Discrete Element Modeling and Electron Microscopy Investigation of Fatigue-Induced Microstructural Changes in Ultra-High-Performance Concrete
Abstract
:1. Introduction
2. Materials Characterization
3. Correlation of Unhydrated Cement Clinker Content and Specimen Lifetime
3.1. Sample Preparation
3.2. SEM Investigation and Image Processing
- Band-pass filter with lower and upper limits of 3 and 5000 pixels, respectively, to suppress brightness gradients caused by an imperfectly plan-parallel specimen surface;
- Gray-level thresholding to select desired components and particle analysis (10 pixels or larger) to exclude negligibly small particles stemming from residual image noise.
3.3. Area Calculation and Analysis
4. Characterization of Structural Changes on the Nanoscale
5. Numerical Background
5.1. Discrete Element Method
5.2. Bonded-Particle Model
- Interparticle contacts: calculation of forces between all primary particles even if they are connected with solid bonds;
- Particle–wall contacts: interaction between compression walls and primary particles;
- Solid bonds: forces, moments, and torques acting in single bonds between two particles.
5.3. Contact Models
5.4. Structural UHPC Model and Calibration of Parameters
6. Fatigue Simulations
Uniaxial Fatigue Simulations
7. Conclusions
- Microscopic investigations proved that fatigue damaging also occurs on the nanoscale as a transformation of nanoscale ettringite. Therefore, to reproduce the correct mechanisms of degradation during cyclic simulations, nanoscale changes must be taken into account even in the case of mesoscale modeling. Using sulfate-resistant cements (SR) containing little or no calcium aluminate could possibly prevent a delayed formation of ettringite and slow down the fatigue process.
- A higher relative content of unhydrated cement clinker in the binder matrix results in higher local strength and consequently leads to a longer specimen lifetime during cyclic loading.
- Stress peaks caused by a high difference of local stiffness manifest in a higher degradation of the binder directly surrounding aggregate grains during fatigue loading. This promotes a crack initiation in the ITZ and favors a propagation in the surrounding matrix. Using less stiff and even more fine-grained aggregate could minimize local stress peaks and increase fatigue lifetime.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Arora, A.; Aguayo, M.; Hansen, H.; Castro, C.; Federspiel, E.; Mobasher, B.; Neithalath, N. Microstructural packing-and rheology-based binder selection and characterization for ultra-high performance concrete (UHPC). Cem. Concr. Res. 2018, 103, 179–190. [Google Scholar] [CrossRef]
- Wang, X.; Yu, R.; Song, Q.; Shui, Z.; Liu, Z.; Wu, S.; Hou, D. Optimized design of ultra-high performance concrete (UHPC) with a high wet packing density. Cem. Concr. Res. 2019, 126, 105921. [Google Scholar] [CrossRef]
- Alkaysi, M.; El-Tawil, S.; Liu, Z.; Hansen, W. Effects of silica powder and cement type on durability of ultra high performance concrete (UHPC). Cem. Concr. Compos. 2016, 66, 47–56. [Google Scholar] [CrossRef]
- Abdulkareem, O.M.; Fraj, A.B.; Bouasker, M.; Khelidj, A. Mixture design and early age investigations of more sustainable UHPC. Constr. Build. Mater. 2018, 163, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Groves, G.W. TEM studies of cement hydration. Res. Soc. Symp. Proc. 1987, 85, 3–12. [Google Scholar] [CrossRef]
