Ti(C,N) and WC-Based Cermets: A Review of Synthesis, Properties and Applications in Additive Manufacturing
Abstract
:1. Introduction
2. Definition, Classification and Milestones in the History of the Cermets
3. Procedures for Obtaining Cermets
3.1. Effect of Carbon in Cermets
3.2. Effects of Additives in Cermets
4. Morphology and Chemistry
5. Cermets for Additive Manufacturing and Application
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Claar, T.; Johnson, W.B.; Andersson, C.A.; Schiroky, G.H. Microstructure and Properties of Platelet-Reinforced Ceramics Formed by the Directed Reaction of Zirconium with Boron Carbide. In 13th Annual Conference on Composites and Advanced Ceramic Materials: Ceramic Engineering and Science Proceedings; Wachtman, J.B., Jr., Ed.; Wiley: Hoboken, NJ, USA, 1989; Volume 10, pp. 599–609. [Google Scholar]
- Dudney, N.J.; West, W.; Nanda, J. Handbook of Solid State Batteries, 2nd ed.; World Scientific: Singapore, 2015; Volume 6, p. 253. [Google Scholar]
- Mondal, B.; Das, P.; Singh, S. Advanced WC–Co cermet composites with reinforcement of TiCN prepared by extended thermal plasma route. Mater. Sci. Eng. A 2008, 498, 59–64. [Google Scholar] [CrossRef]
- Peng, Y.; Miao, H.; Peng, Z. Development of TiCN-based cermets: Mechanical properties and wear mechanism. Int. J. Refract. Met. Hard Mater. 2013, 39, 78–89. [Google Scholar] [CrossRef]
- Nino, A.; Takahashi, K.; Sugiyama, S.; Taimatsu, H. Effects of carbon addition on microstructures and mechanical properties of binderless tungsten carbide. Mater. Trans. 2012, 53, 1475–1480. [Google Scholar] [CrossRef] [Green Version]
- Monzón, M.; Paz, R.; Ortega, Z.; Diazet, N. Knowledge transfer and standards needs in additive manufacturing, in Additive manufacturing–Developments in training and education. In Additive Manufacturing—Developments in Training and Education; Pei, E., Monzón, M., Bernard, A., Eds.; Springer: New York, NY, USA, 2019; pp. 1–13. [Google Scholar]
- Tarragó, J.; Ferrari, C.; Reig, B.; Coureaux, D.; Schneider, L.; Llanes, L. Mechanics and mechanisms of fatigue in a WC–Ni hardmetal and a comparative study with respect to WC–Co hardmetals. Int. J. Fatigue 2015, 70, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, D.A.; Roa, J.J.; Ther, O.; Tarrés, E.; Llanes, L. Micromechanical properties of WC-(W, Ti, Ta, Nb) C-Co composites. J. Alloys Compd. 2019, 777, 593–601. [Google Scholar] [CrossRef]
- Wohlers, T.T.; Caffrey, T. Wohlers Report 2015: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report; Wohlers Associates: Fort Collins, CO, USA, 2015. [Google Scholar]
- Deckers, J.; Vleugels, J.; Kruth, J.P. Additive manufacturing of ceramics: A review. J. Ceram. Sci. Tech. 2014, 5, 245–260. [Google Scholar]
- Asmi, D.; Low, I.M. Manufacture of graded ceramic matrix composites using infiltration techniques. In Advances in Ceramic Matrix Composites, 2nd ed.; Low, I.M., Ed.; Woodhead: Sawston, UK; Cambridge, UK, 2018; pp. 109–140. [Google Scholar]
- Humenik, M., Jr.; Oarikh, N.M. Cermets: I, Fundamental Concepts Related to Micro-structure and Physical Properties of Cermet Systems. J. Am. Ceram. Soc. 1956, 39, 60–63. [Google Scholar] [CrossRef]
- Coromant, S. Modern Metal Cutting: A Practical Handbook; Sandvik Coromant: Pontiac, MI, USA, 1994. [Google Scholar]
- Saha, M.; Mallik, M. Additive manufacturing of ceramics and cermets: Present status and future perspectives. Sadhana 2021, 46, 162. [Google Scholar] [CrossRef]
- Ettmayer, P. Hardmetals and cermets. Annu. Rev. Mater. Sci. 1989, 19, 145–164. [Google Scholar] [CrossRef]
- Huang, S.; Xiong, J.; Guo, Z.; Wana, W.; Tang, L.; Zhong, H.; Zhou, W.; Wang, B. Oxidation of WC-TiC-TaC-Co hard materials at relatively low temperature. Int. J. Refract. Met. Hard Mater. 2015, 48, 134–140. [Google Scholar] [CrossRef]
- Mahmood, Z. An Investigation into Orthogonal and Oblique Cutting Processes. Master’s Thesis, Sheffield Hallam University, Sheffield, UK, 2018. [Google Scholar]
- Garcia, J.; Collado, V.C.; Blomqvist, A.; Kaplan, B. Cemented carbide microstructures: A review. Int. J. Refract. Met. Hard Mater. 2019, 80, 40–68. [Google Scholar] [CrossRef]
- Tsuda, K. History of development of cemented carbides and cermet. SEI Tech. Rev. 2016, 82, 16–20. [Google Scholar]
- Schröter, K. Gesinterte Harte Metalllegierungen Und Verfahren Zu Ihrer Herstellung. DE Patent 420689C, 30 October 1925. [Google Scholar]
- Mamleev, R.F. New technique for producing items from TiC-(Ni-alloy) cermet for severe application conditions. Int. J. Adv. Manuf. Syst. 2019, 105, 1437–1445. [Google Scholar] [CrossRef]
- Henry, J.; Hill, S.D.; Schaller, J.L.; Campbell, T.T. Nitride inclusions in titanium ingots: A study of possible sources in the pro-duction of magnesium-reduced sponge. Metall. Trans. 1973, 4, 1859–1864. [Google Scholar] [CrossRef]
- Mills, B. Recent developments in cutting tool materials. J. Mater. Process. Technol. 1996, 56, 16–23. [Google Scholar] [CrossRef]
- Bingchu, M.; Ming, Y.; Jiaoqun, Z.; Weibing, Z. Preparation of TiAl/Ti2AlC composites with Ti/Al/C powders by in-situ hot pressing. J. Wuhan Univ. Technol. Sci. Ed. 2006, 21, 14–16. [Google Scholar] [CrossRef]
