Microstructure and In Vitro Evaluation of Extruded and Hot Drawn Alloy MgCa0.7 for Biodegradable Surgical Wires
Abstract
:1. Introduction
2. Materials
2.1. Alloy Production
2.2. Flow Stress
2.3. Models of the Recrystallization
3. Method
3.1. Extrusion
3.2. Hot Drawing
3.3. FEM Simulations
3.4. Mechanical Testing
3.5. Microstructure and X-ray Diffraction
3.6. Bio-Corrosion
3.7. Cytotoxicity
3.7.1. Preparation of Material Extracts
3.7.2. Cell Cultures
3.7.3. Statistical Analyses
4. Numerical Results
4.1. Extrusion Simulation
4.2. Hot Drawing Simulation
5. The Experimental Results
5.1. Mechanical Properties
5.2. In-Vitro Corrosion in a Solution Simulating Mammalian Body Fluid
5.3. Microstructure
5.4. In-Vitro Cytotoxicity
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seitz, J.-M.; Durisin, M.; Goldman, J.; Drelich, J.W. Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review. Adv. Healthc. Mater. 2015, 4, 1915–1936. [Google Scholar] [CrossRef]
- Seitz, J.-M.; Eifler, R.; Bach, F.-W.; Maier, H.J. Magnesium degradation products: Effects on tissue and human metabolism. J. Biomed. Mater. Res. A 2014, 102, 3744–3753. [Google Scholar] [CrossRef]
- Schümann, K.; Ettle, T.; Szegner, B.; Elsenhans, B.; Solomons, N.W. On risks and benefits of iron supplementation recommendations for iron intake revisited. J. Trace Elem. Med. Biol. 2007, 21, 147–168. [Google Scholar] [CrossRef]
- Nriagu, J. Encyclopedia of Environmental Health, 2nd ed.; Elsevier Ltd.: Oxford, UK, 2019. [Google Scholar]
- Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
- Zakiyuddin, A.; Lee, K. Effect of a small addition of zinc and manganese to Mg–Ca based alloys on degradation behavior in physiological media. J. Alloys Compd. 2015, 629, 274–283. [Google Scholar] [CrossRef]
- Seelig, M.G. A study of magnesium wire as an absorbable suture and ligature material. Arch. Surg. 1924, 8, 669. [Google Scholar] [CrossRef]
- Lambotte, A. L’utilisation du magnésium comme matériel perdu dans l’ostéosynthèse. Bull MémSoc Nat Cir. 1932, 28, 1325–1334. [Google Scholar]
- Seitz, J.-M.; Utermöhlen, D.; Wulf, E.; Klose, C.; Bach, F.-W. The Manufacture of Resorbable Suture Material from Magnesium—Drawing and Stranding of Thin Wires. Adv. Eng. Mater. 2011, 13, 1087–1095. [Google Scholar] [CrossRef]
- Hassel, T.; Bach, F.W.; Golovko, A.; Krause, C. Investigation of the mechanical properties and the corrosion behaviour of low alloyed magnesium-calcium alloys for use as absorbable biomaterial in the implant technique. 45th Annu. Conf. Metall. CIM 2006, 359–370. [Google Scholar]
- Chen, Y.-T.; Hung, F.-Y.; Syu, J.-C. Biodegradable Implantation Material: Mechanical Properties and Surface Corrosion Mechanism of Mg-1Ca-0.5Zr Alloy. Metals 2019, 9, 857. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Griebel, A.J.; Zhang, Y.; Romany, C.; Chen, B.; Schaffer, J.; Weihs, T.P. Influence of Thermal Processing on Resoloy Wire Microstructure and Properties. Adv. Eng. Mater. 2021, 23, 2001278. [Google Scholar] [CrossRef]
- Antoniac, I.; Adam, R.; Bit, A.; Miculescu, M.; Trante, O.; Petrescu, I.M.; Pogarasteanu, M. Comparative Assessment of In Vitro and In Vivo Biodegradation of Mg-1Ca Magnesium Alloys for Orthopedic Applications. Materials 2021, 14, 84. [Google Scholar] [CrossRef]
