External Condensation of HFE 7000 and HFE 7100 Refrigerants in Shell and Tube Heat Exchangers
Abstract
:1. Introduction
2. Experimental Investigations
3. Conclusions
- Experimental studies were carried out on a heat exchanger with a shell-and-tube structure in which the refrigerant condenses on the outer surface of pipe minichannels cooled from the inside with water. Two future-proof, ecological substitutes for the CFC refrigerants still present in the installations were used for the experimental research. These are low-pressure fluids HFE 7000 and HFE 7100. The tests were carried out in a wide range of changes in thermal-flow parameters: G = 20–700 kg·m−2s−1, q = 3000–60,000 W·m−2, ts = 40–60 °C.
- The values of the thermal power of the exchanger operating under various thermal-flow conditions were determined, which were within the range = 100–1500 W.
- The original characteristics of the condensation process were presented in the form of dependencies describing the value of the heat transfer coefficient on the quantities describing the two-phase flow, including the mass flow density level G, temperature difference ts − tw, and heat flux density q. The obtained test results also allowed the calculation of the velocity w and the thickness of the condensate film δ formed on the cooled surface of the pipe minichannel.
- It has been shown that the correct selection of the operating parameters of the shell-and-tube heat exchanger is very important. This applies in particular to the optimal use of the active heat exchange surface. Its size determines the value of the difference between the saturation temperature and the outer wall of the ts − tw channel that is generated automatically in the exchanger space. Introducing too much of the medium vapor to the exchanger in relation to the active heat exchange surface causes an increase in the temperature difference ts − tw, which results in an increase in the amount of condensed liquid and an increase in the thickness of the condensate film δ. The increase in the thickness of the condensate film causes a decrease in the value of the heat transfer coefficient.
- The value of the heat transfer coefficient during the condensation of the refrigerant on the surface of the horizontal pipe minichannel increases with the increase of the heat flux density and the mass flux density of the flowing condensate.
- The authors developed their own correlation to calculate the value of the heat transfer coefficient during the condensation of the refrigerant on the horizontal pipes of small diameter. It shows high agreement with the results of experimental research. The mean absolute percentage error is 16.2%, which is satisfactory for a two-phase flow. The correlation has been verified experimentally for refrigerants HFE 7000 and HFE 7100.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | area (m2) |
d | diameter (m) |
G | mass flux density (kg·m−2·s−1); |
dimensionless quantity | |
h | enthalpy (J·k−1) |
L | length (m) |
ṁ | mass flow rate (kg·h−1) |
Nu | Nusselt number |
q | heat flux density (W·m−2) |
Q | heat flux (W) |
r | heat of condensation/evaporation (J·k−1) |
Re | Reynolds number |
t | temperature (oC) |
T | temperature (K) |
U | vapor velocity |
w | velocity (m·s−1) |
Index | |
1 | per one channel |
c | condensation |
exp | experimental |
e | external |
f | fluid |
gr | gravity |
h | hydraulic |
H | hydrostatic |
i | internal |
l | liquid |
sh | shear stress |
th | theoretical |
t | total |
tp | two-phase |
v | vapor |
w | wall, water |
∞ | free stream |
Greek symbols | |
α | heat transfer coefficient (W·m−2∙K−1) |
Δ | difference |
λ | thermal conductivity (W·m−1·K−1) |
ρ | condensate film thickness (m) |
ν | kinematic viscosity (m−2s−1) |
Acronyms | |
HE | heat exchanger |
HTC | heat transfer coefficient |
References
- Nusselt, W. Die Oberflachenkondensation des Wasserdamfes. Z. Ver. Dt. Ing. 1916, 60, 569–575. [Google Scholar]
