Production of Agglomerates, Composite Materials, and Seed Coatings from Tannery Waste as New Methods for Its Management
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of Tanning Shavings
3.2. Composite Material Made of Waste Tanning Shavings and Mineral Fillers
3.3. Obtaining Granules from Waste Tanning Shavings
3.4. Seed Coatings Based on Collagen Preparations
4. Discussion
5. Conclusions
6. Patents
- Method for producing agglomerate from the tanning shavings, Application number P.425268, Exclusive right number Pat.236818
- Method for producing agglomerate from the tanning shavings, Application number P.425277, Exclusive right number Pat.236819
- Method for producing agglomerate from the tanning shavings, Application number P.425287, Exclusive right number Pat.238881
- Method for producing agglomerate from the tanning shavings, Application number P.425288, Exclusive right number Pat.238882
- Method of producing an agglomerate from waste tanning shavings, Application number (P.431100, P.431101, P.431099, P.431102)
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bufalo, G.; Florio, C.; Cinelli, G.; Lopez, F.; Cuomo, F.; Ambrosone, L. Principles of minimal wrecking and maximum separation of solid waste to innovate tanning industries and reduce their environmental impact: The case of paperboard manufacture. J. Clean. Prod. 2018, 174, 324–332. [Google Scholar] [CrossRef]
- Sandhya, K.V.; Abinandan, S.; Vedaraman, N.; Velappan, K.C. Extraction of fleshing oil from waste limed fleshings and biodiesel production. Waste Manag. 2016, 48, 638–643. [Google Scholar] [CrossRef]
- Kanagaraj, J.; Velappan, K.C.; Babu, N.K.C.; Sadulla, S. Solid Wastes Generation in the Leather Industry and Its Utilization for Cleaner Environment. J. Sci. Hemind Res. 2006, 37, 541–548. [Google Scholar] [CrossRef]
- Agustini, C.B.; Spier, F.; da Costa, M.; Gutterres, M. Biogas production for anaerobic co-digestion of tannery solid wastes under presence and absence of the tanning agent. Resour. Conserv. Recycl. 2018, 130, 51–59. [Google Scholar] [CrossRef]
- Getahun, E. Experimental Investigation and Characterization of Biodiesel Production from Leather Industry Fleshing Wastes. Int. J. Renew. Sustain. Energy 2013, 2, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Šánek, L.; Pecha, J.; Kolomazník, K.; Bařinová, M. Biodiesel production from tannery fleshings: Feedstock pretreatment and process modeling. Fuel 2015, 148, 16–24. [Google Scholar] [CrossRef]
- Amdouni, S.; Trabelsi, A.B.H.; Elasmi, A.M.; Chagtmi, R.; Haddad, K.; Jamaaoui, F.; Khedhira, H.; Chérif, C. Tannery fleshing wastes conversion into high value-added biofuels and biochars using pyrolysis process. Fuel 2021, 294, 120423. [Google Scholar] [CrossRef]
- Huang, X.; Yu, F.; Peng, Q.; Huang, Y. Superb adsorption capacity of biochar derived from leather shavings for Congo red. RSC Adv. 2018, 8, 29781–29788. [Google Scholar] [CrossRef] [Green Version]
- Louarrat, M.; Rahman, A.N.; Bacaoui, A.; Yaacoubi, A. Removal of Chromium Cr(Vi) of Tanning Effluent with Activated Carbon from Tannery Solid Wastes. Am. J. Phys. Chem. 2017, 6, 103. [Google Scholar] [CrossRef]
- Pinheiro, N.S.C.; Perez-Lopez, O.W.; Gutterres, M. Solid leather wastes as adsorbents for cationic and anionic dye removal. Environ. Technol. 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Arcibar-Orozco, J.A.; Barajas-Elias, B.S.; Caballero-Briones, F.; Nielsen, L.; Rangel-Mendez, J.R. Hybrid Carbon Nanochromium Composites Prepared from Chrome-Tanned Leather Shavings for Dye Adsorption. Water Air Soil Pollut. 2019, 230, 142. [Google Scholar] [CrossRef]