- Hou, R.; Victoria-Hernandez, J.; Jiang, P.; Willumeit-Römer, R.; Luthringer-Feyerabend, B.; Yi, S.; Letzig, D.; Feyerabend, F. In vitro evaluation of the ZX11 magnesium alloy as potential bone plate: Degradability and mechanical integrity. Acta Biomater. 2019, 97, 608–622. [Google Scholar] [CrossRef]
- Seitz, J.-M.; Eifler, R.; Stahl, J.; Kietzmann, M.; Bach, F.-W. Characterization of MgNd2 alloy for potential applications in bioresorbable implantable devices. Acta Biomater. 2012, 8, 3852–3864. [Google Scholar] [CrossRef]
- Wan, Y.; Xiong, G.; Luo, H.; He, F.; Huang, Y.; Zhou, X. Preparation and characterization of a new biomedical magnesium–calcium alloy. Mater. Des. 2008, 29, 2034–2037. [Google Scholar] [CrossRef]
- Milenin, A.; Kustra, P.; Byrska-Wójcik, D.; Wróbel, M.; Paćko, M.; Sulej-Chojnacka, J.; Matuszyńska, S.; Płonka, B. The effect of in vitro corrosion on the mechanical properties of metallic high strength biodegradable surgical threads. Arch. Civ. Mech. Eng. 2020, 20, 60. [Google Scholar] [CrossRef]
- Milenin, A.; Kustra, P.; Byrska-Wójcik, D.; Wróbel, M.; Packo, M.; Sulej-Chojnacka, J.; Matuszynska, S.; Pidvysots’Kyy, V. The influence of the parameters of hot drawing of MgCa alloys wires on the mechanical properties that determine the applicability of the material as a high strength biodegradable surgical thread. In Proceedings of the Procedia Manufacturing, Kraków, Poland, 13–16 September 2020; Volume 50. [Google Scholar]
- Milenin, A.; Kustra, P.; Byrska-Wójcik, D.; Grydin, O.; Schaper, M.; Mentlein, T.; Gerstein, G.; Nürnberger, F. Analysis of microstructure and damage evolution in ultra-thin wires of the magnesium alloy MgCa0.8 at multipass drawing. JOM 2016, 68, 3063–3069. [Google Scholar] [CrossRef]
- Kustra, P.; Milenin, A.; Byrska-Wójcik, D.; Grydin, O.; Schaper, M. The process of ultra-fine wire drawing for magnesium alloy with the guaranteed restoration of ductility between passes. J. Mater. Process. Technol. 2017, 247, 234–242. [Google Scholar] [CrossRef]
- Aung, N.N.; Zhou, W. Effect of heat treatment on corrosion and electrochemical behaviour of AZ91D magnesium alloy. J. Appl. Electrochem. 2002, 32, 1397–1401. [Google Scholar] [CrossRef]
- Aung, N.N.; Zhou, W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 2010, 52, 589–594. [Google Scholar] [CrossRef]
- Liu, M.; Qiu, D.; Zhao, M.-C.; Song, G.; Atrens, A. The effect of crystallographic orientation on the active corrosion of pure magnesium. Scr. Mater. 2008, 58, 421–424. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, Z.; Qu, R.; Wang, L.; Li, Q.; Guan, S. Effect of rare earth and Mn elements on the corrosion behavior of extruded AZ61 system in 3.5 wt% NaCl solution and salt spray test. J. Magnes. Alloy. 2013, 1, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Anisimova, N.; Kiselevskiy, M.; Martynenko, N.; Straumal, B.; Willumeit-Römer, R.; Dobatkin, S.; Estrin, Y. Cytotoxicity of biodegradable magnesium alloy WE43 to tumor cells in vitro: Bioresorbable implants with antitumor activity? J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 167–173. [Google Scholar] [CrossRef]
- Fischer, J.; Pröfrock, D.; Hort, N.; Willumeit, R.; Feyerabend, F. Improved cytotoxicity testing of magnesium materials. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2011, 176, 830–834. [Google Scholar] [CrossRef] [Green Version]
