang, J.; Li, Q. Effects of the Addition of Co or Ni Atoms on Structure and Magnetism of FeB Amorphous Alloy: Ab Initio Molecular Dynamics Simulation. Materials 2021, 14, 6283. https://doi.org/10.3390/ma14216283
Lu S, Xu L, Cao B, Duan H, Zhang J, Li Q. Effects of the Addition of Co or Ni Atoms on Structure and Magnetism of FeB Amorphous Alloy: Ab Initio Molecular Dynamics Simulation. Materials. 2021; 14(21):6283. https://doi.org/10.3390/ma14216283
Chicago/Turabian StyleLu, Shuwei, Lei Xu, Biaobing Cao, Haiming Duan, Jun Zhang, and Qiang Li. 2021. "Effects of the Addition of Co or Ni Atoms on Structure and Magnetism of FeB Amorphous Alloy: Ab Initio Molecular Dynamics Simulation" Materials 14, no. 21: 6283. https://doi.org/10.3390/ma14216283
APA StyleLu, S., Xu, L., Cao, B., Duan, H., Zhang, J., & Li, Q. (2021). Effects of the Addition of Co or Ni Atoms on Structure and Magnetism of FeB Amorphous Alloy: Ab Initio Molecular Dynamics Simulation. Materials, 14(21), 6283. https://doi.org/10.3390/ma14216283