Compatibility between Rice Straw Fibers with Different Pretreatments and Ordinary Portland Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Characterization Analysis of Rice Straw Fibers
2.3. Experimental Procedure and Method
3. Results and Discussion
3.1. Characterization of Rice Straw Fibers with Different Pretreatments
3.2. Influence of Rice Straw with Different Pretreatments on Heat of Hydration
3.3. Influence of Rice Straw with Different Pretreatments on Inhibitory Index
3.4. XRD Analysis of the Composite Samples
3.5. SEM Analysis of the Composite Samples
3.6. Mechanical Properties Analysis of the Composite Samples
4. Conclusions
- Steam explosion treatment of rice straw fibers removes most hemicellulose, while the action of bleaching treatment gets rid of lignin.
- The hydration process of the composite samples is similar to that of OPC except the 90OPC-10RF1 sample. In addition, the hydration heat of the composite samples is affected by both the pretreatment degree of rice straw fiber and fiber content.
- The inhibitory index value of different RF-OPC samples is directly related to hemicellulose and lignin content of rice straw fibers. In particular, the content of hemicellulose significantly affects cement hydration. When the hemicellulose content was 1.54 wt.% in the composite sample, the inhibitory index reached the extreme grade, and the hydration of OPC stopped when the hemicellulose content was 2.05 wt.%.
- Combining XRD and SEM analysis of the different rice straw fibers filled cement-based composite samples, better compatibility and adhesion were observed between the pretreated fibers and OPC due to removal of hemicellulose and lignin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Page, J.; Khadraoui, F.; Gomina, M.; Boutouil, M. Enhancement of the long-term mechanical performance of flax fiber-reinforced cementitious composites by using alternative binders. J. Build. Eng. 2021, 40, 102323. [Google Scholar] [CrossRef]
- Ajouguim, S.; Page, J.; Djelal, C.; Waqif, M.; Saâdi, L. Impact of Alfa fibers morphology on hydration kinetics and mechanical properties of cement mortars. Constr. Build. Mater. 2021, 293, 123514. [Google Scholar] [CrossRef]
- Frazao, C.; Barros, J.; Filho, R.T.; Ferreira, S.; Gonçalves, D. Development of sandwich panels combining sisal fiber-cement composites and fiber-reinforced lightweight concrete. Cem. Concr. Compos. 2018, 86, 206–223. [Google Scholar] [CrossRef]
- Wei, J.Q.; Gencturk, B. Hydration of ternary Portland cement blends containing metakaolin and sodium bentonite. Cem. Concr. Res. 2019, 123, 1057–1072. [Google Scholar] [CrossRef]
- Akinyemi, B.A.; Dai, C.P. Development of banana fibers and wood bottom ash modified cement mortars. Constr. Build. Mater. 2020, 241, 1–9. [Google Scholar] [CrossRef]
- Tonoli, G.H.D.; Belgacem, M.N.; Bras, J.; Pereira-da-Silva, M.A.; Rocco Lahr, F.A.; Savastano, H., Jr. Impact of bleaching pine fibre on the fibre/cement interface. J. Mater. Sci. 2012, 47, 4167–4177. [Google Scholar] [CrossRef]
- Hakamy, A.; Shaikh, F.U.A.; Low, I.M. Thermal and mechanical properties of hemp fabric-reinforced Nanoclay-cement nanocomposites. J. Mater. Sci. 2014, 49, 1684–1694. [Google Scholar] [CrossRef] [Green Version]
- Sellami, A.; Merzoud, M.; Amziane, S. Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Constr. Build. Mater. 2013, 47, 1117–1124. [Google Scholar] [CrossRef]
