Concept of Flocks Fragmentation and Averaging Method for the Application of Electrocoagulation in Process for Coke Oven Wastewater Treatment
Abstract
:1. Introduction
2. Methods
2.1. Granulometry Measurements
2.2. Computational Methods Used for Computational Fluid Dynamics Tests and Simulations
3. Results and Discussion
3.1. The Results of Granulometry Measurements
3.2. Parameters of the Electrocoagulation Process
3.3. Formulation of the Initial Kinetic Model of the Electrocoagulation Process
3.4. Numerical Simulations and Visual Characteristics of Electrocoagulation Flocks
3.5. Computational Fluid Dynamics Simulations
4. Conclusions
- Mathematical modelling fed with experimental results obtained for small-scale electrocoagulation reactors is a powerful tool suitable to optimize the process;
- The developed models may be successfully adapted to design an industrial-scale electrocoagulator, and, together with the scaling-up procedure, they should allow for determination of its operational parameters and desired geometry;
- Electrocoagulation has huge potential to become a commonly used technique for water/wastewater treatment;
- The main barriers currently identified for the technology are related to the high costs of energy and relatively low environmental charges, which affect the economy of the process.
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kwiecińska, A.; Kochel, M.; Rychlewska, K.; Figa, J. The use of ultrafiltration in enhancement of chemical coke oven wastewater treatment. Desalination Water Treat. 2018, 128, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Mierzwiński, D.; Łach, M.; Mikuła, J.; Furtos, G.; Korniejenko, K. Utilization of innovative system for coke oven wastewater treatment as an element of stabilization technology for post-process waste from municipal incineration plants. IOP Conf. Ser. Mater. Sci. Eng. 2019, 706, 012018. [Google Scholar] [CrossRef]
- Ksepko, E.; Klimontko, J.; Kwiecinska, A. Industrial wastewater treatment wastes used as oxygen carriers in energy generation processes. J. Therm. Anal. Calorim. 2019, 138, 4247–4260. [Google Scholar] [CrossRef] [Green Version]
- Mishra, L.; Paul, K.K.; Jena, S. Characterization of coke oven wastewater. IOP Conf. Ser. Earth Environ. Sci. 2018, 167, 012011. [Google Scholar] [CrossRef]
- Rychlewska, K.; Kwiecińska, A.; Kochel, M.; Figa, J. The use of polymeric and ceramic ultrafiltration in biologically treated coke oven wastewater polishing. Desalination Water Treat. 2018, 128, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sengupta, B.; Kannaujiya, M.C.; Priyadarshinee, R.; Singha, S.; Dasguptamandal, D.; Mandal, T. Treatment of coke oven wastewater using ozone with hydrogen peroxide and activated carbon. Desalination Water Treat. 2017, 69, 352–365. [Google Scholar] [CrossRef]
- Tyagi, M.; Kumari, N.; Jagadevan, S. A holistic Fenton oxidation-biodegradation system for treatment of phenol from coke oven wastewater: Optimization, toxicity analysis and phylogenetic analysis. J. Water Process Eng. 2020, 37, 101475. [Google Scholar] [CrossRef]
- Pitás, V.; Somogyi, V.; Kárpáti, Á.; Thury, P.; Fráter, T. Reduction of chemical oxygen demand in a conventional activated sludge system treating coke oven wastewater. J. Clean. Prod. 2020, 273, 122482. [Google Scholar] [CrossRef]
- Kwiecińska, A.; Lajnert, R.; Bigda, R. Review on Formation, Treatment and Utilization Methods of Coke Oven Wastewater. Ecol. Chem. Eng. A 2017, 24, 193–205. [Google Scholar]
- Kwiecińska, A.; Figa, J.; Stelmach, S. The use of phenolic wastewater in coke production. Pol. J. Env. Stud. 2016, 25, 465–470. [Google Scholar] [CrossRef]
- Kwarciak-Kozłowska, A.; Worwąg, M. The Impact of an Ultrasonic Field on the Efficiency of Coke Wastewater Treatment in a Sequencing Batch Reactor. Energies 2021, 14, 963. [Google Scholar] [CrossRef]
- Felföldi, T.; Nagymáté, Z.; Székely, A.J.; Jurecska, L.; Márialigeti, K. Biological treatment of coke plant effluents: From a microbiological perspective. Biol. Futur. 2020, 71, 359–370. [Google Scholar] [CrossRef]
- Pramila, M.; Manikandan, S.; Anju, K.S.; Murali Kannan, M.; Hong, S.H.; Maruthamuthu, S.; Subramanian, K. Electrochemical decolorization and degradation of Turquoise Blue G (TBG) by pre-adapted petroleum degrading bacteria. Sep. Purif. Technol. 2014, 132, 719–727. [Google Scholar] [CrossRef]