- Belghazi, M.; Bontemps, A.; Signe, J.C.; Marvillet, C. Condensation heat transfer of a pure fluid and binary mixture outside a bundle of smooth horizontal tubes. Comparison of experimental results and a classical model  lange binaire a Condensation d’un fuide pur et d’un me  rieur d’un faisceau det. Int. J. Refrig. 2001, 24, 841–855. [Google Scholar] [CrossRef]
- Ji, W.T.; Zhao, C.Y.; Zhang, D.C.; Li, Z.Y.; He, Y.L.; Tao, W.Q. Condensation of R134a outside single horizontal titanium, cupronickel (B10 and B30), stainless steel and copper tubes. Int. J. Heat Mass Transf. 2014, 77, 194–201. [Google Scholar] [CrossRef]
- Ji, W.T.; Chong, G.H.; Zhao, C.Y.; Zhang, H.; Tao, W.Q. Condensation heat transfer of R134a, R1234ze(E) and R290 on horizontal plain and enhanced titanium tubes. Int. J. Refrig. 2018, 93, 259–268. [Google Scholar] [CrossRef]
- Kang, J.; Kim, H.; Bak, J.; Lim, S.G.; Yun, B. Condensation of steam mixed with non-condensable gas on vertical heat exchanger tubes in circumstances with free convection. Int. J. Heat Mass Transf. 2021, 169, 120925. [Google Scholar] [CrossRef]
- Ribeiro, F.; de Conde, K.E.; Garcia, E.C.; Nascimento, I.P. Heat transfer performance enhancement in compact heat exchangers by the use of turbulators in the inner side. Appl. Therm. Eng. 2020, 173, 115188. [Google Scholar] [CrossRef]
- Li, G.; Cao, B.; Zhou, S.; Bian, H.; Ding, M. Effects of inclination and flow velocity on steam condensation consisting of air on tube bundle external surfaces. Prog. Nucl. Energy 2021, 136, 103722. [Google Scholar] [CrossRef]
- Gholami, A.; Mohammed, H.A.; Wahid, M.A.; Khiadani, M. Parametric design exploration of fin-and-oval tube compact heat exchangers performance with a new type of corrugated fin patterns. Int. J. Therm. Sci. 2019, 144, 173–190. [Google Scholar] [CrossRef]
- Jian, G.; Peterson, G.P.; Wang, S. Experimental investigation of the condensation mechanisms in the shell side of spiral wound heat exchangers. Int. J. Heat Mass Transf. 2020, 154, 119733. [Google Scholar] [CrossRef]
- Barz, T.; Emhofer, J. Paraffins as phase change material in a compact plate-fin heat exchanger—Part I: Experimental analysis and modeling of complete phase transitions. J. Energy Storage 2021, 33, 102128. [Google Scholar] [CrossRef]
- Barz, T. Paraffins as phase change material in a compact plate-fin heat exchanger—Part II: Validation of the “curve scale” hysteresis model for incomplete phase transitions. J. Energy Storage 2021, 34, 102164. [Google Scholar] [CrossRef]
- Sarmiento, A.P.C.; Milanez, F.H.; Mantelli, M.B.H. Theoretical models for compact printed circuit heat exchangers with straight semicircular channels. Appl. Therm. Eng. 2021, 184, 115435. [Google Scholar] [CrossRef]
- Al zahrani, S.; Islam, M.S.; Saha, S.C. Heat transfer enhancement of modified flat plate heat exchanger. Appl. Therm. Eng. 2021, 186, 116533. [Google Scholar] [CrossRef]
- Piasecka, M.; Maciejewska, B. International Journal of Heat and Mass Transfer Spatial orientation as a factor in flow boiling heat transfer of cooling liquids in enhanced surface minichannels. Int. J. Heat Mass Transf. 2018, 117, 375–387. [Google Scholar] [CrossRef]
- Ozturk, M.M.; Doğan, B.; Erbay, L.B. Performance analysis of a compact heat exchanger with offset strip fin by non-uniform uninterrupted fin length. Appl. Therm. Eng. 2019, 159, 113814. [Google Scholar] [CrossRef]
- Pandey, V.; Kumar, P.; Dutta, P. Thermo-hydraulic analysis of compact heat exchanger for a simple recuperated sCO2 Brayton cycle. Renew. Sustain. Energy Rev. 2020, 134, 110091. [Google Scholar] [CrossRef]
- Theologou, K.; Hofer, M.; Mertz, R.; Buck, M.; Laurien, E.; Starflinger, J. Experimental investigation and modelling of steam-heated supercritical co2 compact cross-flow heat exchangers. Appl. Therm. Eng. 2020, 190, 116352. [Google Scholar] [CrossRef]
- Khan, M.S.; Zhu, Z.; Huang, Q. Design and analysis of thermal hydraulic performance of compact heat exchanger for FDS-II auxiliary system. Fusion Eng. Des. 2019, 147, 111251. [Google Scholar] [CrossRef]