- Richardson, I.G.; Groves, G.W. Microstructure and microanalysis of hardened ordinary Portland cement pastes. J. Mater. Sci. 1993, 28, 265–277. [Google Scholar] [CrossRef]
- Diamond, S. Aspects of concrete porosity revisited. Cem. Concr. Res. 1999, 29, 1181–1188. [Google Scholar] [CrossRef]
- Gatty, L.; Bonnamy, S.; Felessoufi, A.; Clinard, C.; Richard, P.; van Damme, H. A transmission electron microscopy study of interfaces and matrix homogeneity in ultra-high-performance cement-based materials. J. Mater. Sci. 2001, 36, 4013–4026. [Google Scholar] [CrossRef]
- Wenzel, O.; Schwotzer, M.; Müller, E.; Chakravadhanula, V.S.K.; Scherer, T.; Gerdes, A. Investigating the pore structure of the calcium silicate hydrate phase. Mater. Charact. 2017, 133, 133–137. [Google Scholar] [CrossRef]
- Diamond, S. The microstructure of cement paste and concrete—A visual primer. Cem. Concr. Compos. 2004, 26, 919–933. [Google Scholar] [CrossRef]
- Wei, F.Y.; Lan, X.H.; Lv, Y.N.; Xu, Z. Effect of Pozzolanic Reaction Products on Alkali-silica Reaction. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2006, 21, 168–171. [Google Scholar] [CrossRef]
- Sakalli, Y.; Trettin, R. Investigation of C3S hydration mechanism by transmission electron microscope (TEM) with integrated SuperXTM EDS system. J. Microsc. 2017, 267, 81–88. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Dosta, M.; Dale, S.; Antonyuk, S.; Wassgren, C.; Heinrich, S. Numerical and experimental analysis of influence of granule microstructure on its compression breakage. Powder Technol. 2016, 299, 87–97. [Google Scholar] [CrossRef]
- Dosta, M.; Bistreck, K.; Skorych, V.; Schneider, G.A. Mesh-free micromechanical modeling of inverse opal structures. Int. J. Mech. Sci. 2021, 204, 106577. [Google Scholar] [CrossRef]
- Cusatis, G.; Mencarelli, A.; Pelessone, D.; Baylot, J. Lattice discrete particle model (LDPM) for failure behavior of concrete. II: Calibration and validation. Cem. Concr. Compos 2011, 33, 891–905. [Google Scholar] [CrossRef]
- Donze, F.; Magnier, S.; Daudeville, L.; Mariotti, C.; Davenne, L. Numerical study of compressive behavior of concrete at high strain rates. J. Eng. Mech. 1999, 125, 1154–1163. [Google Scholar] [CrossRef]
- Hentz, S.; Donze, F.; Daudeville, L. Identification and validation of a discrete element model for concrete. J. Eng. Mech. 2004, 130, 709–719. [Google Scholar] [CrossRef] [Green Version]
- Poinard, C.; Piotrowska, E.; Malecot, Y.; Daudeville, L.; Landis, E. Compression triaxial behavior of concrete: The role of the mesostructure by analysis of X-ray tomographic images. Eur. J. Environ. Civ. Eng. 2012, 16, 115–136. [Google Scholar] [CrossRef]
- Kim, H.; Buttlar, W.G. Discrete fracture modeling of asphalt concrete. Int. J. Solids Struct. 2009, 46, 2593–2604. [Google Scholar] [CrossRef] [Green Version]
- Nitka, M.; Tejchman, J. Modelling of concrete behavior in uniaxial compression and tension with DEM. Granul. Matter 2015, 17, 145–164. [Google Scholar] [CrossRef]
- Skarzynski, L.; Nitka, M.; Tejchman, J. Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray μCT images of internal structure. Eng. Fract. Mech. 2015, 147, 13–35. [Google Scholar] [CrossRef]
- Sinaie, S.; Ngo, T.D.; Nguyen, V.P. A discrete element model of concrete for cyclic loading. Comput. Struct. 2018, 196, 173–185. [Google Scholar] [CrossRef]
