Study on the Mechanical and Leaching Characteristics of Permeable Reactive Barrier Waste Solidified by Cement-Based Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Testing Procedures
2.3.1. W-D Cycle Test
2.3.2. UCS Test
2.3.3. Resistivity Test
2.3.4. Leaching Concentration Test
2.3.5. Microscopic Testing
3. Results and Discussion
3.1. UCS
3.2. IR
3.3. Correlation of UCS and IR
3.4. Leaching Concentration
3.5. Mass Loss
3.6. Microstructure Analysis
3.7. Discussion of the Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sheoran, A.; Sheoran, V. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Miner. Eng. 2006, 19, 105–116. [Google Scholar] [CrossRef]
- Kalin, M.; Fyson, A.; Wheeler, W.N. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci. Total. Environ. 2006, 366, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Bosco, S.M.D.; Jimenez, R.S.; Vignado, C.; Fontana, J.; Geraldo, B.; Figueiredo, F.; Mandelli, D.; Carvalho, W.A. Removal of Mn(II) and Cd(II) from wastewaters by natural and modified clays. Adsorption 2006, 12, 133–146. [Google Scholar] [CrossRef]
- Neculita, C.M.; Rosa, E. A review of the implications and challenges of manganese removal from mine drainage. Chemosphere 2019, 214, 491–510. [Google Scholar] [CrossRef]
- Le Bourre, B.; Neculita, C.M.; Coudert, L.; Rosa, E. Manganese removal processes and geochemical behavior in residues from passive treatment of mine drainage. Chemosphere 2020, 259, 127424. [Google Scholar] [CrossRef]
- Tigue, A.A.S.; Malenab, R.A.J.; Promentilla, M.A.B. A Systematic Mapping and Scoping Review on Geopolymer and Permeable Reactive Barrier for Acid Mine Drainage Treatment Research. Process. Integr. Optim. Sustain. 2020, 4, 15–35. [Google Scholar] [CrossRef]
- Indraratna, B.; Pathirage, P.U.; Banasiak, L.J. Remediation of acidic ground water by way of permeable reactive barrier. Environ. Geotech. 2014, 4, 284–298. [Google Scholar] [CrossRef]
- Faisal, A.A.H.; Sulaymon, A.H.; Khaliefa, Q.M. A review of permeable reactive barrier as passive sustainable technology for groundwater remediation. Int. J. Environ. Sci. Technol. 2017, 15, 1123–1138. [Google Scholar] [CrossRef]
- Miretzky, P.; Muñoz, C.; Carrillo-Chávez, A. Experimental Zn(II) retention in a sandy loam soil by very small columns. Chemosphere 2006, 65, 2082–2089. [Google Scholar] [CrossRef]
- Jiangmin, S.; Guanxing, H.; Dongya, H.; Qinxuan, H.; Lin, G.; Meng, Z. A review of reactive media within permeable reactive barriers for the removal of heavy metal(loid)s in groundwater: Current status and future prospects. J. Clean. Prod. 2021, 319, 128644. [Google Scholar]
- Alena, P.; Vojtěch, S.; Tomáš, P.; Jaroslav, N. Advanced remediation using nanosized zero-valent iron and electrical current in situ—A comparison with conventional remediation using nanosized zero-valent iron alone. J. Environ. Chem. Eng. 2021, 9, 106124. [Google Scholar]
- Wang, X.; Jiang, H.; Fang, D.; Liang, J.; Zhou, L. A novel approach to rapidly purify acid mine drainage through chemically forming schwertmannite followed by lime neutralization. Water Res. 2019, 151, 515–522. [Google Scholar] [CrossRef]
- López, E.; Soto, B.; Arias, M.; Núñez, A.; Rubinos, D.; Barral, M. Adsorbent properties of red mud and its use for wastewater treatment. Water Res. 1998, 32, 1314–1322. [Google Scholar] [CrossRef]