- Buonomo, B.; di Pasqua, A.; Manca, O.; Nardini, S. Evaluation of thermal and fluid dynamic performance parameters in aluminum foam compact heat exchangers. Appl. Therm. Eng. 2020, 176, 115456. [Google Scholar] [CrossRef]
- Bezaatpour, M.; Rostamzadeh, H.; Bezaatpour, J.; Ebadollahi, M. Magnetic-induced nanoparticles and rotary tubes for energetic and exergetic performance improvement of compact heat exchangers. Powder Technol. 2021, 377, 396–414. [Google Scholar] [CrossRef]
- Jamuna Rani, G.; Sai Rani, G.; Praveen, A. Nano fluids effect on crossflow heat exchanger characteristics—Review. Mater. Today Proc. 2020, 44, 527–531. [Google Scholar] [CrossRef]
- Liu, N.; Xiao, H.; Li, J. Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze(E) and R22 in minichannels. Appl. Therm. Eng. 2016, 102, 63–72. [Google Scholar] [CrossRef]
- Bohdal, T.; Charun, H.; Kruzel, M.; Sikora, M. High pressure refrigerants condensation in vertical pipe minichannels. Int. J. Heat Mass Transf. 2019, 134, 1250–1260. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kariya, K.; Miyara, A. An experimental study and development of new correlation for condensation heat transfer coefficient of refrigerant inside a multiport minichannel with and without fins. Int. J. Heat Mass Transf. 2018, 116, 50–60. [Google Scholar] [CrossRef]
- Azzolin, M.; Bortolin, S. Condensation and flow boiling heat transfer of a HFO/HFC binary mixture inside a minichannel. Int. J. Therm. Sci. 2021, 159, 106638. [Google Scholar] [CrossRef]
- Murphy, D.L.; Macdonald, M.P.; Mahvi, A.J.; Garimella, S. Condensation of propane in vertical minichannels. Int. J. Heat Mass Transf. 2019, 137, 1154–1166. [Google Scholar] [CrossRef]
- Kruzel, M.; Bohdal, T.; Sikora, M. Heat transfer and pressure drop during refrigerants condensation in compact heat exchangers. Int. J. Heat Mass Transf. 2020, 161, 120283. [Google Scholar] [CrossRef]
- Minko, K.B.; Yankov, G.G.; Artemov, V.I.; Milman, O.O. A mathematical model of forced convection condensation of steam on smooth horizontal tubes and tube bundles in the presence of noncondensables. Int. J. Heat Mass Transf. 2019, 140, 41–50. [Google Scholar] [CrossRef]
- Kang, J.; Moon, J.; Ko, Y.; Lim, S.G.; Yun, B. Steam condensation on tube-bundle in presence of non-condensable gas under free convection. Int. J. Heat Mass Transf. 2021, 178, 121619. [Google Scholar] [CrossRef]
- Gu, Y.; Ding, Y.; Liao, Q.; Fu, Q.; Zhu, X.; Wang, H. Analysis of convective condensation heat transfer for moist air on a three-dimensional finned tube. Appl. Therm. Eng. 2021, 195, 117211. [Google Scholar] [CrossRef]
- Jivani, S.; Liu, J.H.; Pu, J.H.; Wang, H.S. Marangoni condensation of steam-ethanol mixtures on a horizontal smooth tube. Exp. Therm. Fluid Sci. 2021, 128, 110434. [Google Scholar] [CrossRef]
- Mauro, A.W.; Napoli, G.; Pelella, F.; Viscito, L. Flow pattern, condensation and boiling inside and outside smooth and enhanced surfaces of propane (R290). State of the art review. Int. J. Heat Mass Transf. 2021, 174, 121316. [Google Scholar] [CrossRef]
- Liu, P.; Ho, J.Y.; Wong, T.N.; Toh, K.C. Laminar film condensation inside and outside vertical diverging/converging small channels: A theoretical study. Int. J. Heat Mass Transf. 2020, 149, 119193. [Google Scholar] [CrossRef]
- Asokan, N.; Gunnasegaran, P.; Vicki Wanatasanappan, V. Experimental investigation on the thermal performance of compact heat exchanger and the rheological properties of low concentration mono and hybrid nanofluids containing Al2O3 and CuO nanoparticles. Therm. Sci. Eng. Prog. 2020, 20, 100727. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Heyns, P.S. Thermo-structural fatigue and lifetime analysis of a heat exchanger as a feedwater heater in power plant. Eng. Fail. Anal. 2020, 113, 104548. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Otaghsara, S.M.T.; Khatir, M.H.Z.; Heyns, P.S. Numerical investigation of thermal pulsating alumina/water nanofluid flow over three different cross-sectional channel. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 3721–3735. [Google Scholar] [CrossRef]