- Romanowska-Duda, Z.; Szufa, S.; Grzesik, M.; Piotrowski, K.; Janas, R. The Promotive Effect of Cyanobacteria and Chlorella sp. Foliar Biofertilization on Growth and Metabolic Activities of Willow (Salix viminalis L.) Plants as Feedstock Production, Solid Biofuel and Biochar as C Carrier for Fertilizers via Torrefaction Process. Energies 2021, 14, 5262. [Google Scholar] [CrossRef]
- Marczak-Grzesik, M.; Budzyń, S.; Tora, B.; Szufa, S.; Kogut, K.; Burmistrz, P. Low-Cost Organic Adsorbents for Elemental Mercury Removal from Lignite Flue Gas. Energies 2021, 14, 2174. [Google Scholar] [CrossRef]
- Wielgosiński, G.; Czerwińska, J.; Szufa, S. Municipal Solid Waste Mass Balance as a Tool for Calculation of the Possibility of Implementing the Circular Economy Concept. Energies 2021, 14, 1811. [Google Scholar] [CrossRef]
- Siuda, R.; Kwiatek, J.; Szufa, S.; Obraniak, A.; Piersa, P.; Adrian, L.; Modrzewski, R.; Ławińska, K.; Siczek, K.; Olejnik, T.P. Industrial Verification and Research Development of Lime–Gypsum Fertilizer Granulation Method. Minerals 2021, 11, 119. [Google Scholar] [CrossRef]
- Stelmach, J.; Kuncewicz, C.; Szufa, S.; Jirout, T.; Rieger, F. The Influence of Hydrodynamic Changes in a System with a Pitched Blade Turbine on Mixing Power. Processes 2021, 9, 68. [Google Scholar] [CrossRef]
- Gil, R.; Ruiz, B.; Lozano, M.; Martin, M.J.; Fuente, E. VOCs removal by adsorption onto activated carbons from biocollagenic wastes of vegetable tanning. Chem. Eng. J. 2014, 245, 80–88. [Google Scholar] [CrossRef]
- Gammoun, A.; Tahiri, S.; Albizane, A.; Azzi, M.; Moros, J.; Garrigues, S.; de la Guardia, M. Separation of motor oils, oily wastes and hydrocarbons from contaminated water by sorption on chrome shavings. J. Hazard. Mater. 2007, 145, 148–153. [Google Scholar] [CrossRef]
- Kluska, J.; Ochnio, M.; Kardaś, D.; Heda, Ł. The influence of temperature on the physicochemical properties of products of pyrolysis of leather-tannery waste. Waste Manag. 2019, 88, 248–256. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, J.; Zhao, L.; Tang, Y.; Zhou, J.; Shi, B. Persulfate activation by Cr2O3/BC derived from chrome shavings for antibiotics degradation. Chem. Eng. J. 2021, 420, 127698. [Google Scholar] [CrossRef]
- Fang, C.; Jiang, X.; Lv, G.; Yan, J.; Lin, X.; Song, H.; Cao, J. Pyrolysis characteristics and Cr speciation of chrome-tanned leather shavings: Influence of pyrolysis temperature. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 41, 881–891. [Google Scholar] [CrossRef]
- Liu, J.; Luo, L.; Zhang, Z.; Hu, Y.; Wang, F.; Li, X.; Tang, K. A combined kinetic study on the pyrolysis of chrome shavings by thermogravimetry. Carbon Resour. Convers. 2020, 3, 156–163. [Google Scholar] [CrossRef]
- Szufa, S.; Piersa, P.; Adrian, Ł.; Czerwińska, J.; Lewandowski, A.; Lewandowska, W.; Sielski, J.; Dzikuć, M.; Wróbel, M.; Jewiarz, M.; et al. Sustainable Drying and Torrefaction Processes of Miscanthus for Use as a Pelletized Solid Biofuel and Biocarbon-Carrier for Fertilizers. Molecules 2021, 26, 1014. [Google Scholar] [CrossRef]
- Szufa, S. Use of superheated steam in the process of biomass torrefaction. Przemysł Chem. 2020, 99, 1797–1801. (In Polish) [Google Scholar] [CrossRef]
- Kryszak, D.; Bartoszewicz, A.; Szufa, S.; Piersa, P.; Obraniak, A.; Olejnik, T.P. Modeling of Transport of Loose Products with the Use of the Non-Grid Method of Discrete Elements (DEM). Processes 2020, 8, 1489. [Google Scholar] [CrossRef]