- Zhou, X.M.; Ghaffar, S.H.; Dong, W.; Oladiran, O.; Fan, M. Fracture and impact properties of short discrete jute fibre-reinforced Ncementitious composites. Mater. Des. 2013, 49, 35–47. [Google Scholar] [CrossRef]
- Çomak, B.; Bideci, A.; Bideci, Ö.S. Effects of hemp fibers on characteristics of cement-based mortar. Constr. Build. Mater. 2018, 169, 794–799. [Google Scholar] [CrossRef]
- Momoh, E.O.; Osofero, A.I. Behaviour of oil palm broom fibres (OPBF) reinforced concrete. Constr. Build. Mater. 2019, 221, 745–761. [Google Scholar] [CrossRef]
- Santos, V.D.; Tonoli, G.H.D.; Mármol, G.H.S., Jr. Fiber-cement composites hydrated with carbonated water: Effect on physical-mechanical properties. Cem. Concr. Compos. 2019, 124, 105812. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Tonoli, G.H.D.; Belgacem, M.N.; Siqueira, G.; Bras, J.; Savastano, H.J.; Rocco, F.A. Processing and dimensional changes of cement-based composites reinforced with surface-treated cellulose fibres. Cem. Concr. Compos. 2013, 37, 68–75. [Google Scholar] [CrossRef]
- Ballesteros, J.E.M.; Santos Dos, V.; Mármol, G.; Frías, M.; Fiorelli, J. Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. Cellulose 2017, 24, 2275–2286. [Google Scholar] [CrossRef]
- Obi, F.O.; Ugwuishiwu, B.O.; Nwakaire, J.N. Agricultural waste concept, generation, utilization and management. Niger. J. Technol. 2016, 35, 957–964. [Google Scholar] [CrossRef]
- Sampathrajan, A.; Vijayaraghavan, N.C.; Swaminathan, K.R. Mechanical and thermal properties of particleboards made from farm residues. Bioresour. Technol. 1992, 40, 249–251. [Google Scholar] [CrossRef]
- Croce, S.; Wei, Q.; D’Imporzano, G.; Dong, R.J.; Adani, F. Anaerobic digestion of straw and corn stover: The effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol. Adv. 2016, 34, 1289–1304. [Google Scholar] [CrossRef]
- Ziemiński, K.; Romanowska, I.; Kowalska, M. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag. 2012, 32, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Okino, E.Y.A.; Souza, M.R.; Santana, M.A.E.; Alves, M.V.S.; Sousa, M.E.; Teixeira, D.E. Cement-bonded wood particleboard with a mixture of eucalypt and rubber wood. Cem. Concr. Compos. 2004, 26, 729–734. [Google Scholar] [CrossRef]
- Cabral, M.R.; Nakanishi, E.Y.; Santos, V.D.; Palacios, J.H.; Godbout, S.; Junior, H.S.; Fiorelli, J. Evaluation of pre-treatment efficiency on sugarcane bagasse fibers for the production of cement composites. Arch. Civ. Mech. Eng. 2018, 18, 1092–1102. [Google Scholar] [CrossRef]
- Onésippe, C.; Passe-Coutrin, N.; Toro, F.; Delvasto, S.; Bilba, K.; Arsène, M.A. Sugar cane bagasse fibres reinforced cement composites: Thermal considerations. Compos. Part A 2010, 41, 549–556. [Google Scholar] [CrossRef]
- Castro, V.G.; Azambuja, R.D.R.; Bila, N.F.; Parchen, C.F.A.; GISassaki, C.F.A.; Iwakiri, S. Correlation between chemical composition of tropical hardwoods and wood-cement compatibility. J. Wood Chem. Technol. 2018, 38, 28–34. [Google Scholar] [CrossRef]
- Ferraz, J.M.; Menezzi, C.H.S.D.; Souza, M.R.; Okino, E.Y.A.; Martins, S.A. Compatibility of pretreated coir fibres (Cocos nucifera L.) with Portland Cement to produce mineral composites. Int. J. Polym. Sci. 2012, 2012, 290571. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Zhao, M.M.; Zhou, Z.W.; Huang, T.; Chen, X.L.; Wang, Y. Isolation of cellulose with ionic liquid from steam exploded rice straw. Ind. Crop. Prod. 2011, 33, 734–738. [Google Scholar] [CrossRef]