- Nishigaki, K.; Yoshimura, H.; Doi, H. Effect of aluminum nitride additions on the mechanical and cutting properties of Ti (C0. 7N0. 3)–15Ni–8Mo alloy. J. Soc. Powder Powder Metall. 1980, 27, 50. [Google Scholar] [CrossRef]
- Dela Obra, A.G.; Torres, Y.; Aviles, M.A.; Chicardi, E. A new family of cermets: Chemically complex but microstructurally simple. Int. J. Refract. Met. Hard Mater. 2017, 63, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Viswanadham, R. Science of Hard Materials; Springer: New York, NY, USA, 1983; p. 467. [Google Scholar]
- Parashivamurthy, K.I.; Kumar, R.K.; Seetharamu, S.; Chandrasekharaiah, M.N. Review on TiC reinforced steel composites. J. Mater. Sci. 2001, 36, 4519–4530. [Google Scholar] [CrossRef]
- German, R.M.; Suri, P. Liquid Phase Sintering. J. Mater. Sci. 2009, 44, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Saba, F.; Sajjadi, S.A.; Haddad-Sabzevar, M.; Zhang, F. Formation mechanism of nano titanium carbide on multi-walled carbon nanotube and influence of the nanocarbides on the load-bearing contribution of the nanotubes inner-walls in aluminum-matrix composites. Carbon 2017, 115, 720–729. [Google Scholar] [CrossRef]
- Parihar, R.S.; Setti, S.G.; Sahu, R.K. Recent advances in the manufacturing processes of functionally graded materials: A review. Sci. Eng. Compos. Mater. 2018, 25, 309–336. [Google Scholar] [CrossRef]
- Luo, P.; Strutt, P. Thermal chemical synthesis of nanostructured chromium carbide cermets. Mater. Sci. Eng. A 1995, 204, 181–185. [Google Scholar] [CrossRef]
- Kosolapova, T.Y. Carbides; Springer: New York, NY, USA, 1971; p. 51. [Google Scholar]
- Kear, B.; McCandlish, L. Chemical processing and properties of nanostructured WC-Co materials. Nanostruct. Mater. 1993, 3, 19–30. [Google Scholar] [CrossRef]
- McCandlish, L.; Kear, B.; Kim, B. Chemical processing of nanophase WC–Co composite powders. Mater. Sci. Technol. 1990, 6, 953–957. [Google Scholar] [CrossRef]
- Al-Aqeeli, N.; Saheb, N.; Laoui, T.; Mohammad, K. The Synthesis of nanostructured WC-based hardmetals using mechanical alloying and their direct consolidation. J. Nanomater. 2014, 2014, 18. [Google Scholar] [CrossRef]
- German, R. Sintering Theory and Practice; John Wiley & Sons Inc.: New York, NY, USA, 1996. [Google Scholar]
- Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink. Thin Solid Films 2014, 556, 452–459. [Google Scholar] [CrossRef]
- Lagos, M.; Agote, I.; Leizaola, I.; Lopez, D.; Calero, J. Fabrication of chromium carbide cermets by electric resistance sintering process: Processing, microstructure and mechanical properties. Int. J. Refract. Met. Hard Mater. 2021, 95, 105417. [Google Scholar] [CrossRef]
- Lagos, M.; Agote, I.; Schubert, T.; Weissgaerber, T.; Gallardo, J.; Montes, J.M.; Prakash, L.; Andreouli, C.; Oikonomou, V.; Lopez, D.; et al. Development of electric resistance sintering process for the fabrication of hard metals: Processing, microstructure and mechanical properties. Int. J. Refract. Met. Hard Mater. 2017, 66, 88–94. [Google Scholar] [CrossRef]
- Pötschke, J.; Dahal, M.; Herrmann, M.; Vornberger, A.; Matthey, B.; Michaelis, A. Preparation of high-entropy carbides by different sintering techniques. J. Mater. Sci. 2021, 56, 11237–11247. [Google Scholar] [CrossRef]
- Zhao, S.; Song, X.; Wei, C.; Zhang, L.; Liu, X.; Zhang, J. Effects of WC particle size on densification and properties of spark plasma sintered WC–Co cermet. Int. J. Refract. Met. Hard Mater. 2009, 27, 1014–1018. [Google Scholar] [CrossRef]
- Prakasam, M.; Balima, F.; Cygan, S.; Kimczyk, P. Ultrahigh pressure SPS (HP-SPS) as new syntheses and exploration tool in materials science. In Spark Plasma Sintering; Cao, G., Estournes, C., Garay, J., Orru, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 201–218. [Google Scholar]
- Munir, Z.A.; Ohyanagi, M. Perspectives on the spark plasma sintering process. J. Mater. Sci. 2021, 56, 1–15. [Google Scholar] [CrossRef]
- Zhang, T.; Yin, H.; Qu, X. Microstructure and mechanical properties of Cr doped WCoB based cermets by spark plasma sintering and first principle calculation. Prog. Nat. Sci. 2020, 30, 417–423. [Google Scholar] [CrossRef]
- Ghasali, E.; Ebadzadeh, T.; Alizadeh, M.; Razavi, M. Mechanical and microstructural properties of WC-based cermets: A comparative study on the effect of Ni and Mo binder phases. Ceram. Int. 2018, 44, 2283–2291. [Google Scholar] [CrossRef]
- Yung, D.L.; Antonov, M.; Hussainova, I. Spark plasma sintered ZrC-Mo cermets: Influence of temperature and compaction pressure. Ceram. Int. 2016, 42, 12907–12913. [Google Scholar] [CrossRef]
- Breval, E.; Cheng, J.P.; Agrawal, D.; Gigle, P. Comparison between microwave and conventional sintering of WC/Co compo-sites. Mater. Sci. Eng. A 2005, 391, 285–295. [Google Scholar] [CrossRef]
- Lee, D.R.; Lee, W.J. Fabrication of nano-sized WC/Co composite powder by direct reduction and carburization with carbon. Mater. Sci. Forum 2007, 534, 1185–1188. [Google Scholar] [CrossRef]
- Ban, Z.-G.; Shaw, L.L. Synthesis and processing of nanostructured WC-Co materials. J. Mater. Sci. 2002, 37, 3397–3403. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, W.; Chen, L. Rapidly sintering nanosized SiC particle reinforced TiC composites by the spark plasma sintering (SPS) technique. J. Mater. Sci. 2004, 39, 4515–4519. [Google Scholar] [CrossRef]