- Nguyen, N.H.T.; Bui, H.H.; Kodikara, J.; Arooran, S.; Darve, F. A discrete element modelling approach for fatigue damage growth in cemented materials. Int. J. Plast. 2018, 112, 68–88. [Google Scholar] [CrossRef]
- Song, Z.; Konietzky, H.; Herbst, M. Three-dimensional particle model based numerical simulation on multi-level compressive cyclic loading of concrete. Constr. Build. Mater. 2019, 225, 661–677. [Google Scholar] [CrossRef]
- Deutscher, M.; Tran, N.L.; Scheerer, S. Experimental investigation of load-induced temperature development in UHPC subjected to cyclic loading. In Proceedings of the 6th International fib Congress, Krakow, Poland, 27–29 May 2019. [Google Scholar]
- Gan, Y.D.; Zhang, H.Z.; Liang, M.F.; Schlangen, E.; van Breugel, K.; Savija, B. A numerical study of fatigue of hardened cement paste at the microscale. Int. J. Fatigue 2021, 151, 106401. [Google Scholar] [CrossRef]
- Preibisch, S.; Saalfeld, S.; Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 2009, 25, 1463–1465. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. Non-Local Means Denoising. Image Process. Line 2011, 1, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.H.; Yang, L.; Xiong, W.; Li, Y. An improved non-local means filter for color image denoising. Optik 2018, 173, 157–173. [Google Scholar] [CrossRef]
- Lloyd, S.P. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An Efficient k-Means Clustering Algorithm: Analysis and Implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892. [Google Scholar] [CrossRef]
- Chen, L.; Shan, W.B.; Peng, L. Identification of concrete aggregates using K-means clustering and level set method. Structures 2021, 34, 2069–2076. [Google Scholar] [CrossRef]
- Schaan, G.; Rybczynski, S.; Schmidt-Döhl, F.; Ritter, M. Fatigue of Concrete Examined on the Nanoscale. TEM Studies of Fatigue-Induced Changes in the Cement Paste of UHPC. Imag. Microsc. 2020, 2, 25–27. [Google Scholar]
- Zhang, Y.L.; Pan, Y.F.; Zhang, D.K. A literature review on delayed ettringite formation: Mechanism, affect factors and suppressing methods. Mag. Concr. Res. 2021, 73, 325–342. [Google Scholar] [CrossRef]
- Stark, J.; Bollmann, K. Delayed ettringite formation in concrete. Nord. Concr. Res. Publ. 2000, 23, 4–28. [Google Scholar]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Kieckhefen, P.; Pietsch, S.; Dosta, M.; Heinrich, S. Possibilities and Limits of Computational Fluid Dynamics–Discrete Element Method Simulations in Process Engineering: A Review of Recent Advancements and Future Trends. Annu. Rev. Chem. Biomol. Eng. 2020, 11, 397–422. [Google Scholar] [CrossRef] [Green Version]
- Dosta, M.; Skorych, V. MUSEN: An open-source framework for GPU-accelerated DEM simulations. SoftwareX 2020, 12, 100618. [Google Scholar] [CrossRef]
- GitHub—Msolids/Musen. Available online: https://github.com/msolids/musen (accessed on 8 October 2021).
- Rybczynski, S.; Dosta, M.; Schaan, G.; Ritter, M.; Schmidt-Döhl, F. Numerical study on the mechanical behavior of ultrahigh performance concrete using a three-phase discrete element model. Struct. Concr. 2020. [Google Scholar] [CrossRef]
- Mindlin, R.D.; Deresiewicz, H. Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 1953, 20, 327–344. [Google Scholar] [CrossRef]
