High Temperature Oxidation Behaviors of BaO/TiO2 Binary Oxide-Enhanced NiAl-Based Composites
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Phases and Microscopic Morphologies of the Composites
3.2. Oxidative Thermodynamics and Kinetics
3.3. Cross-Sectional and Surface Morphologies of the Composites after Oxidation
4. Conclusions
- (1)
- The composites exhibited very good sintered compactness and only a few pores existed. With the increasing of oxide content, NiAl peaks shifted to the left accordingly, which can be explained by lattice distortion.
- (2)
- The composites had a good oxidation resistance at 800 °C, generating a dense Al2O3 film to prevent further oxidation. The oxidation products on the oxidation surface of the composites after oxidation for 100 h at 800 °C were mainly Al2O3, NiO and NiAl2O4.
- (3)
- The addition of BaO/TiO2 introduced more boundaries and made the Kp value increase from 1.2 × 10−14 g2/cm4 s to 3.3 × 10−14 g2/cm4 s, leading to a slight reduction of the oxidation resistance performance of the composite—although it was still excellent.
- (4)
- The thickness of the oxide film increased with the addition of BaO/TiO2. Meanwhile, increments of BaO/TiO2 led to the thickness of the oxide films to gradually increase and the oxidation resistance of the composites to gradually decrease.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, C.; Guo, Y.; Guo, J.; Zhou, L. Microstructural stability and mechanical properties of a boron modified Ni–Fe based superalloy for steam boiler applications. Mater. Sci. Eng. A 2015, 639, 380–388. [Google Scholar] [CrossRef]
- Rahman, S.; Ding, J.; Beheshti, A.; Zhang, X.; Polycarpou, A.A. Elevated temperature tribology of Ni alloys under helium environment for nuclear reactor applications. Tribol. Int. 2018, 123, 372–384. [Google Scholar] [CrossRef]
- Liu, X.-B.; Liu, H.-Q.; Meng, X.-J.; Sun, C.-F.; Wang, M.-D.; Qi, L.-H.; Shi, G.-L.; Wu, S.-H. Effects of aging treatment on microstructure and tribological properties of nickel-based high-temperature self-lubrication wear resistant composite coatings by laser cladding. Mater. Chem. Phys. 2014, 143, 616–621. [Google Scholar] [CrossRef]
- Li, B.; Gao, Y.; Li, C.; Liu, Z.; Guo, H.; Zheng, Q.; Li, Y.; Kang, Y. Effect of heat treatment on the microstructure, mechanical property and tribological property of plasma-sprayed high temperature lubricating composite coating from nanostructured powder. J. Alloy. Compd. 2019, 816, 152671. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Zhang, C.; Han, J.; Sun, M.; Xu, M. The microstructure, mechanical properties, and oxidation behavior of beta-gamma TiAl alloy with excellent hot workability. Mater. Sci. Eng. A 2017, 700, 366–373. [Google Scholar] [CrossRef]
- Aouadi, S.; Luster, B.; Kohli, P.; Muratore, C.; Voevodin, A. Progress in the development of adaptive nitride-based coatings for high temperature tribological applications. Surf. Coatings Technol. 2009, 204, 962–968. [Google Scholar] [CrossRef]
- Li, B.; Gao, Y.; Li, C.; Guo, H.; Zheng, Q.; Li, Y.; Kang, Y.; Zhao, S. Tribocorrosion properties of NiCrAlY coating in different corrosive environments. Materials. 2020, 13, 1864. [Google Scholar] [CrossRef]
- Zhu, S.; Cheng, J.; Qiao, Z.; Yang, J. High temperature solid-lubricating materials: A review. Tribol. Int. 2018, 133, 206–223. [Google Scholar] [CrossRef]