- Ding, L.; Xiang, D.; Pan, Y.; Zhang, T.; Wu, Z. In situ synthesis of TiC cermet by spark plasma reaction sintering. J. Alloys Compd. 2015, 661, 136–140. [Google Scholar] [CrossRef]
- Monteverde, F.; Medri, V.; Bellosi, A. Microstructure of hot-pressed Ti(C,N)-based cermets. J. Eur. Ceram. Soc. 2002, 22, 2587–2593. [Google Scholar] [CrossRef]
- Saba, F.; Zhang, F.; Sajjadi, S.A.; Haddad-Sabzevar, M.; Li, P. Pulsed current field assisted surface modification of carbon nanotubes with nanocrystalline titanium carbide. Carbon 2016, 101, 261–271. [Google Scholar] [CrossRef]
- Saba, F.; Sajjadi, S.A.; Haddad-Sabzevar, M.; Zhang, F. TiC-modified carbon nanotubes, TiC nanotubes and TiC nanorods: Synthesis and characterization. Ceram. Int. 2018, 44, 7949–7954. [Google Scholar] [CrossRef]
- Yan, H.; Deng, Y.; Su, Y.Y.; Jiang, S.; Chen, Q.W.; Cao, S.X.; Liu, B. Ti(C,N)-based cermets with two kinds of core-rim structures constructed by β-Co microspheres. Adv. Mater. Sci. Eng. 2020, 2020, 4684529. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Ye, J.; Liu, Y.; Yang, D.; Yu, H. Study on the formation of core–rim structure in Ti(C,N)-based cermets. Int. J. Refract. Met. Hard Mater. 2012, 35, 27–31. [Google Scholar] [CrossRef]
- Porat, R.; Ber, A. New Approach of Cutting Tool Materials—CERMET (Titanium Carbonitride-Based Material) for Machining Steels. CIRP Ann. 1990, 39, 71–75. [Google Scholar] [CrossRef]
- Vallauri, D.; Adrián, I.A.; Chrysanthou, A. TiC-TiB2 composites: A review of phase relationships, processing and properties. J. Eur. Ceram. Soc. 2008, 28, 1697–1713. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, M.; Zuo, D.; Fang, Y.; Zhang, Q.; Zhu, Z.; Liu, G.; Xu, F. Ti(C,N)-based cermet with different TaC/(TaC + WC) weight ratio by in-situ reactive hot pressing: Microstructure and mechanical properties. Mater. Today Commun. 2020, 25, 101661. [Google Scholar] [CrossRef]
- Yu, J.; Matsuura, K.; Ohno, M. Combustion synthesis of TiC-TiB2-based cermets from elemental powders. Adv. Tribol. 2011, 2011, 105258. [Google Scholar] [CrossRef]
- Faming, Z.; Jun, S.; Jianfei, S. Processing and properties of carbon nanotubes-nano-WC-Co composites. Mater. Sci. Eng. A 2004, 381, 86–91. [Google Scholar]
- Zhang, T.; Yin, H.; Zhang, C.; Zhang, R. Synthesis and microstructure evolution of WCoB based cermets during spark plasma sintering. Ceram. Int. 2019, 45, 17536–17544. [Google Scholar] [CrossRef]
- Mao, C.; Ren, Y.; Gan, H.; Zhang, M.; Zhang, J.; Tang, K. Microstructure and mechanical properties of cBN-WC-Co composites used for cutting tools. Int. J. Adv. Manuf. Technol. 2015, 76, 2043–2049. [Google Scholar] [CrossRef]
- Sivaprahasam, D.; Chandrasekar, S.; Sundaresan, R. Microstructure and mechanical properties of nanocrystalline WC–12Co consolidated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2007, 25, 144–152. [Google Scholar] [CrossRef]
- Voltsihhin, N.; Hussainova, I.; Traksmaa, R.; Juhani, K. Optimisation of WC-Ni-ZrO2 structure. In Proceedings of the 15th European Conference on Composite Materials, Venice, Italy, 24–28 June 2012. [Google Scholar]
- Fabijanić, T.A.; Alar, Ž.; Ćorić, D. Influence of consolidation process and sintering temperature on microstructure and mechanical properties of near nano-and nano-structured WC-Co cemented carbides. Int. J. Refract. Met. Hard Mater. 2016, 54, 82–89. [Google Scholar] [CrossRef]
- Park, C.; Nam, S.; Kang, S. Enhanced toughness of titanium carbonitride-based cermets by addition of (Ti, W) C carbides. Mater. Sci. Eng. A 2016, 649, 400–406. [Google Scholar] [CrossRef]
- Yi, M.; Wang, J.; Li, C.; Bai, X.; Wei, G.; Zhang, J.; Xiao, G.; Chen, Z.; Zhou, T.; Wang, L.; et al. Friction and wear behavior of Ti(C,N) self-lubricating cermet materials with multilayer core–shell microstructure. Int. J. Refract. Met. Hard Mater. 2021, 100, 105629. [Google Scholar]
- Huang, S.; De Baets, P.; Sukumaran, J.; Mohrbacher, H.; Woydt, M.; Vleugels, J. Effect of carbon content on the microstructure and mechanical properties of NbC-Ni based cermets. Metals 2018, 8, 178. [Google Scholar] [CrossRef] [Green Version]
- Besharatloo, H.; de Nicolás, M.; Wheeler, J.M.; Mateo, A.; Ferrari, B.; Gordo, E.; Llanes, L.; Roa, J.J. Carbon addition effects on microstructure and small-scale hardness for Ti(C,N)-FeNi cermets. Int. J. Refract. Met. Hard Mater. 2019, 85, 105064. [Google Scholar] [CrossRef]
- Rumman, M.R.; Xie, Z.; Hong, S.; Ghomashchi, R. Effect of spark plasma sintering pressure on mechanical properties of WC–7.5 wt% Nano Co. Mater. Des. 2015, 68, 221–227. [Google Scholar] [CrossRef]
- Bonache, V.; Salvador, M.D.; Rocha, V.G.; Borrell, A. Microstructural control of ultrafine and nanocrystalline WC-12Co-VC/Cr2C3 mixture by spark plasma sintering. Ceram. Int. 2011, 37, 1139–1142. [Google Scholar] [CrossRef]
- Lan, S.; Jia, C.C.; Lin, C.G.; Cao, R.J. VC addition prepared ultrafine WC-11Co composites by spark plasma sintering. J. Iron Steel Res. Int. 2007, 14, 85–89. [Google Scholar]
- Olubambi, P.A.; Alaneme, K.K.; Andrews, A. Mechanical and tribological characteristics of tungsten cermet composites sintered with Co-based and zirconia mixed binders. Int. J. Refract. Met. Hard Mater. 2015, 50, 163–177. [Google Scholar] [CrossRef]