- Tsuji, Y.; Tanaka, T.; Ishida, T. Lagrangian numerical simulation of plug flow of cohesionsless particles in a horizontal pipe. Powder Technol. 1992, 71, 239–250. [Google Scholar] [CrossRef]
- Jarolin, K.; Dosta, M. Linearization-based methods for the calibration of bonded-particle models. Comput. Part. Mech. 2020, 8, 511–523. [Google Scholar] [CrossRef]
Component | UHPC | Binder | Content [kg/m3] | Vol % | Specific Gravity [g/cm3] | D50 [μm] |
---|---|---|---|---|---|---|
CEM I (52,5) | + | + | 795.40 | 26.16 | 2.75–3.20 | 15.49 |
Silica fume | + | + | 168.60 | 7.80 | 2.20 | * |
Quartz powder | + | + | 198.40 | 7.65 | 2.65 | 25.07 |
Quartz sand (0.125/0.5) | + | − | 971.00 | 36.58 | 2.65 | 266.98 |
Superplasticizer (PCE) | + | + | 27.80 | 2.70 | 1.09 | - |
Water | + | + | 187.90 | 19.11 | 1.00 | - |
Material | Strength [MPa] | Young’s Modulus [GPa] | Breakage Strain [‰] |
---|---|---|---|
UHPC | 193.34 ± 3.77 | 46.67 ± 0.94 | 4.73 ± 0.26 |
Binder | 172.00 ± 1.63 | 36.00 ± 1.63 | 5.33 ± 0.29 |
Material | Strength [MPa] | Young’s Modulus [GPa] | Breakage Strain [‰] |
---|---|---|---|
UHPC | 198.12 ± 7.99 | 45.49 ± 1.14 | 4.95 ± 1.31 |
Binder | 169 ± 1.67 | 36.87 ± 0.32 | 5.21 ± 0.24 |
Parameter | Binder | ITZ | Aggregate |
---|---|---|---|
Particle and bond diameter [mm] | 0.48 | 0.48 | 0.48 |
Number of particles [-] | 208,125 | - | 118,687 |
Number of solid bonds [-] | 2,053,425 | 554,082 | 1,031,387 |
Simulations time step [s] | 4.00 × 10−9 | 4.00 × 10−9 | 4.00 × 10−9 |
Particle Young’s modulus [GPa] | 87.26 | - | 30.00 |
Bond Young’s modulus [GPa] | 10.00 | 10.00 | 40.00 |
Normal and shear stiffness of particles , [N/m] | 8.47 × 106 | - | 8.47 × 106 |
Bond normal strength [GPa] | 1.08 | 1.08 | ∞ |
Bond shear strength [GPa] | 2.81 | 2.81 | ∞ |
Weakening factor α [-] | 0.35 | 0.35 | - |
Yield limit in tension [MPa] | 84.00 | 84.00 | - |
Ratio [-] | 0.80 | 0.80 | - |
Ratio [-] | 0.80 | 0.80 | - |
Damaging factors , | 3.00 | 3.00 | - |
Poisson’s ratio [-] | 0.19 | 0.19 | 0.135 |
Interparticle sliding friction [-] | 0.45 | - | 0.45 |
Material | Average N | Average N | Average N |
---|---|---|---|
Binder | 156 ± 29 | 208 ± 22 | >300 |
UHPC | 19 ± 6 | 56 ± 14 | 161 ± 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybczynski, S.; Schaan, G.; Dosta, M.; Ritter, M.; Schmidt-Döhl, F. Discrete Element Modeling and Electron Microscopy Investigation of Fatigue-Induced Microstructural Changes in Ultra-High-Performance Concrete. Materials 2021, 14, 6337. https://doi.org/10.3390/ma14216337
Rybczynski S, Schaan G, Dosta M, Ritter M, Schmidt-Döhl F. Discrete Element Modeling and Electron Microscopy Investigation of Fatigue-Induced Microstructural Changes in Ultra-High-Performance Concrete. Materials. 2021; 14(21):6337. https://doi.org/10.3390/ma14216337
Chicago/Turabian StyleRybczynski, Sebastian, Gunnar Schaan, Maksym Dosta, Martin Ritter, and Frank Schmidt-Döhl. 2021. "Discrete Element Modeling and Electron Microscopy Investigation of Fatigue-Induced Microstructural Changes in Ultra-High-Performance Concrete" Materials 14, no. 21: 6337. https://doi.org/10.3390/ma14216337
APA StyleRybczynski, S., Schaan, G., Dosta, M., Ritter, M., & Schmidt-Döhl, F. (2021). Discrete Element Modeling and Electron Microscopy Investigation of Fatigue-Induced Microstructural Changes in Ultra-High-Performance Concrete. Materials, 14(21), 6337. https://doi.org/10.3390/ma14216337