- Jin, D.; Wang, X.; Liu, L.; Liang, J.; Zhou, L. A novel approach for treating acid mine drainage through forming schwertmannite driven by a mixed culture of Acidiphilium multivorum and Acidithiobacillus ferrooxidans prior to lime neutralization. J. Hazard. Mater. 2020, 400, 123108. [Google Scholar] [CrossRef] [PubMed]
- Komnitsas, K.; Bartzas, G.; Paspaliaris, I. Efficiency of limestone and red mud barriers: Laboratory column studies. Miner. Eng. 2004, 17, 183–194. [Google Scholar] [CrossRef]
- Franklin, O.N.; Johana, G.M.S.; Grzegorz, M. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 2014, 111, 243–259. [Google Scholar]
- Qiushi, Z.; Xing, C.; Rui, M.; Shichang, S.; Lin, F.; Junhao, L.; Juan, L. Solid waste-based magnesium phosphate cements: Preparation, performance and solidification/stabilization mechanism. Constr. Build. Mater. 2021, 297, 123761. [Google Scholar]
- Wang, D.; Zhu, J.; He, F. CO2 carbonation-induced improvement in strength and microstructure of reactive MgO-CaO-fly ash-solidified soils. Constr. Build. Mater. 2019, 229, 116914. [Google Scholar] [CrossRef]
- Elahi, T.E.; Rafat, S.A.; Shariful, I.M. Engineering characteristics of compressed earth blocks stabilized with cement and fly ash. Constr. Build. Mater. 2021, 277, 122367. [Google Scholar] [CrossRef]
- Cai, G.H.; Liu, S.Y. Compaction and mechanical characteristics and stabilization mechanism of carbonated reactive MgO-stabilized silt. KSCE J. Civ. Eng. 2017, 21, 2641–2654. [Google Scholar] [CrossRef]
- Wang, D.; Zentar, R.; Abriak, N.E. Durability and Swelling of Solidified/Stabilized Dredged Marine Soils with Class-F Fly Ash, Cement, and Lime. J. Mater. Civ. Eng. 2018, 30, 04018013. [Google Scholar] [CrossRef]
- Elahi, A.; Basheer, P.A.M.; Nanukuttan, S.V.; Khan, Q.U.Z. Mechanical and durability properties of high performance concretes containing supplementary cementitious materials. Constr. Build. Mater. 2010, 24, 292–299. [Google Scholar] [CrossRef]
- Wen, H.; Suo, C.; Hao, Y.; Fan, P.; Dong, X. Effect of Freezing-Thawing Cycle on the Mechanical Properties and Micromechanism of Red Mud-Calcium-Based Composite Cemented Soil. Adv. Civ. Eng. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Duan, W.; Cai, G.; Liu, S.; Puppala, A.J.; Chen, R. In-situ evaluation of undrained shear strength from seismic piezocone penetration tests for soft marine clay in Jiangsu, China. Transp. Geotech. 2019, 20, 100253. [Google Scholar] [CrossRef]
- Liao, Y.D.; Yang, Y.C.; Jiang, C.H.; Feng, X.G.; Chen, D. Degradation of mechanical properties of cementitious materials exposed to wet–dry cycles of sulphate solution. Mater. Res. Innov. 2015, 19, S5-173–S5-177. [Google Scholar] [CrossRef]
- Wang, D.; Wang, H.; Di, S. Mechanical properties and microstructure of magnesia–fly ash pastes. Road Mater. Pavement Des. 2018, 20, 1243–1254. [Google Scholar] [CrossRef]
- Wei, Y.; Chai, J.; Qin, Y.; Li, Y.; Xu, Z.; Li, Y.; Ma, Y. Effect of fly ash on mechanical properties and microstructure of cellulose fiber-reinforced concrete under sulfate dry–wet cycle attack. Constr. Build. Mater. 2021, 302, 124207. [Google Scholar] [CrossRef]
- Salih, W.; Yu, W.; Dong, X.; Hao, W. Study on stress-strain-resistivity and microscopic mechanism of red mud waste modified by desulphurization gypsum-fly ash under drying-wetting cycles. Constr. Build. Mater. 2020, 249, 118772. [Google Scholar] [CrossRef]