- Gao, X.; Hu, M.; Fu, Y.; Weng, L.; Liu, W.; Sun, J. MoS2-Au/Au multilayer lubrication film with better resistance to space environment. J. Alloy. Compd. 2019, 815, 152483. [Google Scholar] [CrossRef]
- Liu, X.; Shi, X.; Lu, G.; Deng, X.; Zhou, H.; Yan, Z.; Chen, Y.; Xue, B. The synergistic lubricating mechanism of Sn-Ag-Cu and C60 on the worn surface of M50 self-lubricating material at elevated loads. J. Alloy. Compd. 2018, 777, 271–284. [Google Scholar] [CrossRef]
- Scharf, T.W.; Kotula, P.G.; Prasad, S.V. Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Mater. 2010, 58, 4100–4109. [Google Scholar] [CrossRef]
- Huang, C.; Du, L.; Zhang, W. Effects of solid lubricant content on the microstructure and properties of NiCr/Cr3C2–BaF2·CaF2 composite coatings. J. Alloys Compd. 2009, 479, 777–784. [Google Scholar] [CrossRef]
- Murakami, T.; Ouyang, J.H.; Sasaki, S.; Umeda, K.; Yoneyama, Y. High-temperature tribological properties of Al2O3, Ni-20mass% Cr and NiAl spark-plasma-sintered composites containing BaF2-CaF2 phase. Wear 2005, 259, 626–633. [Google Scholar] [CrossRef]
- Fateh, N.; Fontalvo, G.A.; Gassner, G.; Mitterer, C. Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings. Wear 2007, 262, 1152–1158. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Yu, J.; Sathyamurthy, R.; Tawfik, M.; Shanmugan, S.; Essa, F. Improving the tribological properties of AISI M50 steel using Sns/Zno solid lubricants. J. Alloys Compd. 2019, 821, 153494. [Google Scholar] [CrossRef]
- Liu, X.; Shi, X.; Wu, C.; Yang, K.; Huang, Y.; Deng, X.; Yan, Z.; Xue, B. Tribological behavior of M50-MoS 2 self-lubricating composites from 150 to 450 °C. Mater. Chem. Phys. 2017, 198, 145–153. [Google Scholar] [CrossRef]
- Stone, D.; Migas, J.; Martini, A.; Smith, T.; Muratore, C.; Voevodin, A.; Aouadi, S. Adaptive NbN/Ag coatings for high temperature tribological applications. Surf. Coatings Technol. 2012, 206, 4316–4321. [Google Scholar] [CrossRef]
- Erdemir, A. A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings. Surf. Coatings Technol. 2005, 200, 1792–1796. [Google Scholar] [CrossRef]
- Lin, X.H.; Zeng, Y.; Ding, C.X.; Zhang, P.Y. Effects of temperature on tribological properties of nanostructured and conventional Al2O3-3 wt.% TiO2 coatings. Wear 2004, 256, 1018–1025. [Google Scholar] [CrossRef]
- Vargas, F.; Ageorges, H.; Fournier, P.; Fauchais, P.; López, M.E. Mechanical and tribological performance of Al2O3-TiO2 coatings elaborated by flame and plasma spraying. Surf. Coat. Technol. 2010, 205, 1132–1136. [Google Scholar] [CrossRef]
- Deng, W.; Li, S.; Hou, G.; Liu, X.; Zhao, X.; An, Y.; Zhou, H.; Chen, J. Comparative study on wear behavior of plasma sprayed Al2O3 coatings sliding against different counterparts. Ceram. Int. 2017, 43, 6976–6986. [Google Scholar] [CrossRef]
- Li, B.; Gao, Y.; Hou, X.; Li, C.; Guo, H.; Kang, Y.; Li, Y.; Zheng, Q.; Zhao, S. Microstructure, mechanical and tribological properties of NiAl matrix composites with addition of BaO/TiO2 binary oxides. Tribol. Int. 2019, 144, 106108. [Google Scholar] [CrossRef]
- Peng, J.; Fang, X.; Qu, Z.; Wang, J. Isothermal oxidation behavior of NiAl and NiAl-(Cr,Mo) eutectic alloys. Corros. Sci. 2019, 151, 27–34. [Google Scholar] [CrossRef]
- Bei, H.; George, E.P. Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy. Acta Mater. 2005, 53, 69–77. [Google Scholar] [CrossRef]
- Wang, L.; Yao, C.L.; Shen, J.; Zhang, Y.P.; Wang, T.; Xu, H.X.; Gao, L.H.; Zhang, G.J. Microstructures and compressive properties of NiAl-Cr(Mo) and NiAl-Cr eutectic alloys with different Fe contents. Mater. Sci. Eng. A 2019, 744, 593–603. [Google Scholar] [CrossRef]