- Szufa, S.; Adrian, Ł.; Piersa, P.; Romanowska-Duda, Z.; Grzesik, M.; Cebula, A.; Kowalczyk, S. Experimental studies on energy crops torrefaction process using batch reactor to estimate torrefaction temperature and residence time. In Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy; Mudryk, K., Werle, S., Eds.; Springer Proceedings in Energy; Springer: Berlin/Heidelberg, Germany, 2018; pp. 365–373. [Google Scholar] [CrossRef]
- Gomes, C.S.; Repke, J.; Meyer, M. The effect of various pre-treatment methods of chromium leather shavings in continuous biogas production. Eng. Life Sci. 2019, 20, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Gomes, C.S.; Repke, J.-U.; Meyer, M. Investigation of different pre-treatments of chromium leather shavings to improve biogas production. J. Leather Sci. Eng. 2020, 2, 1–14. [Google Scholar] [CrossRef]
- Agustini, C.B.; Meyer, M.; Da Costa, M.; Gutterres, M. Biogas from anaerobic co-digestion of chrome and vegetable tannery solid waste mixture: Influence of the tanning agent and thermal pretreatment. Process. Saf. Environ. Prot. 2018, 118, 24–31. [Google Scholar] [CrossRef]
- Pietrelli, L.; Ferro, S.; Reverberi, A.P.; Vocciante, M. Removal and recovery of heavy metals from tannery sludge subjected to plasma pyro-gasification process. J. Clean. Prod. 2020, 273, 123166. [Google Scholar] [CrossRef]
- Ferreira, S.D.; Junges, J.; Scopel, B.; Manera, C.; Osório, E.; Lazzarotto, I.P.; Godinho, M. Steam Gasification of Biochar Derived from the Pyrolysis of Chrome-Tanned Leather Shavings. Chem. Eng. Technol. 2019, 42, 2530–2538. [Google Scholar] [CrossRef]
- Olejnik, T. Analysis of the breakage rate function for selected process parameters in quartzite milling. Chem. Process. Eng. 2012, 33, 117–129. [Google Scholar] [CrossRef]
- Heim, A.; Olejnik, T.P.; Pawlak, A. Using statistical moments to describe grinding in a ball mill for industrial-scale process. Chem. Eng. Process. Process. Intensif. 2005, 44, 263–266. [Google Scholar] [CrossRef]
- Olejnik, T.P. Milling kinetics of chosen rock materials under dry conditions considering strength and statistical properties of bed. Physicochem. Probl. Miner. Process. 2011, 46, 145–154. [Google Scholar]
- Sharafa, S.A.A.; Gasmeleed, G.A.; Musa, A.E. Reduction of hexavalent chromium from chrome shavings. International J. Adv. Ind. Eng. 2013, 1, 24–27. [Google Scholar]
- Sreeram, K.; Rao, J.; Nair, B. Chromium (III) Pigments: Use of leather wastes as alternative starting material. J. Am. Leather Chem. Assoc. 2011, 106, 219–225. [Google Scholar]
- Zehra, B.; Nawaz, H.B.; Solangi, B.A.; Nadeem, U. Extraction of Protein from Chrome Shavings, Modification with Acrylic Monomers and Further Re-Utilization in Leather Processing. Am. Sci. Res. J. Eng. Technol. Sci. 2019, 52, 98–104. [Google Scholar]
- Kubilius, K.; Valeikiene, V.; Valeika, V. Collagen hydrolysate from chromed shavings for leather finish. In Proceedings of the 8th International Conference on Advanced Materials and Systems, Bucharest, Romania, 1–3 October 2020; Leather and Footwear Research Institute (INCDTP-ICPI): Bucharest, Romania; pp. 399–402. [Google Scholar]
- Kanagaraj, J.; Panda, R.C.; Prasanna, R. Sustainable Chrome Tanning System Using Protein Based Product Developed from Leather Waste: Wealth from Waste. Res. Sq. 2021, 1, 1–30. [Google Scholar] [CrossRef]