- Du, Y.-J.; Bo, Y.-L.; Jin, F.; Liu, C.-Y. Durability of reactive magnesia-activated slag-stabilized low plasticity clay subjected to drying–wetting cycle. Eur. J. Environ. Civ. Eng. 2015, 20, 215–230. [Google Scholar] [CrossRef]
- Kampala, A.; Horpibulsuk, S.; Prongmanee, N.; Chinkulkijniwat, A. Influence of Wet-Dry Cycles on Compressive Strength of Calcium Carbide Residue–Fly Ash Stabilized Clay. J. Mater. Civ. Eng. 2014, 26, 633–643. [Google Scholar] [CrossRef]
- Lu, Y.S.; Wang, M.M.; Huang, G.; Dong, X.Q. Experimental Study on Treatment to Acid Mine Drainage by Modified Red Mud. Non-Met. Mines 2018, 41, 15–18. [Google Scholar]
- Chen, R.; Cai, G.; Dong, X.; Mi, D.; Puppala, A.J.; Duan, W. Mechanical properties and micro-mechanism of loess roadbed filling using by-product red mud as a partial alternative. Constr. Build. Mater. 2019, 216, 188–201. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. Standard Test. Standard Test Method for Wetting and Drying Test of Solid Wastes; ASTM D4843-88; American Society for Testing and Materials: West Conshohocken, PA, USA, 2009. [Google Scholar]
- People’s Republic of China Industry Standards. Standard Test. Test Methods of Materials Stabilized with Inorganic Binders for Highway Engineering; JTG E51-2009; People’s Republic of China Industry Standards: Beijing, China, 2009. [Google Scholar]
- China’s Environmental Protection Industry Standards. Standard Test. Solid Waste-Extraction Procedure for Leaching Toxicity-Sulphuric Acid & Nitric Acid Method; HJ/T299-2007; China’s Environmental Protection Industry Standards: Beijing, China, 2007. [Google Scholar]
- Li, H.; Zhuge, L.J.; Shi, S.; Xu, D.L. Hydration Products of Fly Ash Based Cementing Material Activated By NaOH. J. Chin. Ceram. Soc. 2012, 40, 234–239. [Google Scholar]
- Eskisar, T. The role of carbide lime and fly ash blends on the geotechnical properties of clay soils. Bull. Int. Assoc. Eng. Geol. 2021, 80, 6343–6357. [Google Scholar] [CrossRef]
- Zheng, D.-D.; Ji, T.; Wang, C.-Q.; Sun, C.-J.; Lin, X.-J.; Hossain, K.M.A. Effect of the combination of fly ash and silica fume on water resistance of Magnesium–Potassium Phosphate Cement. Constr. Build. Mater. 2016, 106, 415–421. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, B.; Wu, X.; Zhu, H.; Wang, Q.; Xiong, Z.; Ding, Z. Effects of dry-wet cycles on mechanical and leaching characteristics of magnesium phosphate cement-solidified Zn-contaminated soils. Environ. Sci. Pollut. Res. 2021, 28, 18111–18119. [Google Scholar] [CrossRef]
- Chen, Y.C.; Huang, X.; Chen, X.J.; Ding, X.; Xu, K.Y. Relationship between unconfined compressive strength and electrical resistivity of red clay under dry and wet cycles. J. Guangxi Univ. Nat. Sci. Ed. 2020, 45, 1267–1275. [Google Scholar]
- Tian, G.Y.; Chen, R.F.; Song, Z.W.; Dong, X.Q. Effect of Age on Detecting Shear Strength of Loess Improved by the Red Mud in Resistivity Method. Bull. Chin. Ceram. Soc. 2017, 36, 2337–2342. [Google Scholar]
- Dong, X.Q.; Zhang, S.H.; Su, N.N.; Huang, X.E.; Bai, X.H. Effects of contaminated soil on electrical resistivity and strength of cemented soil. China Civ. Eng. J. 2015, 48, 91–98. [Google Scholar]