- Bao, J.; Yu, Y.; Jia, C. Microstructural evolution and mechanical properties of WC–6CO cemented carbide prepared via SPS: Incorporation of YSZ as a reinforcer. RSC Adv. 2021, 11, 6304–6631. [Google Scholar] [CrossRef]
- Zackrisson, J.; Andren, H.O. Effect of carbon content on the microstructure and mechanical properties of (Ti, W, Ta, Mo)(C, N)–(Co, Ni) cermets. Int. J. Refract. Met. Hard Mater. 1999, 17, 256–273. [Google Scholar] [CrossRef]
- Kim, S.; Han, S.H.; Park, J.K.; Kim, H.E. Variation of WC grain shape with carbon content in the WC–Co alloys during liquid-phase sintering. Scr. Mater. 2003, 48, 635–639. [Google Scholar] [CrossRef]
- Formisano, A.; Minutolo, F.M.C.; Caraviello, A.; Carrino, L.; Durante, M.; Langella, A. Influence of eta-phase on wear behavior of WC-Co carbides. Adv. Tribol. 2016, 2016, 5063274. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zheng, Y.; Zhou, W.; Zhang, J.; Huang, Q.; Xiong, W. Effect of carbon addition on the densification behavior, microstructure evolution and mechanical properties of Ti(C,N)-based cermets. Ceram. Int. 2016, 42, 5487–5496. [Google Scholar] [CrossRef]
- Eso, O.; Fang, Z.Z.; Griffo, A. Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC–Co. Int. J. Refract. Met. Hard Mater. 2007, 25, 286–292. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Y.; Zhong, J.; Yuan, Q.; Wu, P. Effect of carbon content and cooling mode on the microstructure and properties of Ti(C,N)-based cermets. Int. J. Refract. Met. Hard Mater. 2009, 27, 1009–1013. [Google Scholar] [CrossRef]
- Xiong, H.; Wu, Y.; Li, Z.; Gan, X.; Zhou, K.; Chai, L. Comparison of Ti(C,N)-based cermets by vacuum and gas-pressure sintering: Microstructure and mechanical properties. Ceram. Int. 2018, 44, 805–813. [Google Scholar] [CrossRef]
- Nino, A.; Izu, Y.; Sekine, T.; Sugiyama, S.; Taimatsu, H. Effects of TaC and TiC addition on the microstructures and mechanical properties of Binderless WC. Int. J. Refract. Met. Hard Mater. 2019, 82, 167–173. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, X.; Xiao, X.; Zhao, H. Effect of VC additions on the microstructure and mechanical properties of TiC-based cermets. Mater. Res. Express 2020, 7, 106527. [Google Scholar] [CrossRef]
- Chermant, J.L.; Osterstock, F.O. Fracture toughness and fracture of WC-Co composites. J. Mater. Sci. 1976, 11, 1935–1951. [Google Scholar] [CrossRef]
- Genga, R.; Westraadt, J.; Akdogan, G.; Cornish, L.A. Microstructure and material properties of PECS manufactured WC-NbC-CO and WC-TiC-Ni cemented carbides. Int. J. Refract. Met. Hard Mater. 2014, 49, 240–248. [Google Scholar] [CrossRef]
- Siwak, P.; Garbiec, D. Microstructure and mechanical properties of WC–Co, WC–Co–Cr3C2 and WC–Co–TaC cermets fabricated by spark plasma sintering. Trans. Nonferrous Met. Soc. 2016, 26, 2641–2646. [Google Scholar] [CrossRef]
- Farag, S.; Konyashin, I.; Ries, B. The influence of grain growth inhibitors on the microstructure and properties of submicron, ultrafine and nano-structured hardmetals–A review. Int. J. Refract. Met. Hard Mater. 2018, 77, 12–30. [Google Scholar] [CrossRef]
- Li, S.; Kondoh, K.; Imai, H.; Chen, B.; Jia, L.; Umeda, J.; Fu, Y. Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion. Mater. Des. 2016, 95, 127–132. [Google Scholar] [CrossRef]
- Konyashin, I.; Faraga, F.; Riesa, B.; Roebucket, B. WC-Co-Re cemented carbides: Structure, properties and potential applications. Int. J. Refract. Met. Hard Mater. 2019, 78, 247–253. [Google Scholar] [CrossRef]
- Rajabi, A.; Ghazali, M.; Junaidi, S.; Daud, A.R. Development and application of tool wear: A review of the characterization of TiC-based cermets with different binders. Chem. Eng. J. 2014, 255, 445–452. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, N.; He, Y. Effects of Mo additions on the corrosion behavior of WC–TiC–Ni hardmetals in acidic solutions. Int. J. Refract. Met. Hard Mater. 2013, 38, 15–25. [Google Scholar] [CrossRef]
- Alhosseini, S.H.N.; Mousavi, S.R. The effect of oxide, carbide, nitride and boride additives on properties of pressureless sintered SiC: A review. J. Eur. Ceram. Soc. 2019, 39, 2215–2231. [Google Scholar]
- Saba, F.; Hadad-Sabzevar, M.; Sajjadi, S.A.; Zhang, F. The effect of TiC:CNT mixing ratio and CNT content on the mechanical and tribological behaviors of TiC modified CNT-reinforced Al-matrix nanocomposites. Powder Technol. 2018, 331, 107–120. [Google Scholar] [CrossRef]
- Kimmari, E.; Hussainova, I.; Smirnov, A.; Traksmaa, R.; Preis, I. Processing and microstructural characterization of WC-based cermets doped by ZrO2. Est. J. Eng. 2009, 15, 275. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, F.D.G. WC-Cu Cermet Materials: Production and Characterization. Master’s Thesis, Technical University of Lisbon, Lisbon, Portugal, 2015. [Google Scholar]
- Christensen, M.; Wahnstrom, G.; Lay, S.; Allibert, C. Morphology of WC grains in WC–Co alloys: Theoretical determination of grain shape. Acta Mater. 2007, 55, 1515–1521. [Google Scholar] [CrossRef]
- Mohan, K.; Strutt, P. Observation of Co nanoparticle dispersions in WC nanograins in WC-Co cermets consolidated from chemically synthesized powders. Nanostruct. Mater. 1996, 7, 547–555. [Google Scholar] [CrossRef]