- Pal, P.; Kumar, R. Treatment of Coke Wastewater: A Critical Review for Developing Sustainable Management Strategies. Sep. Purif. Rev. 2014, 43, 89–123. [Google Scholar] [CrossRef]
- Butler, E.; Hung, Y.-T.; Yeh, R.Y.-L.; Suleiman Al Ahmad, M. Electrocoagulation in Wastewater Treatment. Water 2011, 3, 495–525. [Google Scholar] [CrossRef]
- Naje, A.S.; Chelliapan, S.; Zakaria, Z.; Ajeel, M.A.; Alaba, P.A. A review of electrocoagulation technology for the treatment of textile wastewater. Rev. Chem. Eng. 2017, 33, 263–292. [Google Scholar] [CrossRef]
- Al-Barakat, H.S.; Matloub, F.K.; Ajjam, S.K.; Al-Hattab, T.A. Modeling and Simulation of Wastewater Electrocoagulation Reactor. IOP Conf. Ser. Mater. Sci. Eng. 2020, 871, 012002. [Google Scholar] [CrossRef]
- Yavuz, Y.; Ögütveren, Ü.B. Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes. J. Environ. Manag. 2018, 207, 151–158. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Mohammadi, L.; Ansari-Moghaddam, A.; Mahvi, A.H. Heavy metals removal from aqueous environments by electrocoagulation process—A systematic review. J. Environ. Health. Sci. 2015, 13, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasudevan, S.; Sozhan, G.; Ravichandran, S.; Jayaraj, J.; Lakshmi, J.; Sheela, S.M. Studies on the removal of phosphate from drinking water by electrocoagulation process. Ind. Eng. Chem. Res. 2008, 47, 2018–2023. [Google Scholar] [CrossRef]
- Joseph, N.T.; Chigozie, U.F. Effective decolorization of eriochrome black T, furschin basic and malachite green dyes from synthetic wastewater by electrocoag-nanofiltration. Chem. Proc. Eng. Res. 2014, 21, 98–106. [Google Scholar]
- Hisham Elnenay, A.M.; Nassef, E.; Farouk Malash, G.; Abdel Magid, M.H. Treatment of drilling fluids wastewater by electrocoagulation. Egypt. J. Pet. 2017, 26, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.H.; Peng, C.F. Continuous treatment of textile wastewater by combined coagulation. electrochemical oxidation and activated sludge. Water Res. 1996, 30, 587–592. [Google Scholar] [CrossRef]
- Ciardelli, G.; Ranieri, N. The treatment and reuse of wastewater in the textile industry by means of ozonation and electrocoagulation. Water Res. 2001, 35, 567–572. [Google Scholar] [CrossRef]
- Kobya, M.; Sentruk, E.; Bayramoglu, M. Treatment of poultry slaughterhouse wastewaters by electrocoagulation. J Hazard Mater. 2006, 133, 172–176. [Google Scholar] [CrossRef]
- Ghaniyari-Benis, S.; Martín, A.; Borja, R. Kinetic modelling and performance prediction of a hybrid anaerobic baffled reactor treating synthetic wastewater at mesophilic temperature. Process Biochem. 2010, 45, 1616–1623. [Google Scholar] [CrossRef] [Green Version]
- Hariz, I.B.; Halleb, A.; Adhoum, N.; Monser, L. Treatment of petroleum refinery sulfidic spent caustic wastes by electrocoagulation. Sep. Purif. Technol. 2013, 107, 150–157. [Google Scholar] [CrossRef]
- Reilly, M.; Cooley, A.P.; Tito, D.; Tassou, S.A.; Theodorou, M.K. Electrocoagulation treatment of dairy processing and slaughterhouse wastewaters. Energy Procedia 2019, 161, 343–351. [Google Scholar] [CrossRef]
- Mousazadeh, M.; Alizadeh, S.M.; Frontistis, Z.; Kabdaşlı, I.; Karamati Niaragh, E.; Al Qodah, Z.; Naghdali, Z.; Mahmoud, A.E.D.; Sandoval, M.A.; Butler, E.; et al. Electrocoagulation as a Promising Defluoridation Technology from Water: A Review of State of the Art of Removal Mechanisms and Performance Trends. Water 2021, 13, 656. [Google Scholar] [CrossRef]
- de Oliveira, M.T.; Torres, I.M.S.; Ruggeri, H.; Scalize, P.; Albuquerque, A.; Gil, E.D.S. Application of Electrocoagulation with a New Steel-Swarf-Based Electrode for the Removal of Heavy Metals and Total Coliforms from Sanitary Landfill Leachate. Appl. Sci. 2021, 11, 5009. [Google Scholar] [CrossRef]
- Dermentzis, K.I. Removal of sulfide and COD from a crude oil wastewater model by aluminum and iron electrocoagulation. J. Eng. Sci. Technol. Rev. 2016, 9, 13–16. [Google Scholar] [CrossRef]
- Muddemann, T.; Haupt, D.; Sievers, M. Kunz, U. Electrochemical reactors for wastewater treatment. ChemBioEng Rev 2019, 6, 142–156. [Google Scholar] [CrossRef]