- Cao, Y.; Shibata, S.; Fukumoto, I. Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos. Part A 2006, 37, 423–429. [Google Scholar] [CrossRef]
- Schmidt, A.S.; Thomsen, A.B. Optimization of wet oxidation pretreatment of wheat straw. Bioresour. Technol. 1998, 64, 139–151. [Google Scholar] [CrossRef]
- Sun, J.X.; Xu, F.; Geng, Z.C.; Sun, X.F.; Sun, R.C. Comparative study of cellulose isolated by totally chlorine-free method from wood and cereal straw. J. Appl. Polym. Sci. 2005, 97, 322–335. [Google Scholar] [CrossRef]
- Liyama, K.; Kasuya, N.; Lam, T.B.T.; Stone, B.A. Lignin in wheat internodes Linkages between phenylpropane units. J. Sci. Food Agric. 1991, 56, 551–560. [Google Scholar]
- Xiao, B.; Sun, X.F.; Sun, R.C. Chemical, structural and thermal characterization of alkali soluble lignins and hemicelluloses and cellulose from maize stems, rye straw and rice straw. Polym. Degrad. Stab. 2001, 74, 307–319. [Google Scholar] [CrossRef]
- Himmelsbach, D.S.; Khalili, S.; Akin, D.E. The use of FT-IR micro spectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissium L.) stems. J. Sci. Food Agric. 2002, 82, 685–696. [Google Scholar] [CrossRef]
- Jiang, D.M.; Cui, S.P.; Xu, F.; Tuo, T.F. Impact of leaf fibre modification methods on compatibility between leaf fibres and cement-based materials. Constr. Build. Mater. 2015, 94, 502–512. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford: London, UK, 1997; pp. 150–156. [Google Scholar]
- Bilba, K.; Ouensanga, A. Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse. J. Anal. Appl. Pyrolysis 1996, 38, 61–73. [Google Scholar] [CrossRef]
- Abdelraziz, B.E.I.; Bouner, D.G.; Nowell, D.V.; Dransfield, J.M.; Egan, P.J. The solution chemistry and early hydration of ordinary portland cement pastes with and without admixtures. Thermochem. Acta 1999, 340, 417–430. [Google Scholar] [CrossRef]
- Bilba, K.; Arsene, M.; Ouensanga, A. Influence of the botanical components of bagasse on the setting of bagasse/cement composite. Cem. Concr. Compos. 2003, 25, 91–96. [Google Scholar] [CrossRef]
- Thomas, N.L.; Birchall, J.D. The retarding action of sugars on cement hydration. Cem. Concr. Res. 1983, 13, 830–842. [Google Scholar] [CrossRef]
- Olorunnisola, A.O. Effects of pre-treatment of rattan (Laccosperma secundiflorum) on the hydration of Portland cement and the development of a new compatibility index. Cem. Concr. Compos. 2008, 30, 37–43. [Google Scholar] [CrossRef]
- Kochova, K.; Schollbach, K.; Gauvin, F.; Brouwers, H.J.H. Effect of saccharides on the hydration of ordinary Portland cement. Constr. Build. Mater. 2017, 150, 268–275. [Google Scholar] [CrossRef]
- Zadorecki, P.; Michell, A.J. Future prospects for wood cellulose as reinforcement in organic polymer composites. Polym. Compos. 1989, 10, 69–77. [Google Scholar] [CrossRef]
- Khorami, M.; Ganjian, E. Comparing flexural behaviour of fibre-cement composites reinforced bagasse: Wheat and eucalyptus. Constr. Build. Mater. 2011, 25, 3661–3667. [Google Scholar] [CrossRef]
- Coutts, R.S.P. Sticks and stones. For. Prod. Newsl. Div. Chem. Wood Technol. 1986, 2, 1–4. [Google Scholar]
Sample | Components (wt.%) | |||||
---|---|---|---|---|---|---|