- Delanoë, A.; Lay, S. Evolution of the WC grain shape in WC–Co alloys during sintering: Cumulated effect of the Cr addition and of the C content. Int. J. Refract. Met. Hard Mater. 2009, 27, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Ji, Y. Characterization and analysis of the aspect ratio of carbide grains in WC–Co composites. RSC Adv. 2018, 8, 34468–34475. [Google Scholar] [CrossRef] [Green Version]
- Lay, S.; Allibert, C.H.; Christensen, M.; Wahnstrom, G. Morphology of WC grains in WC–Co alloys. Mater. Sci. Eng. 2008, 486, 253–261. [Google Scholar] [CrossRef]
- Rajabi, A.; Ghazali, M.; Daud, A. Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet—A review. Mater. Des. 2015, 67, 95–106. [Google Scholar] [CrossRef]
- Zheng, Y.; Youa, M.; Xiong, W.; Liua, W.; Wangaet, S. Valence-electron structure and properties of main phases in Ti(C,N)-based cermets. Mater. Chem. Phys. 2003, 82, 877–881. [Google Scholar] [CrossRef]
- Chao, S.; Liu, N.; Yuan, Y.; Han, C.; Xu, Y.; Shi, M.; Feng, J. Microstructure and mechanical properties of ultrafine Ti(C,N)-based cermets fabricated from nano/submicron starting powders. Ceram. Int. 2005, 31, 851–862. [Google Scholar] [CrossRef]
- Exner, H. Physical and chemical nature of cemented carbides. Int. Met. Rev. 1979, 24, 149–173. [Google Scholar] [CrossRef]
- Gorkunov, E.; Ulyanov, A.; Chulkina, A. Quality Inspection of Sintered Powder Tungsten-Cobalt Products by Magnetic Technique; Institute of Engineering Science, Russian Academy of Science (Urals Branch): Ekaterinburg, Russia, 2004. [Google Scholar]
- Manuel, J.; de Araújo, J.H.; Alves Costa, F.; de Macedo, H.R.; Umbelino Gomes, U.; Silva, A.G.P. Effect of High energy milling on the magnetic properties of the WC-10wt.% co cemented carbides. Mater. Sci. Forum 2006, 530–531, 322–327. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, Y.; Zhang, G.; Ke, Z.; Wu, H.; Ding, Q.; Lu, X. Effect of WC addition and cooling rate on microstructure, magnetic and mechanical properties of Ti(C0.6,N0.4)-WC-Mo-Ni cermets. Int. J. Refract. Met. Hard Mater. 2019, 84, 105001. [Google Scholar] [CrossRef]
- Wong, K.V.; Hernandez, A. A review of additive manufacturing. Int. Sch. Res. Netw. 2012, 2012, 208760. [Google Scholar] [CrossRef] [Green Version]
- Manzano Davila, J.S. Customizable Heterogeneous Catalysts: From 3D Printed Designs to Mesoporous Materials. Ph.D. Thesis, Iowa State University, Ames, IO, USA, 2018. [Google Scholar]
- Padmakumar, M. Additive Manufacturing of Tungsten Carbide Hardmetal Parts by Selective Laser Melting (SLM), Selective Laser Sintering (SLS) and Binder Jet 3D Printing (BJ3DP) Techniques. Lasers Manuf. Mater. Process. 2020, 7, 338–371. [Google Scholar]
- Yang, Y.; Zhang, C.; Wang, D.; Nie, L.; Wellmann, D.; Tian, Y. Additive manufacturing of WC-Co hardmetals: A review. J. Adv. Manuf. Technol. 2020, 108, 1653–1673. [Google Scholar] [CrossRef]
- Fries, S.; Genilke, S.; Wilms, M.B.; Seimann, M.; Weisheit, A.; Kaletsch, A.; Bergs, T.; Schleifenbaum, J.H.; Broeckmannet, C. Laser-based additive manufacturing of WC–Co with high-temperature powder bed preheating. Steel Res. Int. 2020, 91, 1900511. [Google Scholar] [CrossRef] [Green Version]
- Konyashin, I.; Hinnersa, B.; Riesa, B.; Kirchner, A.; Klöden, B.; Kieback, B.; Nilen, R.W.N.; Sidorenkod, D. Additive manu-facturing of WC-13% Co by selective electron beam melting: Achievements and challenges. Int. J. Refract. Met. Hard Mater. 2019, 84, 105028. [Google Scholar] [CrossRef]
- Cramer, C.L.; Nandwana, P.; Lowden, R.A.; Elliott, A.M. Infiltration studies of additive manufacture of WC with Co using binder jetting and pressureless melt method. Addit. Manuf. 2019, 28, 333–343. [Google Scholar] [CrossRef]
- Enneti, R.K.; Prough, K.C. Wear properties of sintered WC-12%Co processed via Binder Jet 3D Printing (BJ3DP). Int. J. Refract. Met. Hard Mater. 2019, 78, 228–232. [Google Scholar] [CrossRef]
- Uhlmann, E.; Bergmann, A.; Gridin, W. Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting. Procedia CIRP 2015, 35, 8–15. [Google Scholar] [CrossRef]
- Grigoriev, S.; Tarasova, T.; Gusarov, A.; Khmyrov, R.; Egorov, S. Possibilities of manufacturing products from cermet compo-sitions using nanoscale powders by additive manufacturing methods. Materials 2019, 12, 3425. [Google Scholar] [CrossRef] [Green Version]
- Khmyrov, R.; Safronov, V.; Gusarov, A. Obtaining crack-free WC-Co alloys by selective laser melting. Phys. Procedia 2016, 83, 874–881. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Czekanski, A. Optimization of parameters for SLS of WC-Co. Rapid Prototyp. J. 2017, 23, 1202–1211. [Google Scholar] [CrossRef]
- Ku, N.; Pittari, J.J.; Kilczewski, S.; Kudzal, A. Additive manufacturing of cemented tungsten carbide with a Cobalt-free alloy binder by selective laser melting for high-hardness applications. JOM 2019, 71, 1535–1542. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Wang, H.; Zhang, G. Selective laser melting additive manufacturing of Ti-based nanocomposites: The role of na-nopowder. Metall. Mater. Trans. A 2014, 45, 464–476. [Google Scholar] [CrossRef]
- Gu, D.; Zhang, H.; Dai, D.; Xia, M.; Hong, C.; Poprawe, R. Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance. Compos. Part B Eng. 2019, 163, 585–597. [Google Scholar] [CrossRef]
