Figure 1.
Geometry of the general (a) elastodynamic and (b) elastostatic problem. (c) A remote shear loading, σoxy. (d) A remote shear loading, σoxz. (e) A remote shear loading, σoyz.
Figure 1.
Geometry of the general (a) elastodynamic and (b) elastostatic problem. (c) A remote shear loading, σoxy. (d) A remote shear loading, σoxz. (e) A remote shear loading, σoyz.
Figure 2.
Procedures of ‘pvi3ds01_sm7560xx.f90’ using MPI parallelization.
Figure 2.
Procedures of ‘pvi3ds01_sm7560xx.f90’ using MPI parallelization.
Figure 3.
Registered trademark for VIEMAP.
Figure 3.
Registered trademark for VIEMAP.
Figure 4.
(a) Spherical, (b) prolate spheroidal and (c) oblate spheroidal inclusions under uniform remote tensile loading (σoxx).
Figure 4.
(a) Spherical, (b) prolate spheroidal and (c) oblate spheroidal inclusions under uniform remote tensile loading (σoxx).
Figure 5.
The orientation of spherical, prolate spheroidal and oblate spheroidal inclusions. (a) Spheroidal coordinate system. (b) Cartesian coordinate system.
Figure 5.
The orientation of spherical, prolate spheroidal and oblate spheroidal inclusions. (a) Spheroidal coordinate system. (b) Cartesian coordinate system.
Figure 6.
(a) Spherical, (b) prolate spheroidal and (c) oblate spheroidal inclusions under remote shear loading.
Figure 6.
(a) Spherical, (b) prolate spheroidal and (c) oblate spheroidal inclusions under remote shear loading.
Figure 7.
A typical discretized spherical model in the volume integral equation method (VIEM). (a) An inside view of a spherical model. (b) A spherical model.
Figure 7.
A typical discretized spherical model in the volume integral equation method (VIEM). (a) An inside view of a spherical model. (b) A spherical model.
Figure 8.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis inside and (ii) the circumferential direction of the isotropic spherical inclusions with a radius of 6 mm under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03, Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.
Figure 8.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis inside and (ii) the circumferential direction of the isotropic spherical inclusions with a radius of 6 mm under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03, Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.
Figure 9.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (left) the x–axis inside and (right) the circumferential direction of the orthotropic spherical inclusions (Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with a radius of 6 mm under uniform remote tensile loading.
Figure 9.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (left) the x–axis inside and (right) the circumferential direction of the orthotropic spherical inclusions (Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with a radius of 6 mm under uniform remote tensile loading.
Figure 10.
A typical discretized prolate spheroidal model (a/b = c/b = 0.5) in the volume integral equation method (VIEM). (a) An inside view of a prolate spheroidal model. (b) A prolate spheroidal model.
Figure 10.
A typical discretized prolate spheroidal model (a/b = c/b = 0.5) in the volume integral equation method (VIEM). (a) An inside view of a prolate spheroidal model. (b) A prolate spheroidal model.
Figure 11.
A typical discretized prolate spheroidal model (a/b = c/b = 0.75) in the volume integral equation method (VIEM). (a) An inside view of a prolate spheroidal model. (b) A prolate spheroidal model.
Figure 11.
A typical discretized prolate spheroidal model (a/b = c/b = 0.75) in the volume integral equation method (VIEM). (a) An inside view of a prolate spheroidal model. (b) A prolate spheroidal model.
Figure 12.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis inside and (ii) the circumferential direction of the isotropic prolate spheroidal inclusions with a/b = c/b = 0.5 (b = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03, Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.
Figure 12.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis inside and (ii) the circumferential direction of the isotropic prolate spheroidal inclusions with a/b = c/b = 0.5 (b = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03, Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.
Figure 13.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis inside and (ii) the circumferential direction of the isotropic prolate spheroidal inclusions with a/b = c/b = 0.75 (b = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03, Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.
Figure 13.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis inside and (ii) the circumferential direction of the isotropic prolate spheroidal inclusions with a/b = c/b = 0.75 (b = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03, Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.
Figure 14.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (left) the x–axis inside and (right) the circumferential direction of the orthotropic prolate spheroidal inclusions (Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with a/b = c/b = 0.5 (b = 6 mm) under uniform remote tensile loading.
Figure 14.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (left) the x–axis inside and (right) the circumferential direction of the orthotropic prolate spheroidal inclusions (Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with a/b = c/b = 0.5 (b = 6 mm) under uniform remote tensile loading.