- Bochenek, K.; Basista, M. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog. Aerosp. Sci. 2015, 79, 136–146. [Google Scholar] [CrossRef]
- Liu, E.; Jia, J.; Bai, Y.; Wang, W.; Gao, Y. Study on preparation and mechanical property of nanocrystalline NiAl intermetallic. Mater. Des. 2013, 53, 596–601. [Google Scholar] [CrossRef]
- Hu, W.; Weirich, T.E.; Hallstedt, B.; Chen, H.; Zhong, Y.; Gottstein, G. Interface structure, chemistry and properties of NiAl composites fabricated from matrix-coated single-crystalline Al2O3 fibres (sapphire) with and without an hBN interlayer. Acta Mater. 2006, 54, 2473–2488. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, X.; Li, B.; Wang, X.; Sun, K. Microstructure and tribological behavior of NiAl/WC composites fabricated by thermal explosion reaction at 800 °C. J. Alloy. Compd. 2017, 693, 70–75. [Google Scholar] [CrossRef]
- Grabke, H. Oxidation of NiAl and FeAl. Intermetallics 1999, 7, 1153–1158. [Google Scholar] [CrossRef]
- Ray, P.K.; Akinc, M.; Kramer, M.J. Formation of multilayered scale during the oxidation of NiAl-Mo alloy. Appl. Surf. Sci. 2014, 301, 107–111. [Google Scholar] [CrossRef]
- Shaaban, A. Influence of NiAl2O4 spinel formation on the oxidation behavior of the Ni50Al alloy at 1273 K in air. Surf. Coatings Technol. 2019, 379, 125023. [Google Scholar] [CrossRef]
- Dong, H.; Jiang, Y.; He, Y.; Zou, J.; Xu, N.; Huang, B.; Liu, C.T.; Liaw, P. Oxidation behavior of porous NiAl prepared through reactive synthesis. Mater. Chem. Phys. 2010, 122, 417–423. [Google Scholar] [CrossRef]
- Cao, G.; Geng, L.; Zheng, Z.; Naka, M. The oxidation of nanocrystalline Ni3Al fabricated by mechanical alloying and spark plasma sintering. Intermetallics 2007, 15, 1672–1677. [Google Scholar] [CrossRef]
- Li, B.; Liu, F.; Li, C.; Gao, Y.M.; Fan, C.M.; Hou, X.H. Effect of Cr element on the microstructure and oxidation resistance of novel NiAl-based high temperature lubricating composites. Corros. Sci. 2021, 188, 109554. [Google Scholar] [CrossRef]
- Prescott, R.; Mitchell, D.F.; Graham, M.J.; Doychak, J. Oxidation mechanisms of β-NiAl + Zr determined by SIMS. Corros. Sci. 1995, 37, 1341–1364. [Google Scholar] [CrossRef]
Composites | NiAl (wt.%) | BaO (wt.%) | TiO2 (wt.%) |
---|---|---|---|
NA | 100 | 0 | 0 |
NA1 | 90 | 6.6 | 3.4 |
NA2 | 80 | 13.2 | 6.8 |
NA3 | 70 | 19.8 | 10.2 |
Composites | NA | NA1 | NA2 | NA3 |
---|---|---|---|---|
Kp/(g2/cm4 s) | 1.2 × 10−14 | 2.6 × 10−14 | 3.1 × 10−14 | 3.3 × 10−14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Gao, R.; Guo, H.; Fan, C. High Temperature Oxidation Behaviors of BaO/TiO2 Binary Oxide-Enhanced NiAl-Based Composites. Materials 2021, 14, 6510. https://doi.org/10.3390/ma14216510
Li B, Gao R, Guo H, Fan C. High Temperature Oxidation Behaviors of BaO/TiO2 Binary Oxide-Enhanced NiAl-Based Composites. Materials. 2021; 14(21):6510. https://doi.org/10.3390/ma14216510
Chicago/Turabian StyleLi, Bo, Ruipeng Gao, Hongjian Guo, and Congmin Fan. 2021. "High Temperature Oxidation Behaviors of BaO/TiO2 Binary Oxide-Enhanced NiAl-Based Composites" Materials 14, no. 21: 6510. https://doi.org/10.3390/ma14216510
APA StyleLi, B., Gao, R., Guo, H., & Fan, C. (2021). High Temperature Oxidation Behaviors of BaO/TiO2 Binary Oxide-Enhanced NiAl-Based Composites. Materials, 14(21), 6510. https://doi.org/10.3390/ma14216510