- Zha, F.S.; Liu, J.J.; Xu, L.; Deng, Y.F.; Yang, C.B.; Chu, C.F. Electrical resistivity of heavy metal contaminated soils solidified/stabilized with cement-fly ash. Rock Soil Mech. 2019, 40, 4573–4580. [Google Scholar]
- Zhang, D.W.; Cao, Z.G.; Liu, S.Y.; Chen, L. Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils. China Civ. Eng. J. 2015, 37, 1685–1691. [Google Scholar]
- Zhang, D.W.; Cao, Z.G.; Liu, S.Y. Characteristics and an experiment modle of electrical resistivity of stabilized soils. Chin. J. Rock Mech. Eng. 2014, 33, 4139–4144. [Google Scholar]
- Fakhrabadi, A.; Ghadakpour, M.; Choobbasti, A.J.; Kutanaei, S.S. Evaluating the durability, microstructure and mechanical properties of a clayey-sandy soil stabilized with copper slag-based geopolymer against wetting-drying cycles. Bull. Int. Assoc. Eng. Geol. 2021, 80, 5031–5051. [Google Scholar] [CrossRef]
- Guo, X.; Xiong, G. Resistance of fiber-reinforced fly ash-steel slag based geopolymer mortar to sulfate attack and drying-wetting cycles. Constr. Build. Mater. 2021, 269, 121326. [Google Scholar] [CrossRef]
- Kamruzzaman, A.H.; Chew, S.H.; Lee, F.H. Structuration and Destructuration Behavior of Cement-Treated Singapore Marine Clay. J. Geotech. Geoenvironment. Eng. 2009, 135, 573–589. [Google Scholar] [CrossRef]
- Buchwald, A.; Hilbig, H.; Kaps, C. Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition. J. Mater. Sci. 2007, 42, 3024–3032. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, S.-H.; Moon, H.-Y. Strength properties and durability aspects of high strength concrete using Korean metakaolin. Constr. Build. Mater. 2007, 21, 1229–1237. [Google Scholar] [CrossRef]
- Sargam, Y.; Wang, K. Quantifying dispersion of nanosilica in hardened cement matrix using a novel SEM-EDS and image analysis-based methodology. Cem. Concr. Res. 2021, 147, 106524. [Google Scholar] [CrossRef]
- Jin, S.; Liu, K.; Zhang, G.; Shi, H.; Ding, Q.; Xu, W. Effect of Corrosive Ions (Cl−, SO42−, and Mg2+) on the Nanostructure and Chloride Binding Property of C-A-S-H Gel. J. Wuhan Univ. Technol. Sci. Ed. 2020, 35, 1061–1072. [Google Scholar] [CrossRef]
- Cai, G.-H.; Liu, S.-Y.; Zheng, X. Influence of drying-wetting cycles on engineering properties of carbonated silt admixed with reactive MgO. Constr. Build. Mater. 2019, 204, 84–93. [Google Scholar] [CrossRef]
- Neramitkornburi, A.; Horpibulsuk, S.; Shen, S.L.; Chinkulkijniwat, A.; Arulrajah, A.; Disfani, M.M. Durability against wetting–drying cycles of sustainable Lightweight Cellular Cemented construction material comprising clay and fly ash wastes. Constr. Build. Mater. 2015, 77, 41–49. [Google Scholar] [CrossRef]
- Wang, D.; Gao, X.; Liu, X.; Zeng, G. Strength, durability and microstructure of granulated blast furnace slag-modified magnesium oxychloride cement solidified waste sludge. J. Clean. Prod. 2021, 292, 126072. [Google Scholar] [CrossRef]
- Cai, G.-H.; Liu, S.-Y.; Zheng, X. Effects of Drying-Wetting Cycles on Durability of Carbonated Reactive Magnesia-Admixed Clayey Soil. J. Mater. Civ. Eng. 2019, 31, 04019276. [Google Scholar] [CrossRef]
