Application of Neon Ion Implantation to Generate Intermediate Energy Levels in the Band Gap of Boron-Doped Silicon as a Material for Photovoltaic Cells
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Current Research Directions Using Ion Implantation
2. Materials and Methods
- Si + B1—neon ion implantation with a dose D = 4.0 × 1013 cm−2,
- Si + B2—neon ion implantation with a dose D = 2.2 × 1014 cm−2,
- Si + B3—neon ion implantation with a dose D = 4.0 × 1014 cm−2.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jäger-Waldau, A. Snapshot of Photovoltaics–February 2020. Energies 2020, 13, 930. [Google Scholar] [CrossRef] [Green Version]
- Taylor, N.; Jäger-Waldau, A. Photovoltaics Technology Development Report 2020; Publications Office of the European Union: Luxembourg, 2020; pp. 3–14. [Google Scholar] [CrossRef]
- He, Y.; Pang, Y.; Li, X.; Zhang, M. Dynamic subsidy model of photovoltaic distributed generation in China. Renew. Energy 2018, 118, 555–564. [Google Scholar] [CrossRef]
- De Rose, A.; Buna, M.; Strazza, C.; Olivieri, N.; Stevens, T.; Peeters, L.; Tawil-Jamault, D. Technology Readiness Level: Guidance Principles for Renewable Energy Technologies; European Commission: Petten, The Netherlands, 2017; pp. 17–27. [Google Scholar] [CrossRef]
- Fatih, B. World Energy Outlook 2019; International Energy Agency Publication: Paris, France, 2019; pp. 299–328. Available online: https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 12 November 2021).
- Gielen, D.; International Renewable Energy Agency (IRENA). Global Energy Transformation: A Roadmap to 2050, 2019 ed.; International Renewable Energy Agency Publication: Abu Dhabi, United Arab Emirates, 2019; pp. 15–35. Available online: https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition (accessed on 12 November 2021).
- Chowdhury, S.; Kumar, M.; Dutta, S.; Park, J.; Kim, J.; Kim, S.; Ju, M.; Kim, Y.; Cho, Y.; Cho, E.-C.; et al. High-efficiency Crystalline Silicon Solar Cells: A Review. New Renew. Energy 2019, 15, 36–45. [Google Scholar] [CrossRef]
- Ho, W.-J.; You, B.-J.; Liu, J.-J.; Bai, W.-B.; Syu, H.-J.; Lin, C.-F. Photovoltaic Performance Enhancement of Silicon Solar Cells Based on Combined Ratios of Three Species of Europium-Doped Phosphors. Materials 2018, 11, 845. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Park, C.; Balaji, N.; Lee, Y.J.; Dao, V.A. High-efficiency silicon solar cells: A review. Isr. J. Chem. 2015, 55, 1050–1063. [Google Scholar] [CrossRef]
- Billewicz, P.; Węgierek, P.; Grudniewski, T.; Turek, M. Application of ion implantation for intermediate energy levels formation in the silicon-based structures dedicated for photovoltaic purposes. Acta Phys. Pol. A 2017, 132, 274–277. [Google Scholar] [CrossRef]
- Billewicz, P.; Węgierek, P. Research on distribution of energy levels in ion implanted monocrystalline silicon in the aspect of photovoltaic applications. In Proceedings of the 2017 International Conference on Electromagnetic Devices and Processes in Environment Protection with Seminar Applications of Superconductors, (ELMECO & AoS Conference), Nałęczów, Poland, 3–6 December 2017. [Google Scholar] [CrossRef]
- Węgierek, P.; Billewicz, P. Changes in the Activation Energy of Radiation Defects in Strongly Defected Silicon Depending on the Type and Concentration of Dopant. Acta Phys. Pol. A 2014, 125, 1392–1395. [Google Scholar] [CrossRef]
- Kowalski, M.; Partyka, J.; Węgierek, P.; Żukowski, P.; Komarov, F.F.; Jurchenko, A.V.; Freik, D. Frequency-dependent annealing characteristics of the implant-isolated GaAs layers. Vacuum 2005, 78, 311–317. [Google Scholar] [CrossRef]