- Oruko, R.; Selvarajan, R.; Ogola, H.; Edokpayi, J.; Odiyo, J.O. Contemporary and future direction of chromium tanning and management in sub Saharan Africa tanneries. Process. Saf. Environ. Prot. 2020, 133, 369–386. [Google Scholar] [CrossRef]
- Kocurek, P.; Kolomazník, K.; Bařinová, M.; Hendrych, J. Total control of chromium in tanneries–thermal decomposition of filtration cake from enzymatic hydrolysis of chrome shavings. Waste Manag. Res. 2017, 35, 444–449. [Google Scholar] [CrossRef]
- Long, H.; Huang, X.; Liao, Y.; Ding, J. Recovery of Cr (VI) from tannery sludge and chrome-tanned leather shavings by Na2CO3 segmented calcination. J. Environ. Chem. Eng. 2021, 9, 105026. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, W.; Liao, X.; Zeng, Y.; Shi, B. Transposition of Chrome Tanning in Leather Making. J. Am. Leather Chem. Assoc. 2014, 109, 176–183. [Google Scholar]
- China, C.R.; Maguta, M.M.; Nyandoro, S.S.; Hilonga, A.; Kanth, S.V.; Njau, K.N. Alternative tanning technologies and their suitability in curbing environmental pollution from the leather industry: A comprehensive review. Chemosphere 2020, 254, 126804. [Google Scholar] [CrossRef]
- Zuriaga-Agustí, E.; Galiana-Aleixandre, M.; Bes-Piá, A.; Mendoza-Roca, J.-A.; Risueño-Puchades, V.; Segarra, V. Pollution reduction in an eco-friendly chrome-free tanning and evaluation of the biodegradation by composting of the tanned leather wastes. J. Clean. Prod. 2015, 87, 874–881. [Google Scholar] [CrossRef]
- Modrzewski, R.; Wodzinski, P. Grained material classification on a double frequency screen. Physicochem. Probl. Miner. Process. 2011, 46, 5–12. [Google Scholar]
- Modrzewski, R.; Wodzinski, P. The results of process investigations of a double frequency screen. Physicochem. Probl. Miner. Process. 2010, 44, 169–178. [Google Scholar]
- Lawinska, K.; Serweta, W.; Modrzewski, R. Studies on water absorptivity and desorptivity of tannery shavings-based composites with mineral additives. Przem. Chem. 2019, 98, 106–109. [Google Scholar] [CrossRef]
- Katarzyna, L.; Remigiusz, M.; Piotr, W. Mathematical and empirical description of screen blocking. Granul. Matter 2016, 18, 13. [Google Scholar] [CrossRef] [Green Version]
- Lawinska, K.; Modrzewski, R. Analysis of sieve holes blocking in a vibrating screen and a rotary and drum screen. Physicochem. Probl. Miner. Process. 2017, 53, 812–828. [Google Scholar] [CrossRef]
- Lawinska, K.E.; Wodzinski, P.; Modrzewski, R. A method for determining sieve holes blocking degree. Physicochem. Probl. Miner. Process. 2015, 51, 15–22. [Google Scholar] [CrossRef]
- Sieczyńska, K. Stężenia wybranych metali w produktach kosmetycznych stosowanych do makijażu oczu. Przemysł Chem. 2020, 1, 131–134. [Google Scholar] [CrossRef]
- Ławińska, K.; Modrzewski, R.; Serweta, W. Tannery Shavings and Mineral Additives as a Basis of New Composite Materials. Fibres Text. East. Eur. 2019, 27, 130–139. [Google Scholar] [CrossRef]
- Ławińska, K.; Serweta, W.; Modrzewski, R. Qualitative Evaluation of the Possible Application of Collagen Fibres: Composite Materials with Mineral Fillers as Insoles for Healthy Footwear. Fibres Text. East. Eur. 2018, 26, 81–85. [Google Scholar] [CrossRef]
- Ławińska, K.; Szufa, S.; Obraniak, A.; Olejnik, T.; Siuda, R.; Kwiatek, J.; Ogrodowczyk, D. Disc Granulation Process of Carbonation Lime Mud as a Method of Post-Production Waste Management. Energies 2020, 13, 3419. [Google Scholar] [CrossRef]