Cellulose | Lignin | Hemicellulose | Ash | Moisture | Other | |
RF1 | 35.6 | 16.8 | 20.5 | 15.1 | 12.0 | 0.0 |
RF2 | 50.6 | 20.5 | 7.9 | 12.5 | 8.5 | 0.0 |
RF3 | 67.4 | 8.5 | 7.2 | 8.5 | 8.3 | 0.1 |
RF4 | 78.5 | 2.6 | 6.9 | 3.1 | 8.9 | 0.0 |
Fiber Type | Length (μm) | Diameter (μm) | Aspect Ratio | ||
---|---|---|---|---|---|
Average a | S b | Average a | S b | ||
RF1 | -- | -- | -- | -- | -- |
RF2 | 354.2 | 112.0 | 6.3 | 1.6 | 56.2 |
RF3 | 577.5 | 154.7 | 5.9 | 1.6 | 97.8 |
RF4 | 472.6 | 85.9 | 6.6 | 2.0 | 71.6 |
Components (wt.%) | CaO | SiO2 | Al2O3 | SO3 | Fe2O3 | K2O | MgO | TiO2 | Na2O | P2O5 | BaO | Cl | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cement | 62.4 | 18.9 | 4.83 | 4.73 | 2.85 | 0.81 | 2.39 | 0.47 | 0.41 | 0.35 | 0.14 | 0.01 | 1.71 |
Mix | Proportion (wt.%) | ||||
---|---|---|---|---|---|
OPC | Straw Fiber | Cellulose | Lignin | Hemicellulose | |
Reference | 100 | 0 | 0 | 0 | 0 |
97.5OPC-2.5RF1 | 97.5 | 2.5 | 0.89 | 0.42 | 0.51 |
95OPC-5RF1 | 95 | 5 | 1.78 | 0.84 | 1.03 |
92.5OPC-7.5RF1 | 92.5 | 7.5 | 2.67 | 1.26 | 1.54 |
90OPC-10RF1 | 90 | 10 | 3.56 | 1.68 | 2.05 |
95OPC-5RF2 | 95 | 5 | 2.53 | 1.03 | 0.40 |
92.5OPC-7.5RF2 | 92.5 | 7.5 | 3.80 | 1.54 | 0.60 |
90OPC-10RF2 | 90 | 10 | 5.06 | 2.05 | 0.79 |
95OPC-5RF3 | 95 | 5 | 3.37 | 0.43 | 0.36 |
90OPC-10RF3 | 90 | 10 | 6.74 | 0.85 | 0.72 |
95OPC-5RF4 | 95 | 5 | 3.93 | 0.13 | 0.35 |
90OPC-10RF4 | 90 | 10 | 7.85 | 0.26 | 0.69 |
Mix | Q (J/g) | Q’ (J/g) | H (h) | H’ (h) | S (J/g/h) | S’(J/g/h) | Inhibitory Index (%) | Grade |
---|---|---|---|---|---|---|---|---|
97.5OPC-2.5RF1 | 334.2 | 281.7 | 15.2 | 21.0 | 0.23 | 0.13 | 2.606 | Low |
95OPC-5RF1 | 334.2 | 215.6 | 15.2 | 29.2 | 0.23 | 0.05 | 25.580 | Moderate |
92.5OPC-7.5RF1 | 334.2 | 168.7 | 15.2 | 52.9 | 0.23 | 0.02 | 112.679 | Extreme |
90OPC-10RF1 | 334.2 | 7.9 | 15.2 | Infinite | 0.23 | 0.01 | Infinite | Extreme |
95OPC-5RF2 | 334.2 | 327.2 | 15.2 | 16.7 | 0.23 | 0.20 | 0.027 | Low |
92.5OPC-7.5RF2 | 334.2 | 240.1 | 15.2 | 18.1 | 0.23 | 0.18 | 1.168 | Low |
90OPC-10RF2 | 334.2 | 240.1 | 15.2 | 29.1 | 0.23 | 0.10 | 14.554 | Moderate |
95OPC-5RF3 | 334.2 | 330.4 | 15.2 | 18.0 | 0.23 | 0.20 | 0.027 | Low |
90OPC-10RF3 | 334.2 | 318.2 | 15.2 | 28.1 | 0.23 | 0.12 | 1.943 | Low |
95OPC-5RF4 | 334.2 | 330.9 | 15.2 | 17.6 | 0.23 | 0.20 | 0.020 | Low |
90OPC-10RF4 | 334.2 | 317.1 | 15.2 | 29.0 | 0.23 | 0.12 | 2.222 | Low |
Inhibitory Index (%) | Grade |
---|---|
I < 10 | Low inhibitory |
I = 10–50 | Moderate inhibitory |
I = 50–100 | High inhibitory |
I > 100 | Extreme inhibitory |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Li, H. Compatibility between Rice Straw Fibers with Different Pretreatments and Ordinary Portland Cement. Materials 2021, 14, 6402. https://doi.org/10.3390/ma14216402
Xie X, Li H. Compatibility between Rice Straw Fibers with Different Pretreatments and Ordinary Portland Cement. Materials. 2021; 14(21):6402. https://doi.org/10.3390/ma14216402
Chicago/Turabian StyleXie, Xiaoli, and Hongbo Li. 2021. "Compatibility between Rice Straw Fibers with Different Pretreatments and Ordinary Portland Cement" Materials 14, no. 21: 6402. https://doi.org/10.3390/ma14216402
APA StyleXie, X., & Li, H. (2021). Compatibility between Rice Straw Fibers with Different Pretreatments and Ordinary Portland Cement. Materials, 14(21), 6402. https://doi.org/10.3390/ma14216402