- Kolmogorov, N. Statistical theory of crystallization of metals. Izv. Akad. Nauk SSSR, Ser. Mat. Bull. Acad. Sci. USSR. Ser. Math 1937, 1, 355–359. [Google Scholar]
- Johnson, W.A.; Mehl, R.F. Reaction Kinetics in Processes of Nucleation and Growth. Trans. Am. Inst. Min. Metall. Eng. 1939, 135, 416–442. [Google Scholar]
- Avrami, M. Kinetics of Phase Change. I General Theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Sellars, C.M. Physical Metallurgy of Hot Working. In Proceedings of the International Conference of Hot Working and Forming Processes; The Metals Society: Warrendale, PA, USA, 1979; pp. 3–15. [Google Scholar]
- Milenin, A.; Kustra, P.; Pietrzyk, M. Physical and numerical modelling of wire drawing process of Mg alloys in heated dies accounting for recrystallization. Key Eng. Mater. 2014, 622–623. [Google Scholar] [CrossRef]
- Biba, N.; Maximov, A.; Stebunov, S.; Vlasov, A. The model for simulation of thermally, mechanically and physically coupled problems of metal forming. In Proceedings of the 14th International conference on Metal Forming, Kraków, Poland, 16–19 September 2012; pp. 1363–1366. [Google Scholar]
- Friedrich, H.E.; Mordike, B.L. Magnesium Technology, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Milenin, A.; Kustra, P.; Wróbel, M.; Paćko, M.; Byrska-Wójcik, D. Comparison of the stress relaxation of biodegradable surgical threads made of Mg and Zn alloys and some commercial synthetic materials. Arch. Metall. Mater. 2019, 64. [Google Scholar] [CrossRef]
- Atrens, A.; Song, G.-L.; Liu, M.; Shi, Z.; Cao, F.; Dargusch, M.S. Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 2015, 17, 400–453. [Google Scholar] [CrossRef]
- Schulz, L.G. A Direct Method of Determining Preferred Orientation of a Flat Reflection Sample Using a Geiger Counter X-Ray Spectrometer. J. Appl. Phys. 1949, 20, 1030–1033. [Google Scholar] [CrossRef]
- LaboTex, The Texture Analysis Software for Windows. Available online: http://www.labosoft.com.pl/ (accessed on 9 June 2021).
- Biowest. Available online: https://www.biowest.net (accessed on 1 October 2021).
- Bakkar, M.; Liu, Y.; Fang, D.; Stegen, C.; Su, X.; Ramamoorthi, M.; Lin, L.C.; Kawasaki, T.; Makhoul, N.; Pham, H.; et al. A simplified and systematic method to isolate, culture, and characterize multiple types of human dental stem cells from a single tooth. In Methods in Molecular Biology; Humana Press Inc.: New York, NY, USA, 2017; Volume 1553, pp. 191–207. [Google Scholar]
- Xiong, Y.; Yang, Z.; Zhu, T.; Jiang, Y. Effect of texture evolution on corrosion resistance of AZ80 magnesium alloy subjected to applied force in simulated body fluid. Mater. Res. Express 2020, 7, 15406. [Google Scholar] [CrossRef]
- Rietveld, H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 1967, 22, 151–152. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Hill, R.J.; Howard, C.J. A Computer Program for Rietveld Analysis of Fixed Wavelength X-ray and Neutron Diffraction Patterns; Australian Atomic Energy Commission Research Report M112; Lucas Heights Research Laboratories: New South Wales, Australia, 1986. [Google Scholar]