- Obraniak, A.; Orczykowska, M.; Olejnik, T.P. The effects of viscoelastic properties of the wetting liquid on the kinetics of the disc granulation process. Powder Technol. 2019, 342, 328–334. [Google Scholar] [CrossRef]
- Obraniak, A.; Lawinska, K. Spectrophotometric analysis of disintegration mechanisms (abrasion and crushing) of agglomerates during the disc granulation of dolomite. Granul. Matter 2017, 20, 7. [Google Scholar] [CrossRef] [Green Version]
- Ławińska, K.; Modrzewski, R.; Obraniak, A. Comparison of granulation methods for tannery shavings. Fibres Text. East. Eur. 2020, 28, 119–123. [Google Scholar] [CrossRef]
- Ławińska, K.; Obraniak, A.; Modrzewski, R. Granulation Process of Waste Tanning Shavings. Fibres Text. East. Eur. 2019, 27, 107–110. [Google Scholar] [CrossRef]
- Ławińska, K.; Szufa, S.; Modrzewski, R.; Obraniak, A.; Wężyk, T.; Rostocki, A.; Olejnik, T.P. Obtaining Granules from Waste Tannery Shavings and Mineral Additives by Wet Pulp Granulation. Molecules 2020, 25, 5419. [Google Scholar] [CrossRef] [PubMed]
- Ławińska, K.; Lasoń-Rydel, M.; Gendaszewska, D.; Grzesiak, E.; Sieczyńska, K.; Gaidau, C.; Epure, D.-G.; Obraniak, A. Coating of Seeds with Collagen Hydrolysates from Leather Waste. Fibres Text. East. Eur. 2019, 27, 59–64. [Google Scholar] [CrossRef]
- Pati, A.; Chaudhary, R.; Subramani, S. A review on management of chrome-tanned leather shavings: A holistic paradigm to combat the environmental issues. Environ. Sci. Pollut. Res. 2014, 21, 11266–11282. [Google Scholar] [CrossRef]
- Lawinska, K. Zagospodarowanie odpadów garbarskich w nasiennictwie. Przemysł Chem. 2017, 1, 162–165. [Google Scholar] [CrossRef]
- Lawinska, K. Otoczkowanie nasion strączkowych hydrolizatami kolagenu z odpadów garbarskich. Przemysł Chem. 2017, 1, 71–74. [Google Scholar] [CrossRef]
- Gendaszewska, D.; Lasoń-Rydel, M.; Ławińska, K.; Grzesiak, E.; Pipiak, P. Characteristics of collagen preparations from leather wastes by the high pressure liquid chromatography method. Fibres Text. East. Eur. 2021, 29, 75–79. [Google Scholar] [CrossRef]
- Szufa, S.; Dzikuć, M.; Adrian, Ł.; Piersa, P.; Romanowska-Duda, Z.; Lewandowska, W.; Marcza, M.; Błaszczuk, A.; Piwowar, A. Torrefaction of oat straw to use as solid biofuel, an additive to organic fertilizers for agriculture purposes and activated carbon–TGA analysis, kinetics. E3S Web Conf. 2020, 154, 02004. [Google Scholar] [CrossRef] [Green Version]
- Szufa, S.; Piersa, P.; Adrian, Ł.; Sielski, J.; Grzesik, M.; Romanowska-Duda, Z.; Piotrowski, K.; Lewandowska, W. Acquisition of Torrefied Biomass from Jerusalem Artichoke Grown in a Closed Circular System Using Biogas Plant Waste. Molecules 2020, 25, 3862. [Google Scholar] [CrossRef] [PubMed]
- Szufa, S.; Wielgosiński, G.; Piersa, P.; Czerwińska, J.; Dzikuć, M.; Adrian, Ł.; Lewandowska, W.; Marczak, M. Torrefaction of Straw from Oats and Maize for Use as a Fuel and Additive to Organic Fertilizers—TGA Analysis, Kinetics as Products for Agricultural Purposes. Energies 2020, 13, 2064. [Google Scholar] [CrossRef] [Green Version]
- Domoradzki, M.; Korpal, W. Germination analysis for coated radish seeds, carried out using four selected bed types. Agric. Eng. 2005, 2, 27–33. [Google Scholar]
- Cuadros, R.; Solà, A.; Ollé, I.; Otero, L.; Bacardit, A. Reducing the use of volatile organic compoundsin the leather industry. J. Soc. Leather Technol. Chem. 2016, 100, 1–7. [Google Scholar]