- Musa, M.A.; Idrus, S. Physical and Biological Treatment Technologies of Slaughterhouse Wastewater: A Review. Sustainability 2021, 13, 4656. [Google Scholar] [CrossRef]
- Khandegar, V.; Acharya, S.; Jain, A.K. Data on treatment of sewage wastewater by electrocoagulation using punched aluminum electrode and characterization of generated sludge. Data Brief 2018, 18, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.; Sheob, M.; Saeed, B.; Khan, S.U.; Shirinkar, M.; Frontistis, Z.; Basheer, F.; Farooqi, I.H. Use of Electrocoagulation for Treatment of Pharmaceutical Compounds in Water/Wastewater: A Review Exploring Opportunities and Challenges. Water 2021, 13, 2105. [Google Scholar] [CrossRef]
- Khandegar, V.; Saroha, A.K. Electrocoagulation for the treatment of textile industry effluent—A review. J. Environ. Manag. 2013, 128, 949–963. [Google Scholar] [CrossRef]
- Zailani, L.W.M.; Zin, N.S.M. Application of Electrocoagulation in Various Wastewater and Leachate Treatment—A Review. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012052. [Google Scholar] [CrossRef]
- Yehya, T.; Chafi, M.; Balla, W.; Vial, C.; Essadki, A.; Gourich, B. Experimental analysis and modelling of denitrification using electrocoagulation process. Sep. Purif. Technol. 2014, 132, 644–654. [Google Scholar] [CrossRef]
- Matouq, M.; Jildeh, N.; Qtaishat, M.; Hindiyeh, M.; Al Syouf, M.Q. The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J. Environ. Chem. Eng. 2015, 3, 775–784. [Google Scholar] [CrossRef]
- Zhang, S.; Talaga, J.; Müller, D.; Dylag, M.; Wozny, G. Investigations of the Gas-Liquid Multiphase System Involving Macro-Instability in a Baffled Stirred Tank Reactor. J. Control Sci. Eng. 2016, 2016, 3075321. [Google Scholar] [CrossRef] [Green Version]
- Ciosek, A.L.; Luk, G.K. Kinetic Modelling of the Removal of Multiple Heavy Metallic Ions from Mine Waste by Natural Zeolite Sorption. Water 2017, 9, 482. [Google Scholar] [CrossRef] [Green Version]
- Hakizimana, J.N.; Gourich, B.; Chafi, M.; Stiriba, Y.; Vial, C.; Drogui, P.; Naja, J. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination 2017, 404, 1–21. [Google Scholar] [CrossRef]
- Lončar, G.; Halkijević, I.; Posavčić, H.; Ban, I. Modeling Total-Nitrogen Dynamics during Electrocoagulation Process with Stainless-Steel Electrodes. Electron. J. Fac. Civ. Eng. Osijek-E-GFOS 2018, 16, 11–23. [Google Scholar]
- Brahmi, K.; Bouguerra, W.; Hamrouni, B.; Elaloui, E.; Loungou, M.; Tlili, Z. Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater. Arab. J. Chem. 2019, 12, 1848–1859. [Google Scholar]
Model Number | U [V] | I [A] |
---|---|---|
1 | 2 | 0.15 |
2 | 0.80 | |
3 | 1.45 | |
4 | 6 | 0.15 |
5 | 0.80 | |
6 | 1.45 | |
7 | 10 | 0.15 |
8 | 0.80 | |
9 | 1.45 |
Parameter | Value |
---|---|
Process time | 30 min |
The volume to be replaced | 1 L |
Rotation of the electrode | 20 rpm |
Voltage | 2 V |
Current | 1.45 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mierzwiński, D.; Nosal, P.; Szczepanik, A.; Łach, M.; Duarte Guigou, M.; Hebda, M.; Korniejenko, K. Concept of Flocks Fragmentation and Averaging Method for the Application of Electrocoagulation in Process for Coke Oven Wastewater Treatment. Materials 2021, 14, 6307. https://doi.org/10.3390/ma14216307
Mierzwiński D, Nosal P, Szczepanik A, Łach M, Duarte Guigou M, Hebda M, Korniejenko K. Concept of Flocks Fragmentation and Averaging Method for the Application of Electrocoagulation in Process for Coke Oven Wastewater Treatment. Materials. 2021; 14(21):6307. https://doi.org/10.3390/ma14216307
Chicago/Turabian StyleMierzwiński, Dariusz, Przemysław Nosal, Andrzej Szczepanik, Michał Łach, Martin Duarte Guigou, Marek Hebda, and Kinga Korniejenko. 2021. "Concept of Flocks Fragmentation and Averaging Method for the Application of Electrocoagulation in Process for Coke Oven Wastewater Treatment" Materials 14, no. 21: 6307. https://doi.org/10.3390/ma14216307
APA StyleMierzwiński, D., Nosal, P., Szczepanik, A., Łach, M., Duarte Guigou, M., Hebda, M., & Korniejenko, K. (2021). Concept of Flocks Fragmentation and Averaging Method for the Application of Electrocoagulation in Process for Coke Oven Wastewater Treatment. Materials, 14(21), 6307. https://doi.org/10.3390/ma14216307