- Hoseinzadeh, S.; Garcia, D.A. Numerical Analysis of Thermal, Fluid, and Electrical Performance of a Photovoltaic Thermal Collector at New Micro-Channels Geometry. J. Energy Resour. Technol. 2022, 144, 062105. [Google Scholar] [CrossRef]
- Steinke, M.E.; Kandlikar, G. Single-phase heat transfer enhancement techniques in microchannel and minichannel flows. In Proceedings of the Second International Conference on Microchannels and Minichannels, Rochester, NY, USA, 17–19 June 2004. [Google Scholar]
- Mehendale, S.; Jacobi, A.M.; Shah, M.M. Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design. Appl. Mech. Rev. 2000, 53, 175–193. [Google Scholar] [CrossRef]
- Bohdal, T.; Charun, H. Zasady Transportu Ciepła; Wydawnictwo Politechniki Koszalińskiej: Koszalin, Poland, 2011. [Google Scholar]
- Stephan, K.; Preußer, P. Wärmeübergang und maximale Wärmestromdichte beim Behältersieden binärer und ternärer Flüssigkeitsgemische: Behältersieden binärer und ternärer Flüssigkeitsgemische. Chem. Ing. Tech. 1979, 51, 37. [Google Scholar] [CrossRef]
- Bohdal, T.; Kruzel, M. International Journal of Heat and Mass Transfer Refrigerant condensation in vertical pipe minichannels under various heat flux density level. Int. J. Heat Mass Transf. 2020, 146, 118849. [Google Scholar] [CrossRef]
- Kirkbride, C.G. Heat Transfer by Condensing Vapor on Vertical Tubes. Ind. Eng. Chem. 2002, 26, 425–428. [Google Scholar] [CrossRef]
- Kutateładze, S.S. Osnowy Teorii Tiepłoobmienia; Moscow, Russia, 1957; Available online: https://warheroes.ru/hero/hero.asp?Hero_id=11660 (accessed on 7 October 2021).
- Fujii, T.; Oda, K. Correlation equations of heat transfer for condensate inundation on horizontal tube bundles. Trans. Jpn. Soc. Mech. Eng. 1986, 52, 822–826. [Google Scholar] [CrossRef] [Green Version]
- Shekriladze, I.G.; Gomelauri, V.I. Theoretical study of laminar film condensation of flowing vapour. Int. J. Heat Mass Transf. 1966, 9, 581–591. [Google Scholar] [CrossRef]
Measured Value | Device | Measuring Range | Max. Uncertainty |
---|---|---|---|
Mass flow | Coriolis effect mass flow meters | 0–450 kg·h−1 | ±0.15% |
Absolute pressure | Piezoresistive sensor | 0–2500 kPa | ±0.05% |
Differential manometer | 0–50 kPa | ±0.075% | |
Temperature | Thermocouple TP-201K-1B-100 | −40–+475 °C | ±0.2 K |
The Measured Variable | Unit | Range of Parameter Changes |
---|---|---|
Mass flow rate | kg·h−1 | 1–15 |
Mass flux density level G | kg·m−2s−1 | 20–700 |
Heat flux | W | 100–1500 |
Heat flux density q | W·m−2 | 3000–60,000 |
Saturation temperature ts | °C | 40–80 |
Author | Correlation |
---|---|
Ji et al. [3] | (10) |
((10(Stephan and Preußer [41] | (11) where Re, Dh, L, and Pr are Reynolds number, hydraulic diameter, channel length, and Prandtl number, respectively, L∗ is the dimensionless thermal input length |
Bohdal and Kruzel [42] | (12) where: and: |
Shekriladze and Gomelauri [43] | (13) where: (14) and: |
Kutateładze [44] | (15) |
Fujii and Oda [45] | (16) where where: |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruzel, M.; Bohdal, T.; Dutkowski, K. External Condensation of HFE 7000 and HFE 7100 Refrigerants in Shell and Tube Heat Exchangers. Materials 2021, 14, 6825. https://doi.org/10.3390/ma14226825
Kruzel M, Bohdal T, Dutkowski K. External Condensation of HFE 7000 and HFE 7100 Refrigerants in Shell and Tube Heat Exchangers. Materials. 2021; 14(22):6825. https://doi.org/10.3390/ma14226825
Chicago/Turabian StyleKruzel, Marcin, Tadeusz Bohdal, and Krzysztof Dutkowski. 2021. "External Condensation of HFE 7000 and HFE 7100 Refrigerants in Shell and Tube Heat Exchangers" Materials 14, no. 22: 6825. https://doi.org/10.3390/ma14226825
APA StyleKruzel, M., Bohdal, T., & Dutkowski, K. (2021). External Condensation of HFE 7000 and HFE 7100 Refrigerants in Shell and Tube Heat Exchangers. Materials, 14(22), 6825. https://doi.org/10.3390/ma14226825