- Aramian, A.; Sadeghian, Z.; Prashanth, K.; Bertoeto, F. In situ fabrication of TiC-NiCr cermets by selective laser melting. Int. J. Refract. Met. Hard Mater. 2020, 87, 105171. [Google Scholar] [CrossRef]
- Kumar, S. Manufacturing of WC–Co moulds using SLS machine. J. Mater. Process. Technol. 2009, 209, 3840–3848. [Google Scholar] [CrossRef]
- Lu, L.; Fuh, J.; Chen, Z.; Leong, C.; Wong, Y. In situ formation of TiC composite using selective laser melting. Mater. Res. Bull. 2000, 35, 1555–1561. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, X.; Shang, Y.; Xiong, K.; Xu, Z.; Guo, R.; Cai, S.; Zheng, C. Dense ceramics with complex shape fabricated by 3D printing: A review. J. Adv. Ceram. 2021, 10, 195–218. [Google Scholar] [CrossRef]
- Lengauer, W.; Duretek, I.; Furst, M.; Schwarz, V. Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. Int. J. Refract. Met. Hard Mater. 2019, 82, 141–149. [Google Scholar] [CrossRef]
- Shakor, P.; Nejadi, S.; Paul, G.; Malek, S. Review of emerging additive manufacturing technologies in 3D printing of cementi-tious materials in the construction industry. Front. Built Environ. 2019, 4, 85. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Guo, Z.; Chen, C.; Yang, W. Additive manufacturing of WC-20Co components by 3D gel-printing. Int. J. Refract. Met. Hard Mater. 2018, 70, 215–223. [Google Scholar] [CrossRef]
- Varetti, S. 3D printing technology and innovations. Innovations 2018, 9, 73. [Google Scholar]
- Varghese, G.; Moral, M.; Castro-Garcia, M.; Lopz-Lopez, J.J. Fabrication and characterisation of ceramics via low-cost DLP 3D printing. Bol. Soc. Esp. Ceram. Vidr. 2018, 57, 9–18. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Zhao, Z. ZTA Ceramic Materials for DLP 3D Printing. In Proceedings of the IOP Conference Series: Materials Science and Engineering, the 11th International Conference on High-Performance Ceramics, Kunming, China, 25–29 May 2019. [Google Scholar]
- Liu, J.H.; Zeng, G.D.; Lee, Y.C.; Ji, W.F.; Yeh, J.M. Micro-Structures Fabricated by SLA 3D Printing to Enhance the Electrochemical Effects of Supercapacitors. 3D Printing Technology and Innovations. In Proceedings of the 2nd International Conference on 3D Printing Technology and Innovations, London, UK, 19–20 March 2018. [Google Scholar]
- Afonso, L.H.; Toscani, L.M.; Larrondo, S.A.; Vázquez, J.C.; Rubio, A.T.; Ferrera, P.E. SLA-3D Printed Electrolytes for Solid Oxide Fuel Cells. In Proceedings of the 2nd International Conference on 3D Printing Technology and Innovations, London, UK, 19–20 March 2018. [Google Scholar]
- Ruiz-Morales, J.C.; Rodríguez, E.M.H.; Acosta-Mora, P.; Méndez-Ramos, J.; Chinea, E.B.; Ferrera, P.E.; Canales-Vazquez, J.; Núñez, P. Prospective use of the 3D printing technology for the microstructural engineering of Solid Oxide Fuel Cell components. Boletín Soc. Española Cerámica Vidr. 2014, 53, 213–216. [Google Scholar] [CrossRef]
- Liu, X.; Zou, B.; Xing, H.; Huang, C. The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing. Ceram. Int. 2020, 46, 937–944. [Google Scholar] [CrossRef]
- Chen, Q.; Zou, B.; Lai, Q.; Wang, Y.; Xue, R.; Xing, H.; Fu, X.; Huang, C.; Yao, P. A study on biosafety of HAP ceramic prepared by SLA-3D printing technology directly. J. Mech. Behav. Biomed. Mater. 2019, 98, 327–335. [Google Scholar] [CrossRef]
- Vastamäki, T. Stereolithography 3D-Printing of Ceramics. Master’s Thesis, Tampere University, Tampere, Finland, 2019. [Google Scholar]
- Lengauer, W. Carbides: Transition-Metal Solid-State Chemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Csott, R.A., Ed.; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Nahak, S.; Dewangan, S.; Chattopadhyaya, S.; Krolczyk, G.; Hloch, S. Discussion on importance of tungsten carbide–cobalt (WC-Co) cemented carbide and its critical characterization for wear mechanisms based on mining applications. Arch. Min. Sci. 2018, 63, 229–246. [Google Scholar]
- He, R.; Wang, J.; He, M.; Yang, H.; Ruan, J. Synthesis of WC composite powder with nano-cobalt coatings and its application in WC-4Co cemented carbide. Ceram. Int. 2018, 44, 10961–10967. [Google Scholar] [CrossRef]
- Xiang, Z.; Li, Z.; Nie, H.; Chang, F.; Dai, P. Effect of Crystallinity of WC on Microstructure, Properties, and Application of WC-Co Cemented Carbide. J. Superhard Mater. 2021, 43, 21–30. [Google Scholar] [CrossRef]
- Acchar, W.; Zollfrank, C.; Greil, P. Microstructure and mechanical properties of WC-Co Freinforced with NbC. Mater. Res. 2004, 7, 445–450. [Google Scholar] [CrossRef]
- Agrawal, D. Microwave sintering of ceramics, composites and metal powders. In Sintering of Advanced Materials; Zak Fang, Z.Z., Ed.; Woodhead: Sawston, UK; Cambridge, UK, 2010; pp. 222–248. [Google Scholar]
- Sun, J.; Zhao, J.; Gong, F.; Ni, X.; Li, Z. Development and application of WC-based alloys bonded with alternative binder phase. Crit. Rev. Solid State Mater. Sci. 2019, 44, 211–238. [Google Scholar] [CrossRef]
- Dios, M.; Kraleva, I.; González, Z.; Alvaredo, P.; Ferrari, B.; Gordo, E.; Bermejo, R. Mechanical characterization of Ti(C,N)-based cermets fabricated through different colloidal processing routes. J. Alloys Compd. 2018, 732, 806–817. [Google Scholar] [CrossRef] [Green Version]
- Kübarsepp, J.; Klaasen, H.; Pirso, J. Behaviour of TiC-based cermets in different wear conditions. Wear 2001, 249, 229–234. [Google Scholar] [CrossRef]