Figure 15.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (left) the x–axis inside and (right) the circumferential direction of the orthotropic prolate spheroidal inclusions (Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with a/b = c/b = 0.75 (b = 6 mm) under uniform remote tensile loading.
Figure 15.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (left) the x–axis inside and (right) the circumferential direction of the orthotropic prolate spheroidal inclusions (Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with a/b = c/b = 0.75 (b = 6 mm) under uniform remote tensile loading.
Figure 16.
A typical discretized oblate spheroidal model (b/a = c/a = 0.5) in the volume integral equation method (VIEM). (a) An inside view of an oblate spheroidal model. (b) An oblate spheroidal model.
Figure 16.
A typical discretized oblate spheroidal model (b/a = c/a = 0.5) in the volume integral equation method (VIEM). (a) An inside view of an oblate spheroidal model. (b) An oblate spheroidal model.
Figure 17.
A typical discretized oblate spheroidal model (b/a = c/a = 0.75) in the volume integral equation method (VIEM). (a) An inside view of an oblate spheroidal model. (b) An oblate spheroidal model.
Figure 17.
A typical discretized oblate spheroidal model (b/a = c/a = 0.75) in the volume integral equation method (VIEM). (a) An inside view of an oblate spheroidal model. (b) An oblate spheroidal model.
Figure 18.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions with b/a = c/a = 0.5 (a = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03, Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.
Figure 18.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions with b/a = c/a = 0.5 (a = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03, Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.
Figure 19.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions with b/a = c/a = 0.75 (a = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03, Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.
Figure 19.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (i) the x–axis inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions with b/a = c/a = 0.75 (a = 6 mm) under uniform remote tensile loading. (a) Iso_01 and Iso_02. (b) Iso_03, Iso_04 and Iso_05. (c) Iso_06, Iso_07 and Iso_08.
Figure 20.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (left) the x–axis inside and (right) the circumferential direction of the orthotropic oblate spheroidal inclusions (Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with b/a = c/a = 0.5 (a = 6 mm) under uniform remote tensile loading.
Figure 20.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (left) the x–axis inside and (right) the circumferential direction of the orthotropic oblate spheroidal inclusions (Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with b/a = c/a = 0.5 (a = 6 mm) under uniform remote tensile loading.
Figure 21.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (left) the x–axis inside and (right) the circumferential direction of the orthotropic oblate spheroidal inclusions (Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with b/a = c/a = 0.75 (a = 6 mm) under uniform remote tensile loading.
Figure 21.
VIEM results for the normalized tensile stress component (σxx/σoxx) along (left) the x–axis inside and (right) the circumferential direction of the orthotropic oblate spheroidal inclusions (Ort_01, Ort_02, Ort_03, Ort_04 and Ort_05) with b/a = c/a = 0.75 (a = 6 mm) under uniform remote tensile loading.
Figure 22.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic spherical inclusions (Iso_01, Iso_05 and Iso_06) with a radius of 6 mm under remote shear loading (σoxy, σoxz and σoyz).
Figure 22.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic spherical inclusions (Iso_01, Iso_05 and Iso_06) with a radius of 6 mm under remote shear loading (σoxy, σoxz and σoyz).
Figure 23.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic spherical inclusions (Ort_06 and Ort_07) with a radius of 6 mm under remote shear loading (σoxy, σoxz and σoyz).
Figure 23.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic spherical inclusions (Ort_06 and Ort_07) with a radius of 6 mm under remote shear loading (σoxy, σoxz and σoyz).
Figure 24.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic prolate spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with a/b = c/b = 0.5 (b = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 24.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic prolate spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with a/b = c/b = 0.5 (b = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 25.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic prolate spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with a/b = c/b = 0.75 (b = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 25.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic prolate spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with a/b = c/b = 0.75 (b = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 26.
Cross-section in the (a) xy plane, (b) xz plane and (c) yz plane of (i) prolate spheroidal (with an aspect ratio of 0.5) and (ii) oblate spheroidal (with an aspect ratio of 0.5) inclusions under remote shear loading.
Figure 26.
Cross-section in the (a) xy plane, (b) xz plane and (c) yz plane of (i) prolate spheroidal (with an aspect ratio of 0.5) and (ii) oblate spheroidal (with an aspect ratio of 0.5) inclusions under remote shear loading.