- Umezu, I.; Warrender, J.M.; Charnvanichborikarn, S.; Kohno, A.; Williams, J.; Tabbal, M.; Papazoglou, D.; Zhang, X.-C.; Aziz, M.J. Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens. J. Appl. Phys. 2013, 113, 213501. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.F.; Shao, H.; Liu, K.; Qu, S.; Wang, Y.; Wang, Z. Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon. Appl. Phys. Lett. 2015, 107, 112106. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Stradins, P.; Deng, H.; Luo, J.; Wei, S.H. Suppress carrier recombination by introducing defects: The case of Si solar cell. Appl. Phys. Lett. 2016, 108, 22101. [Google Scholar] [CrossRef] [Green Version]
- Luque, A.; Martí, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 1997, 78, 5014–5017. [Google Scholar] [CrossRef]
- Okada, Y.; Ekins-Daukes, N.J.; Kita, T.; Tamaki, R.; Yoshida, M.; Pusch, A.; Hess, O.; Phillips, C.C.; Farrell, D.J.; Ahsan, N.; et al. Intermediate band solar cells: Recent progress and future directions. Appl. Phys. Rev. 2015, 2, 21302. [Google Scholar] [CrossRef] [Green Version]
- Malerba, C.; Ricardo, C.L.A.; D’Incau, M.; Biccari, F.; Scardi, P.; Mittiga, A. Nitrogen doped Cu2O: A possible material for intermediate band solar cells? Sol. Energy Mater. Sol. Cells 2012, 105, 192–195. [Google Scholar] [CrossRef]
- López, A.B.C.; Vega, A.M.; López, A.L. (Eds.) Next Generation of Photovoltaics: New Concepts; Springer: Berlin/Heidelberg, Germany, 2012; pp. 17–38. [Google Scholar] [CrossRef] [Green Version]
- Kuang, Y.J.; Yu, K.M.; Kudrawiec, R.; Luce, A.V.; Ting, M.; Walukiewicz, W.; Tu, C.W. GaNAsP: An intermediate band semiconductor grown by gas-source molecular beam epitaxy. Appl. Phys. Lett. 2013, 102, 112105. [Google Scholar] [CrossRef]
- Lam, P.; Wu, J.; Tang, M.; Jiang, Q.; Hatch, S.; Beanland, R.; Wilson, J.; Allison, R.; Liu, H. Submonolayer InGaAs/GaAs quantum dot solar cells. Sol. Energy Mater. Sol. Cells 2014, 126, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Pérez, E.; Duenas, S.; Castán, H.; García, H.; Bailón, L.; Montero, D.; García-Hernansanz, R.; Hemme, E.G.; Olea, J.; González-Díaz, G.; et al. A detailed analysis of the energy levels configuration existing in the band gap of supersaturated silicon with titanium for photovoltaic applications. J. Appl. Phys. 2015, 118, 245704. [Google Scholar] [CrossRef] [Green Version]
- Shan, W.; Walukiewicz, W.; Ager, J.W., III; Haller, E.E.; Geisz, J.F.; Friedman, D.J.; Olson, J.M.; Kurtz, S.R. Band anticrossing in GaInNAs alloys. Phys. Rev. Lett. 1999, 82, 1221–1224. [Google Scholar] [CrossRef]
- Tanaka, T.; Miyabara, M.; Nagao, Y.; Saito, K.; Guo, Q.; Nishio, M.; Yu, K.M.; Walukiewicz, W. Photocurrent induced by two-photon excitation in ZnTeO intermediate band solar cells. Appl. Phys. Lett. 2013, 102, 52111. [Google Scholar] [CrossRef]
- Castán, H.; Pérez, E.; García, H.; Dueñas, S.; Bailón, L.; Olea, J.; Pastor, D.P.; Hemme, E.G.; Irigoyen, M.; González-Díaz, G. Experimental verification of intermediate band formation on titanium-implanted silicon. J. Appl. Phys. 2013, 113, 24104. [Google Scholar] [CrossRef] [Green Version]
- Olea, J.; Pastor, D.; Del Prado, Á.; García-Hemme, E.; García-Hernansanz, R.; Mártil, I.; González-Díaz, G. Ruling out the impact of defects on the below band gap photoconductivity of Ti supersaturated Si. J. Appl. Phys. 2013, 114, 53110. [Google Scholar] [CrossRef] [Green Version]
- Pérez, E.; Castán, H.; García, H.; Dueñas, S.; Bailón, L.; Montero, D.; García-Hernansanz, R.; Hemme, E.G.; Olea, J.; González-Díaz, G. Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications. Appl. Phys. Lett. 2015, 106, 22105. [Google Scholar] [CrossRef] [Green Version]