- Roosaar, T.; Klaasen, H.; Viljus, M.; Kubarsepp, J. Wear performance of TiC-base cermets. J. Mater. Sci. 2008, 14, 238–241. [Google Scholar]
- Pang, Y.; Xie, H.; Koc, R. Investigation of electrical conductivity and oxidation behavior of TiC and TiN based cermets for SOFC interconnect application. ECS Trans. 2007, 7, 2427–2435. [Google Scholar] [CrossRef]
- Xie, H.; Koc, R. Initial Investigation of Nano-TiC/Ni and TiC/Ni3Al Cermets for SOFC interconnect applications. Characterization, design, and processing of Nanosize powders and nanostructured materials. Ceram. Trans. 2006, 190, 161–171. [Google Scholar]
- Qi, Q.; Liu, Y.; Huang, Z. Promising metal matrix composites (TiC/Ni–Cr) for intermediate-temperature solid oxide fuel cell (SOFC) interconnect applications. Scr. Mater. 2015, 109, 56–60. [Google Scholar] [CrossRef]
- Brook, R.J. Concise Encyclopedia of Advanced Ceramic Materials; Elsevier: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Gai, L.; Liu, Y.; Xin, X.; Zeng, Z.; Qi, Q.; Huang, J.; Liu, X. Promising cermets of TiN-Ni for intermediate temperature solid oxide fuel cell interconnects application. J. Power Sources 2017, 359, 166–172. [Google Scholar] [CrossRef]
- Cardinal, S.; Malchère, A.; Garnier, V.; Fantozzi, G. Microstructure and mechanical properties of TiC–TiN based cermets for tools application. Int. J. Refract. Met. Hard Mater. 2009, 27, 521–527. [Google Scholar] [CrossRef]
- Jakus, A.E.; Shah, R.N. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engi-neering. J. Biomed. Mater. Res. 2017, 105, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Tubío, C.R.; Azuaje, J.; Escalante, L.; Coelho, A.; Guitián, F.; Sotelo, E.; Gil, A. 3D printing of a heterogeneous copper-based catalyst. J. Catal. 2016, 334, 110–115. [Google Scholar] [CrossRef]
- Díaz-Marta, A.S.; Tubío, C.R.; Carbajales, C.; Fernández, C.; Escalante, L.; Sotelo, E.; Guitián, F.; Barrio, V.L.; Gil, A.; Coelho, A. Three-dimensional printing in catalysis: Combining 3D heterogeneous copper and palladium catalysts for multicatalytic multicomponent reactions. ACS Catal. 2018, 8, 392–404. [Google Scholar] [CrossRef]
- Wei, Q.; Li, H.; Liu, G.; He, Y.; Wang, Y.; Tan, Y.E.; Wang, D.; Peng, X.; Yang, G.; Tsubaki, N. Metal 3D printing technology for functional integration of catalytic system. Nat. Commun. 2020, 11, 4098. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Li, W.; Jiang, X.; Guo, X.; Song, C. Recent advances in catalytic CO2 hydrogenation to alcohols and hydrocarbons. Adv. Catal. 2019, 65, 121–233. [Google Scholar]
- Laguna, O.; Lietor, P.F.; IglesiasGodino, F.J.; Corpas-Iglesias, F.A. A review on additive manufacturing and materials for cat-alytic applications: Milestones, key concepts, advances and perspectives. Mater. Des. 2021, 208, 109927. [Google Scholar] [CrossRef]
- Cruz, S.; Sanz Iturralde, O.; Poyato Galan, R.; Laguna Espitia, O.H.; Echave, F.J.; Almedia, L.C.; Centeno Galllego, M.A.; Arzamendi, G.; Gandia, L.M.; Souza-Aguiar, E.F.; et al. Design and testing of a microchannel reactor for the PROX reaction. Chem. Eng. J. 2011, 167, 634–642. [Google Scholar] [CrossRef] [Green Version]
- Laguna, O.H.; Dominguez, M.I.; Centeno, M.A.; Odriozola, J.A. Chapter 4-catalysts on metallic surfaces: Monoliths and microreactors. In New Materials for Catalytic Applications; Parvulescu, V.I., Kemnitz, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 81–120. [Google Scholar]
- Hernández Afonso, L. 3D Printing Ceramic Materials for Energy and Environmental Applications. Ph.D. Thesis, University of La Laguna, Santa Cruz de Tenerife, Spain, 2020. [Google Scholar]
- Ruiz-Morales, J.C.; Tarancón, A.; Canales-Vázquez, J.; Méndez-Ramos, J.; Hernández-Afonso, L.; Acosta-Mora, P.; Marín Rueda, J.R.; Fernández-González, R. Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ. Sci. 2017, 10, 846–859. [Google Scholar] [CrossRef] [Green Version]
- Dommati, H.; Ray, S.S.; Wang, J.-C.; Chen, S.-S. A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification. RSC Adv. 2019, 9, 16869–16883. [Google Scholar] [CrossRef] [Green Version]
- Esfahani, K.N.; Zandi, M.; Travieso-Rodriguez, J.; Graells, M.; Pérez-Moya, M. Manufacturing and Application of 3D Printed Photo Fenton Reactors for Wastewater Treatment. Int. J. Environ. Res. Public Health 2021, 18, 4885. [Google Scholar] [CrossRef]
- Biswas, P.; Mamatha, S.; Varghese, K.; Johnson, R.; Vijay, R.; Kumar, R. 3D printing of high surface area ceramic honeycombs substrates and comparative evaluation for treatment of sewage in Phytorid application. J. Water Process. Eng. 2020, 37, 101503. [Google Scholar] [CrossRef]
- Tripathi, L.; Behera, B.K. Review: 3D woven honeycomb composites. J. Mater. Sci. 2021, 56, 15609–15652. [Google Scholar] [CrossRef]
- Lyu, Z.; Ng, T.C.A.; Tran-Duc, T.; Lim, G.J.; Gu, Q.; Zhang, L.; Zhang, Z.; Ding, J.; Phan-Thien, N.; Wang, J.; et al. 3D-printed surface-patterned ceramic membrane with enhanced performance in crossflow filtration. J. Membr. Sci. 2020, 606, 118138. [Google Scholar] [CrossRef]
- Sun, L.; Dong, P.; Zeng, Y.; Chen, J. Fabrication of hollow lattice alumina ceramic with good mechanical properties by Digital Light Processing 3D printing technology. Ceram. Int. 2021, 47, 26519–26527. [Google Scholar] [CrossRef]