- Stanca, M.; Gaidau, C.; Alexe, C.-A.; Stanculescu, I.; Vasilca, S.; Matei, A.; Simion, D.; Constantinescu, R.-R. Multifunctional Leather Surface Design by Using Carbon Nanotube-Based Composites. Materials 2021, 14, 3003. [Google Scholar] [CrossRef]
- Parisi, M.; Nanni, A.; Colonna, M. Recycling of Chrome-Tanned Leather and Its Utilization as Polymeric Materials and in Polymer-Based Composites: A Review. Polymers 2021, 13, 429. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Jiang, H.; Su, C.; Shao, Y.; Gao, Y.; Li, J. Preparation of recycled graphite/expanded polystyrene by a facile solvent dissolution method. J. Mater. Sci. 2018, 54, 1197–1204. [Google Scholar] [CrossRef]
- Vidaurre-Arbizu, M.; Pérez-Bou, S.; Zuazua-Ros, A.; Martín-Gómez, C. From the leather industry to building sector: Exploration of potential applications of discarded solid wastes. J. Clean. Prod. 2021, 291, 125960. [Google Scholar] [CrossRef]
- Zainescu, G. Polymer Compositions from Leather Fibers (Leather Shavings) for Mortar in Constructions. In Proceedings of the 18th SGEM International Multidisciplinary Scientific GeoConference SGEM2018, Energy and Clean Technologies Stef92 Technology, Albena, Bulgaria, 2–8 July 2018; pp. 79–86. [Google Scholar]
- Brasack, I.; Böttcher, H.; Hempel, U. Biocompatibility of Modified Silica-Protein Composite Layers. J. Sol-Gel Sci. Technol. 2000, 19, 479–482. [Google Scholar] [CrossRef]
- Ocak, B.; Aslan, A.; Gulumser, G. Utilization of chromium-tanned leather solid wastes in microencapsulation. J. Am. Leather Chem. Assoc. 2011, 106, 232–238. [Google Scholar]
- Ashokkumar, M.; Thanikaivelan, P.; Murali, R.; Chandrasekaran, B. Preparation and Characterization of Composite Sheets from Collagenous and Chromium–Collagen Complex Wastes Using Polyvinylpyrrolidone: Two Problems, One Solution. Waste Biomass-Valorization 2010, 1, 347–355. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Li, L. Reuse of leather shavings as a reinforcing filler for poly (vinyl alcohol). J. Thermoplast. Compos. Mater. 2016, 29, 327–343. [Google Scholar] [CrossRef]
- Ramamurthy, G.; Ramalingam, B.; Katheem, M.F.; Sastry, T.P.; Inbasekaran, S.; Thanveer, V.; Jayaramachandran, S.; Das, S.K.; Mandal, A.B. Total Elimination of Polluting Chrome Shavings, Chrome, and Dye Exhaust Liquors of Tannery by a Method Using Keratin Hydrolysate. ACS Sustain. Chem. Eng. 2015, 3, 1348–1358. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Z.; Liu, X.; Zhang, Y.; Zou, H.; Le, Y.; Chen, J.-F. Conductive Skeleton–Heterostructure Composites Based on Chrome Shavings for Enhanced Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2020, 12, 53076–53087. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Zhang, M.; Dai, L.; Qi, Y.; Shi, R.; Yang, J. Fabrication and characterization of regenerated leather using chrome shavings raw material. J. Am. Leather Chem. Assoc. 2017, 112, 145–152. [Google Scholar]
- Krummenauer, K.; Andrade, J.J.D.O. Incorporation of chromium-tanned leather residue to asphalt micro-surface layer. Constr. Build. Mater. 2009, 23, 574–581. [Google Scholar] [CrossRef]
- Langmaier, F.; Mokrejs, P.; Kolomaznik, K.; Mladek, M. Plasticizing collagen hydrolysate with glycerol and low-molecular weight poly(ethylene glycols). Thermochim. Acta 2008, 469, 52–58. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Kassem, N.F. Utilization of waste leather shavings as filler in paper making. J. Appl. Polym. Sci. 2010, 118, 1713–1719. [Google Scholar] [CrossRef]
- Rodrigues, R.F.; Leite, S.R.; Santos, D.A.; Barrozo, M.A. Drum granulation of single super phosphate fertilizer: Effect of process variables and optimization. Powder Technol. 2017, 321, 251–258. [Google Scholar] [CrossRef]