- Węgierek, P.; Pietraszek, J. Application of poly-energy implantation with H+ ions for additional energy levels formation in GaAs dedicated to photovoltaic cells. Arch. Electr. Eng. 2019, 68, 925–931. [Google Scholar] [CrossRef]
- Węgierek, P.; Pietraszek, J. Analysis of electricity generation efficiency in photovoltaic building systems made of HIT-IBC cells for multi-family residential buildings. Open Phys. 2019, 17, 307–312. [Google Scholar] [CrossRef]
- Węgierek, P.; Billewicz, P. Jump Mechanism of Electric Conduction in n-Type Silicon Implanted with Ne++ Neon Ions. Acta Phys. Pol. A 2011, 120, 122–124. [Google Scholar] [CrossRef]
- Węgierek, P.; Pastuszak, J.; Dziadosz, K.; Turek, M. Influence of Substrate Type and Dose of Implanted Ions on the Electrical Parameters of Silicon in Terms of Improving the Efficiency of Photovoltaic Cells. Energies 2020, 13, 6708. [Google Scholar] [CrossRef]
- Park, C.; Shim, G.; Balaji, N.; Park, J.; Yi, J. Correlation between Boron–Silicon Bonding Coordination, Oxygen Complexes and Electrical Properties for n-Type c-Si Solar Cell Applications. Energies 2020, 13, 3057. [Google Scholar] [CrossRef]
- Musztyfaga-Staszuk, M.; Janicki, D.; Panek, P. Correlation of Different Electrical Parameters of Solar Cells with Silver Front Electrodes. Materials 2019, 12, 366. [Google Scholar] [CrossRef] [Green Version]
- Węgierek, P.; Billewicz, P. Research on Mechanisms of Electric Conduction in the p-Type Silicon Implanted with Ne+ Ions. Acta Phys. Pol. A. 2013, 123, 948–951. [Google Scholar] [CrossRef]
- Billewicz, P.; Węgierek, P. Laboratory Stand for Examining the Influence of Environmental Conditions on Electrical Parameters of Photovoltaic Cells. Przegląd Elektrotech. 2016, 92, 176–179. [Google Scholar] [CrossRef] [Green Version]
- Partyka, J.; Żukowski, P.W.; Wegierek, P.; Rodzik, A.; Sidorenko, Y.V.; Shostak, Y.A. Temperature dependence of the width of the deep-level band in silicon with a high concentration of defects. Semiconductors 2002, 36, 1326–1331. [Google Scholar] [CrossRef]
- Schroder, D.K. Semiconductor Material and Device Characterization; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 251–288. [Google Scholar] [CrossRef]
- Claeys, C.; Simoen, E. Radiation Effects in Advanced Semiconductor Materials and Devices; Springer Science & Business Media: Berlin, Germany, 2002; Volume 57, pp. 109–144. [Google Scholar] [CrossRef]
- Żukowski, P.; Partyka, J.; Węgierek, P. Effect of ion implantation and annealing on the dielectric properties of silicon. Phys. Status Solidi A 1997, 159, 509–515. [Google Scholar] [CrossRef]
- Barbolla, J.; Duenas, S.; Bailon, L. Admittance spectroscopy in junctions. Solid-State Electron. 1992, 35, 285–297. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Węgierek, P.; Pastuszak, J. Application of Neon Ion Implantation to Generate Intermediate Energy Levels in the Band Gap of Boron-Doped Silicon as a Material for Photovoltaic Cells. Materials 2021, 14, 6950. https://doi.org/10.3390/ma14226950
Węgierek P, Pastuszak J. Application of Neon Ion Implantation to Generate Intermediate Energy Levels in the Band Gap of Boron-Doped Silicon as a Material for Photovoltaic Cells. Materials. 2021; 14(22):6950. https://doi.org/10.3390/ma14226950
Chicago/Turabian StyleWęgierek, Paweł, and Justyna Pastuszak. 2021. "Application of Neon Ion Implantation to Generate Intermediate Energy Levels in the Band Gap of Boron-Doped Silicon as a Material for Photovoltaic Cells" Materials 14, no. 22: 6950. https://doi.org/10.3390/ma14226950
APA StyleWęgierek, P., & Pastuszak, J. (2021). Application of Neon Ion Implantation to Generate Intermediate Energy Levels in the Band Gap of Boron-Doped Silicon as a Material for Photovoltaic Cells. Materials, 14(22), 6950. https://doi.org/10.3390/ma14226950