- Mora, A.; Verma, P.; Kumar, S. Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling. Compos. Part B Eng. 2020, 183, 107600. [Google Scholar] [CrossRef]
- Bogdan, E.; Michorczyk, P. 3D Printing in heterogeneous catalysis—The state of the art. Materials 2020, 13, 4534. [Google Scholar] [CrossRef] [PubMed]
- Gibson, L.; Ashby, M. Cellular Solids: Structure and Properties, 2nd ed.; University of Cambridge: Cambridge, UK, 1988. [Google Scholar]
- Lohfeld, S.; Cahill, S.; Barron, V.; McHugh, P.; Dürselen, L.; Kreja, L.; Bausewein, C.; Ignatius, A. Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds. Acta Biomater. 2012, 8, 3446–3456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szyniszewski, S.; Smith, B.; Hajjar, J.; Schafer, B.; Arwade, S. The mechanical properties and modeling of a sintered hollow sphere steel foam. Mater. Des. 2014, 54, 1083–1094. [Google Scholar] [CrossRef] [Green Version]
- Ching Hii, S.; Luddin, N.; Ponnuraj Kannan, T.; Ab Rahman, I.; Nik Abdul Ghani, N.A. The biological evaluation of con-ventional and nano-hydroxyapatite-silica glass ionomer cement on dental pulp stem cells: A comparative study. Contemp. Clin. Dent. 2019, 10, 324–332. [Google Scholar]
- Galante, R.; Figueiredo-Pina, C.G.; Serro, A.P. Additive manufacturing of ceramics for dental applications: A review. Dent. Mater. 2019, 35, 825–846. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J. Oral Biol. Craniofacial Res. 2019, 9, 179–185. [Google Scholar] [CrossRef] [PubMed]
Composition (wt.%) | Sintering Techniques | Hardness Vickers | Mean Grain Size µm | Ref |
---|---|---|---|---|
Cr3C2-25NiCr (wt.%) WC-20Cr3C2-7Ni (wt.%). | Electric Resistance Sintering (ERS) | 1060 ± 42 1110 ± 30 (HV30) | - | [39] |
WC6Co | ERS | 1960 ± 15 | - | [40] |
Sinter-HIP | 1860 ± 15 | |||
ERS | 1750 ± 20 | |||
WC10Co | Sinter-HIP | 1620 ± 15 (HV30) | ||
(Hf, Ta, Nb, Ti, V)C (Ta, Nb, Ti, V, W)C | Sinter-HIP Vacuum SPS Sinter-HIP Vacuum SPS | 2437 ± 47 2573 ± 86 2569 ± 56 1873 ± 80 2217 ± 40 2021 ± 56 (HV0.5) | 2.59 ± 0.16 3.46 ± 0.18 5.62 ± 0.38 15.2 ± 0.82 33.7 ± 1.80 31.2 ± 1.81 | [41] |
WC-Co (Ultrafine WC) | SPS | 1836 (HV30) | 0.28 | [42] |
ZrC-20%Mo | SPS | 2231 (HV10) | 1–2 | [47] |
Ti(C,N)-TiB2-WCTaC-Co | Hot pressing sintering | 2052 (HV10) | [60] | |
TiC-TiB2-Ni(52.5/17.5/30 vol.%). | HIP | 1950 (HV50) | [61] | |
WC-Co (9–10 wt.% Co) WC-7 wt.% Co, 0.3wt.% CNT | SPS SPS | - 2450 (HV30) | 0.4–0.8 | [62] |
WCoB | SPS | 1262 (HV30) | - | [63] |
WCoB-9.356wt.%Cr | SPS | 1751 (HV0.5) | - | [63] |
cBN-WC-Co | SPS | 2170 (HV30) | - | [64] |
WC–5Co–2Cr3C2 WC–5Co–2TaC | SPS SPS | 2105 ± 38 1725 ± 15 (HV30) | [65] | |
WC-Ni-ZrO2 | HIP | 1600 (HV10) | 3–5 | [66] |
WC–12Co-1%Cr3C2 WC–12Co | SPS HP | 1872 1668 (HV30) | - | [67] |
(Ti(C,N))–WC–Mo–Ni/Ni + Co–C | Vacuum sintering | 1756 ± 52 (HV100) | 0.64 ± 0.3 | [68] |
Ti(C,N)/Mo-Co-Ni/CaF2@Al2O3 | Vacuum sintering | 2440 (HV30) | [69] | |
(NbC-15 vol.% Mo)-12 vol.% Ni | Vacuum sintering | 1466 (HV30) | [70] | |
T70/FeCr20Mn20 | Vacuum sintering | 1450 (HV30) | [71] | |
WC–7.5 wt.% NanoCo | SPS | 1925 (HV30) | 1–5 | [72] |
WC-12Co-1VC | SPS | 2000 (HV30) | - | [73] |
WC-11 Co, 0.5 wt.%VC | HIP | 1902 (HV30) | - | [74] |
WC–4.5CO–2Cr–5Ni | SPS | 2000 (HV30) | [75] | |
WC-Co-9wt.%YSZ | SPS | 1520 (HV30) | [76] |
Composition | Grain Size (µm) | (wt.%) | Application |
---|---|---|---|
WC-Co | Nano < 0.2 | 8–12 | PCB drills, punches for ink jet printer heads, microtools |
WC-Co | Ultrafine 0.2–0.5 | 2–4 6–9 10–16 | Wood cutting tools, wear parts Microdrills for PCB, cutting inserts Rotating tools, paper knifes |
WC-Co | Submicrometer 0.5–0.8 | 4–16 | Cutting inserts, rotating tools |
WC-Co | Fine 0.8–1.3 | 4–25 | Cutting inserts, wear parts Noncutting shaping tools |
WC-Co | Medium 1.3–2.5 | 4–25 | Cutting inserts for heavy cutting Noncutting shaping tools |
WC-Co | Coarse 2.5–6.0 | 4–25 | Rock cutting tools |
WC-Co | Extra coarse >6.0 | 4–25 | Forming tools |
WC-Co | 0.5–2 | 4–20 | Chemical apparatus engineering Corrosion resistant nanomagnetic parts |
WC-Co | 0.5–2 | 4–15 | Cutting tools for steel chipping |
Cermets | 0.5–3 | 5–20 | Cutting tools for steel chipping |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heydari, L.; Lietor, P.F.; Corpas-Iglesias, F.A.; Laguna, O.H. Ti(C,N) and WC-Based Cermets: A Review of Synthesis, Properties and Applications in Additive Manufacturing. Materials 2021, 14, 6786. https://doi.org/10.3390/ma14226786
Heydari L, Lietor PF, Corpas-Iglesias FA, Laguna OH. Ti(C,N) and WC-Based Cermets: A Review of Synthesis, Properties and Applications in Additive Manufacturing. Materials. 2021; 14(22):6786. https://doi.org/10.3390/ma14226786
Chicago/Turabian StyleHeydari, Lida, Pablo F. Lietor, Francisco A. Corpas-Iglesias, and Oscar H. Laguna. 2021. "Ti(C,N) and WC-Based Cermets: A Review of Synthesis, Properties and Applications in Additive Manufacturing" Materials 14, no. 22: 6786. https://doi.org/10.3390/ma14226786
APA StyleHeydari, L., Lietor, P. F., Corpas-Iglesias, F. A., & Laguna, O. H. (2021). Ti(C,N) and WC-Based Cermets: A Review of Synthesis, Properties and Applications in Additive Manufacturing. Materials, 14(22), 6786. https://doi.org/10.3390/ma14226786