- Crosby, R.L.; Fowler, K.A. Effect of Indium on the Solid Solubility of Calcium and Silicon in Magnesium; Report of Investigation No 6170; Bureau of Mines, United States Department of the Interior: Washington, DC, USA, 1963. [Google Scholar]
- Nayeb-Hashemi, A.A.; Clark, J.B. Phase Diagrams of Binary Magnesium Alloys; Nayeb-Hashemi, A.A., Clark, J.B., Eds.; ASM International: Materials Park, OH, USA, 1988. [Google Scholar]
- Mezbahul-Islam, M.; Mostafa, A.O.; Medraj, M. Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data. J. Mater. 2014, 2014, 704283. [Google Scholar] [CrossRef] [Green Version]
- Feliu, S., Jr. Composition, Structure, and Protective Properties of Air-Formed Oxide Films on Magnesium Alloys. In Magnesium and Its Alloys; CRC Press: Boca Raton, FL, USA, 2019; pp. 263–287. [Google Scholar]
- Hu, H. Texture of Metals. Texture 1974, 1. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Tang, W.; Zhang, S.; Li, D.; Peng, Y. Effects of dynamic recrystallization in extruded and compressed AZ31 magnesium alloy. Acta Metall. Sin. (Engl. Lett.) 2010, 23, 334–342. [Google Scholar]
- Chao, H.Y.; Sun, H.F.; Chen, W.Z.; Wang, E.D. Static recrystallization kinetics of a heavily cold drawn AZ31 magnesium alloy under annealing treatment. Mater. Charact. 2011, 62, 312–320. [Google Scholar] [CrossRef]
- Chen, X.M.; Li, L.T.; Chen, W.; Zhang, W.C.; Zhang, L.X.; Qiao, Y.D.; Wang, E.D. Fine-grained structure and recrystallization at ambient temperature for pure magnesium subjected to large cold plastic deformation. Mater. Sci. Eng. A 2017, 708, 351–359. [Google Scholar] [CrossRef]
- Szklarz, Z.; Wróbel, M.; Krawiec, H. The influence of crystallographic orientation of grains on corrosion behavior of aluminum in sodium chloride solution. In Proceedings of the 6th Kurt Schwabe Symposium: Surface analysis and material engineering in corrosion science and electrochemical technologies, Kraków, Poland, 16–19 September 2013. [Google Scholar]
- Xin, R.; Luo, Y.; Zuo, A.; Gao, J.; Liu, Q. Texture effect on corrosion behavior of AZ31 Mg alloy in simulated physiological environment. Mater. Lett. 2012, 72, 1–4. [Google Scholar] [CrossRef]
- Zhu, S.-J.; Liu, Q.; Qian, Y.-F.; Sun, B.; Wang, L.-G.; Wu, J.-M.; Guan, S.-K. Effect of different processings on mechanical property and corrosion behavior in simulated body fluid of Mg-Zn-Y-Nd alloy for cardiovascular stent application. Front. Mater. Sci. 2014, 8, 256–263. [Google Scholar] [CrossRef]
- Xiong, Y.; Jiang, Y. Cyclic deformation and fatigue of rolled AZ80 magnesium alloy along different material orientations. Mater. Sci. Eng. A 2016, 677, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Dorlot, J.M.; Baïlon, J.P. Des Materiaux, 3rd ed.; Presses Inernationales Polytechnique: Montreal, ON, Canada, 2000. [Google Scholar]
- Snir, Y.; Ben-Hamu, G.; Eliezer, D.; Abramov, E. Effect of compression deformation on the microstructure and corrosion behavior of magnesium alloys. J. Alloys Compd. 2012, 528, 84–90. [Google Scholar] [CrossRef]
- Hagihara, K.; Okubo, M.; Yamasaki, M.; Nakano, T. Crystal-orientation-dependent corrosion behaviour of single crystals of a pure Mg and Mg-Al and Mg-Cu solid solutions. Corros. Sci. 2016, 109, 68–85. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.; Shi, Z.; Venezuela, J.; Wen, C.; Dargusch, M.S.; Atrens, A. Investigating Mg Biocorrosion In Vitro: Lessons Learned and Recommendations. JOM 2019, 71, 1406–1413. [Google Scholar] [CrossRef]