- Hoy, M.; Rachan, R.; Horpibulsuk, S.; Arulrajah, A.; Mirzababaei, M. Effect of wetting–drying cycles on compressive strength and microstructure of recycled asphalt pavement—Fly ash geopolymer. Constr. Build. Mater. 2017, 144, 624–634. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Liu, X.; Tang, B.; Mukiza, E.; Zhang, N. Preparation of non-sintered permeable bricks using electrolytic manganese residue: Environmental and NH3-N recovery benefits. J. Hazard. Mater. 2019, 378, 120768. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Chen, P.; Zhao, Y.R.; Liu, R.J.; Wei, J.Z. Sulfate activation of electrolytic manganese residue on heat-stewed steel slag activity. Inorg. Chem.Ind. 2019, 51, 66–69. [Google Scholar]
Parameters | Values |
---|---|
Specific density | 2.7 |
Liquid limit/% | 27.2 |
Plastic limit/% | 17.2 |
Plasticity index | 10.0 |
Optimum water content/% | 33.0 |
Maximum dry density/ | 1.47 |
pH value | 7.88–8.21 |
Constituent | Cement/% | Fly Ash/% | Carbide Slag/% |
---|---|---|---|
SiO2 | 20.96 | 50.10 | 3.0 |
Al2O3 | 4.98 | 26.50 | 2.5 |
CaO | 64.03 | 4.10 | 59.5 |
Fe2O3 | 3.22 | 8.40 | 0.9 |
Na2O | 0.07 | 7.15 | — |
TiO2 | — | — | 0.77 |
MgO | 1.30 | 0.85 | 0.2 |
SO3 | 2.60 | 1.40 | 0.89 |
K2O | 0.55 | 1.50 | 0.03 |
W-d Cycles | Curing Time/d | Concentration/ | Test Procedures (with Equipment Type) |
---|---|---|---|
0,1,3,5,7,10 | 28 | 1000 | Mass loss—Electronic scales (LQ-C20002) and electric constant temperature blast drying oven (DHG-9246A, JiangSu, China) UCS—Electronic universal testing machine (YSH-229WJ-50kN, ShangHai, China) Resistivity-Digital Bridge (TH2828A, ChangZhou, China) Leaching concentration—Inductively coupled plasma emission spectrometer (Spetro Arcos, Kleve, Germany) SEM and EDS—Electron microscope (UltimaⅣ 2036E102, Tokyo, Japan) XRD—Ultima IV diffractometer (Nippon Rigaku, Tokyo, Japan) |
5000 | |||
60 | 1000 | ||
5000 |
Curing Time/d | Concentration/ | Fitting Formula | Decision Coefficient |
---|---|---|---|
28 | 1000 | 0.978 | |
5000 | 0.986 | ||
60 | 1000 | 0.947 | |
5000 | 0.920 |
Curing Time /d | Magnifying Power | Contaminant Concentration/ | Cycle Times | Pore Area/ | Soil Area / | Porosity Ratio | Growth Ratio /% |
---|---|---|---|---|---|---|---|
28 | 5000 | 1000 | 0 | 166,358 | 1,024,066 | 0.162 | 37.42 |
10 | 209,585 | 938,853 | 0.223 | ||||
5000 | 0 | 135,532 | 1,087,255 | 0.125 | 28.11 | ||
10 | 161,337 | 1,010,247 | 0.160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Feng, W.; Wen, H.; Duan, W.; Suo, C.; Xie, M.; Dong, X. Study on the Mechanical and Leaching Characteristics of Permeable Reactive Barrier Waste Solidified by Cement-Based Materials. Materials 2021, 14, 6985. https://doi.org/10.3390/ma14226985
Chen X, Feng W, Wen H, Duan W, Suo C, Xie M, Dong X. Study on the Mechanical and Leaching Characteristics of Permeable Reactive Barrier Waste Solidified by Cement-Based Materials. Materials. 2021; 14(22):6985. https://doi.org/10.3390/ma14226985
Chicago/Turabian StyleChen, Xuan, Wenkui Feng, Hao Wen, Wei Duan, Chongxian Suo, Mingxing Xie, and Xiaoqiang Dong. 2021. "Study on the Mechanical and Leaching Characteristics of Permeable Reactive Barrier Waste Solidified by Cement-Based Materials" Materials 14, no. 22: 6985. https://doi.org/10.3390/ma14226985
APA StyleChen, X., Feng, W., Wen, H., Duan, W., Suo, C., Xie, M., & Dong, X. (2021). Study on the Mechanical and Leaching Characteristics of Permeable Reactive Barrier Waste Solidified by Cement-Based Materials. Materials, 14(22), 6985. https://doi.org/10.3390/ma14226985