- Quatrini, E.; Li, X.; Mba, D.; Costantino, F. Fault Diagnosis of a Granulator Operating under Time-Varying Conditions Using Canonical Variate Analysis. Energies 2020, 13, 4427. [Google Scholar] [CrossRef]
- Obidziński, S. Ocena właściwości fizyczno-chemicznych granulatów z surowców odpadowych przetwórstwa spożywczego pod kątem ich zastosowania jako zanęty dla ryb. Przemysł Chem. 2021, 1, 90–93. [Google Scholar] [CrossRef]
- Heim, A.; Obraniak, A.; Gluba, T. Effect of bed wetting rate on the bulk density of granulated products. Przem. Chem. 2008, 87, 154–157. [Google Scholar]
- Obraniak, A.; Gluba, T.; Ławińska, K.; Derbiszewski, B. Minimisation of environmental efects related with storing fly ash from combustion of hard coal. Environ. Prot. Eng. 2018, 44, 177–189. [Google Scholar] [CrossRef]
- Chen, H.; Mangwandi, C.; Rooney, D. Production of solid biofuel granules from drum granulation of bio-waste with silicate-based binders. Powder Technol. 2019, 354, 231–239. [Google Scholar] [CrossRef]
- Skwarek, M.; Wala, M.; Kołodziejek, J.; Sieczyńska, K.; Lasoń-Rydel, M.; Ławińska, K.; Obraniak, A. Seed Coating with Biowaste Materials and Biocides—Environment-Friendly Biostimulation or Threat? Agronomy 2021, 11, 1034. [Google Scholar] [CrossRef]
- Skwarek, M.; Nawrocka, J.; Lasoń-Rydel, M.; Ławińska, K. Diversity of plant biostimulants in plant growth promotion and stress protection in crop and fibrous plants. Fibres Text. East. Eur. 2020, 28, 34–41. [Google Scholar] [CrossRef]
- Jewiarz, M.; Wróbel, M.; Mudryk, K.; Szufa, S. Impact of the Drying Temperature and Grinding Technique on Biomass Grindability. Energies 2020, 13, 3392. [Google Scholar] [CrossRef]
- Dzikuć, M.; Kuryło, P.; Dudziak, R.; Szufa, S.; Dzikuć, M.; Godzisz, K. Selected Aspects of Combustion Optimization of Coal in Power Plants. Energies 2020, 13, 2208. [Google Scholar] [CrossRef]
- Gaidau, C.; Ghiga, M.; Stepan, E.; Lacatus, V.; Cirjaliumurgea, M.; Ionita, A.D.; Filipescu, L. Emulsified foliar fluids from waste leather hydrolysis products. In Proceedings of the Ceex Conference, Brasov, Romania, 27–29 July 2008; pp. 1–7. [Google Scholar]
- Niculescu, M.-D.; Epure, D.-G.; Lasoń-Rydel, M.; Gaidau, C.; Gidea, M.; Enascuta, C. Biocomposites based on collagen and keratin with properties for agriculture and industrie applications. EuroBiotech J. 2019, 3, 160–166. [Google Scholar] [CrossRef]
- Pahlawan, I.F.; Sutyasmi, S.; Griyanitasari, G. Hydrolysis of leather shavings waste for protein binder. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Universitas Brawijaya, East Java, Indonesia, 18–20 September 2018; IOP Publishing: Bristol, UK, 2019; Volume 230, p. 012083. [Google Scholar] [CrossRef]
- Pati, A.; Chaudhary, R.; Subramani, S. Biochemical method for extraction and reuse of protein and chromium from chrome leather shavings: A waste to wealth approach. J. Am. Leather Chem. Assoc. 2013, 108, 365–372. [Google Scholar]
- Shanthi, C.; Banerjee, P.; Chandra Babu, N.; Rajakumar, G. Recovery and characterization of protein hydrolysate from chrome shavings by microbial degradation. J. Am. Leather Chem. Assoc. 2013, 108, 231–239. [Google Scholar]
- Tian, Z.; Wang, Y.; Wang, H.; Zhang, K. Regeneration of native collagen from hazardous waste: Chrome-tanned leather shavings by acid method. Environ. Sci. Pollut. Res. 2020, 27, 31300–31310. [Google Scholar] [CrossRef] [PubMed]