- Li, W.; Zhou, Y.; Shang, C.; Sang, H.; Zhu, H. Effects of environmental pH on the growth of gastric cancer cells. Gastroenterol. Res. Pract. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Azzarito, T.; Lugini, L.; Spugnini, E.P.; Canese, R.; Gugliotta, A.; Fidanza, S.; Fais, S. Effect of Modified Alkaline Supplementation on Syngenic Melanoma Growth in CB57/BL Mice. PLoS ONE 2016, 11, e0159763. [Google Scholar] [CrossRef]
- Li, Q.; Tanaka, Y.; Miwa, N. Influence of hydrogen-occluding-silica on migration and apoptosis in human esophageal cells in vitro. Med. Gas Res. 2017, 7, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Han, B.; Hou, L.-M.; An, T.-T.; Jia, G.; Cheng, Z.-X.; Ma, Y.; Zhou, Y.-N.; Kong, R.; Wang, S.-J.; et al. Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis. PLoS ONE 2016, 11, e0154483. [Google Scholar] [CrossRef]
- Grigolato, R.; Pizzi, N.; Brotto, M.C.; Corrocher, G.; Desando, G.; Grigolo, B. Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect. Int. J. Clin. Exp. Med. 2015, 8, 281–288. [Google Scholar]
No. of the Pass | 1 | 2 | 3 |
---|---|---|---|
Diameter of the wire after pass, mm | 1.72 | 1.64 | 1.56 |
True strain in the pass | 0.091 | 0.095 | 0.101 |
Process | Temperature in Deformation Zone, °C | Fraction of the Recrystallized Material after Pass | Fraction of the Recrystallized Material before Next Pass |
---|---|---|---|
Extruded | 430–440 | 1.0 | - |
t350 | 280 | 0.32 | 0.8 |
t400 | 310 | 0.55 | 1.0 |
t440 | 350 | 0.8 | 1.0 |
Rp, MPa | Rm, MPa | A200, % | Number of Bends | |
---|---|---|---|---|
Extruded | 126.3 ± 2.5 | 210.3 ± 1.16 | 26.7 ± 1.5 | 4.0 ± 0.50 |
t350 | 221.7 ± 8.07 | 263.0 ± 2.26 | 6.6 ± 1.92 | 2.3 ± 0.57 |
t400 | 188.0 ± 5.0 | 247.0 ± 6.45 | 15.1 ± 2.35 | 2.6 ± 0.56 |
t440 | 154.0 ± 6.4 | 228.0 ± 0.9 | 18.7 ± 1.79 | 6.0 ± 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milenin, A.; Wróbel, M.; Kustra, P.; Byrska-Wójcik, D.; Sulej-Chojnacka, J.; Płonka, B.; Łukowicz, K.; Truchan, K.; Osyczka, A. Microstructure and In Vitro Evaluation of Extruded and Hot Drawn Alloy MgCa0.7 for Biodegradable Surgical Wires. Materials 2021, 14, 6673. https://doi.org/10.3390/ma14216673
Milenin A, Wróbel M, Kustra P, Byrska-Wójcik D, Sulej-Chojnacka J, Płonka B, Łukowicz K, Truchan K, Osyczka A. Microstructure and In Vitro Evaluation of Extruded and Hot Drawn Alloy MgCa0.7 for Biodegradable Surgical Wires. Materials. 2021; 14(21):6673. https://doi.org/10.3390/ma14216673
Chicago/Turabian StyleMilenin, Andrij, Mirosław Wróbel, Piotr Kustra, Dorota Byrska-Wójcik, Joanna Sulej-Chojnacka, Bartłomiej Płonka, Krzysztof Łukowicz, Karolina Truchan, and Anna Osyczka. 2021. "Microstructure and In Vitro Evaluation of Extruded and Hot Drawn Alloy MgCa0.7 for Biodegradable Surgical Wires" Materials 14, no. 21: 6673. https://doi.org/10.3390/ma14216673
APA StyleMilenin, A., Wróbel, M., Kustra, P., Byrska-Wójcik, D., Sulej-Chojnacka, J., Płonka, B., Łukowicz, K., Truchan, K., & Osyczka, A. (2021). Microstructure and In Vitro Evaluation of Extruded and Hot Drawn Alloy MgCa0.7 for Biodegradable Surgical Wires. Materials, 14(21), 6673. https://doi.org/10.3390/ma14216673