Shape | Volume Fraction [%] |
---|---|
disc-shaped | 4.93 ± 0.71 |
spherical | 70.14 ± 1.02 |
bladed | 1.17 ± 0.48 |
rod-like | 23.77 ± 1.52 |
Element | Concentration (mg/kg) |
---|---|
Ag | ND |
Al | 47.751 |
As | ND |
Ba | 1.697 |
Bi | ND |
Ca | 2056.97 |
Cd | ND |
Co | ND |
Cr | 10,371.6 |
Cu | ND |
Fe | 490.561 |
Ge | ND |
Hg | ND |
Mg | 1380.45 |
Mn | 3.095 |
Mo | ND |
Ni | 4.687 |
Pb | ND |
Sb | ND |
Se | ND |
Sn | ND |
Sr | 1.193 |
Ti | ND |
V | ND |
Zn | 6.173 |
Zr | ND |
S | 3231.75 |
P | 85.806 |
Substance Name | Percentage (%) |
---|---|
3,3-dichloropropine | 1.37 |
methylhydrazine | 0.29 |
formic acid | 2.11 |
methylphosphine/formic acid | 2.78 |
propylene glycol | 0.84 |
benzaldehyde | 1.04 |
carbitol | 0.38 |
benzosulfonosal | 8.75 |
8-methylnonanoic acid | 0.32 |
4-chloro-m-cresol | 16.11 |
2-undecenal | 0.29 |
o-hydroxybifenyl | 43.57 |
tridecanal | 0.39 |
2-(metylotio)-benzotiazol | 0.86 |
2-octylfuran | 0.23 |
triethylene glycol monododecyl ether | 0.30 |
tetradecanal | 0.22 |
myristic acid | 0.37 |
hexadecanal | 2.41 |
pentadecanal | 0.26 |
palmitic acid methyl ester | 0.88 |
palitol acid | 0.35 |
pentadecanoic acid | 3.09 |
linoleic acid methyl ester | 0.41 |
methyl oleate | 7.91 |
9-octadecenoic acid methyl ester | 2.51 |
methyl stearate | 0.41 |
cis-10-heptedecenoic acid | 0.63 |
other substances | 0.92 |
Parameters | Adhesive Medium | |||
---|---|---|---|---|
Homopolymer | Gelatin Glue | Low-Ammonia Natural Latex Glue | Epoxy Resin with a Hardening Agent | |
Young′s modulus (GPa) | 0.0517 ± 0.00981 | 0.0365 ± 0.00771 | 0.000594 ± 0.000136 | 0.000586 ± 0.0000926 |
Density (g/cm3) | 0.901 ± 0.08 | 0.699 ± 0.09 | 0.509 ± 0.07 | 0.420 ± 0.08 |
Composition of Coat | Seeds | Average Seedling Length for a Coated Seed, mm |
---|---|---|
collagen hydrolysate, soot | pea | 35.58 ± 1.55 after 10 days following sowing |
solutions of molasses, soot | pea | 33.28 ± 1.89 after 10 days following sowing |
yellow dextrin and polyvinyl alcohol, soot | pea | 34.46 ± 0.88 after 10 days following sowing |
collagen hydrolysate | rape | 12.1 ± 1.51 after 7 days following sowing |
yellow dextrin and polyvinyl alcohol | rape | 11.56 ± 1.66 after 7 days following sowing |
collagen hydrolysate, dolomite | rape | 11.45 ± 1.15 after 7 days following sowing |
yellow dextrin and polyvinyl alcohol, dolomite | rape | 11.075 ± 1.25 after 7 days following sowing |
collagen hydrolysate, dolomite, peat | rape | 11.75 ± 0.35 after 7 days following sowing |
yellow dextrin and polyvinyl alcohol, dolomite, peat | rape | 10.7 ± 0.54 after 7 days following sowing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ławińska, K. Production of Agglomerates, Composite Materials, and Seed Coatings from Tannery Waste as New Methods for Its Management. Materials 2021, 14, 6695. https://doi.org/10.3390/ma14216695
Ławińska K. Production of Agglomerates, Composite Materials, and Seed Coatings from Tannery Waste as New Methods for Its Management. Materials. 2021; 14(21):6695. https://doi.org/10.3390/ma14216695
Chicago/Turabian StyleŁawińska, Katarzyna. 2021. "Production of Agglomerates, Composite Materials, and Seed Coatings from Tannery Waste as New Methods for Its Management" Materials 14, no. 21: 6695. https://doi.org/10.3390/ma14216695
APA StyleŁawińska, K. (2021). Production of Agglomerates, Composite Materials, and Seed Coatings from Tannery Waste as New Methods for Its Management. Materials, 14(21), 6695. https://doi.org/10.3390/ma14216695