Figure 27.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic prolate spheroidal inclusions (Ort_06 and Ort_07) with a/b = c/b = 0.5 (b = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 27.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic prolate spheroidal inclusions (Ort_06 and Ort_07) with a/b = c/b = 0.5 (b = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 28.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic prolate spheroidal inclusions (Ort_06 and Ort_07) with a/b = c/b = 0.75 (b = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 28.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic prolate spheroidal inclusions (Ort_06 and Ort_07) with a/b = c/b = 0.75 (b = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 29.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with b/a = c/a = 0.5 (a = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 29.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with b/a = c/a = 0.5 (a = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 30.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with b/a = c/a = 0.75 (a = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 30.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the isotropic oblate spheroidal inclusions (Iso_01, Iso_05 and Iso_06) with b/a = c/a = 0.75 (a = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 31.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic oblate spheroidal inclusions (Ort_06 and Ort_07) with b/a = c/a = 0.5 (a = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 31.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic oblate spheroidal inclusions (Ort_06 and Ort_07) with b/a = c/a = 0.5 (a = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 32.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic oblate spheroidal inclusions (Ort_06 and Ort_07) with b/a = c/a = 0.75 (a = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Figure 32.
VIEM results for the normalized shear stress components (a) σxy/σoxy, (b) σxz/σoxz and (c) σyz/σoyz along (i) the x–axis inside and (ii) the circumferential direction of the orthotropic oblate spheroidal inclusions (Ort_06 and Ort_07) with b/a = c/a = 0.75 (a = 6 mm) under remote shear loading (σoxy, σoxz and σoyz).
Table 1.
Capabilities of VIEMAP.
Table 1.
Capabilities of VIEMAP.
| Two Dimensional | Three Dimensional |
---|
ViemMesh (Pre-Processor) | (1) 8-node quadrilateral finite element (2) 6-node triangular finite element | (1) 20-node hexahedral finite element (2) 10-node tetrahedral finite element |
VIEM (Solver) | Multiple Inclusion Problems | Multiple Inclusion Problems |
Isotropic Inclusions | Anisotropic Inclusions | Isotropic Inclusions | Anisotropic Inclusions |
(1) Elastostatic solver (2) Elastodynamic solver | (1) Elastostatic solver (2) Elastodynamic solver |
ViemPlot (Post-Processor) | (1) Displacement contour plot (2) Stress contour plot | (1) Displacement contour plot (2) Stress contour plot |
Table 2.
Material Properties of the Isotropic Matrix and the Isotropic Inclusions.
Table 2.
Material Properties of the Isotropic Matrix and the Isotropic Inclusions.
Material | λ (GPa) | μ (GPa) | E (GPa) | ν |
---|
Matrix (Iso_01) | 67.3401 | 37.8788 | 100.0 | 0.32 |
Inclusion (Iso_01) | 176.060 | 176.060 | 440.15 | 0.25 |
Matrix (Iso_02) | 121.154 | 80.7692 | 210.0 | 0.30 |
Inclusion (Iso_02) | 83.1643 | 176.724 | 410.0 | 0.16 |
Matrix (Iso_03) | 75.0 | 37.5 | 100.0 | 0.3333 |
Inclusion (Iso_03) | 150.0 | 75.0 | 200.0 | 0.3333 |
Matrix (Iso_04) | 75.0 | 37.5 | 100.0 | 0.3333 |
Inclusion (Iso_04) | 375.0 | 187.5 | 500.0 | 0.3333 |
Matrix (Iso_05) | 75.0 | 37.5 | 100.0 | 0.3333 |
Inclusion (Iso_05) | 750.0 | 375.0 | 1000.0 | 0.3333 |
Matrix (Iso_06) | 121.154 | 80.7692 | 210.0 | 0.30 |
Inclusion (Iso_06) | 87.2202 | 41.0448 | 110.0 | 0.34 |
Matrix (Iso_07) | 75.0 | 37.5 | 100.0 | 0.3333 |
Inclusion (Iso_07) | 15.0 | 7.5 | 20.0 | 0.3333 |
Matrix (Iso_08) | 75.0 | 37.5 | 100.0 | 0.3333 |
Inclusion (Iso_08) | 52.5 | 26.25 | 70.0 | 0.3333 |
Table 3.
Material Properties of the Isotropic Matrix and the Orthotropic Inclusions.
Table 3.
Material Properties of the Isotropic Matrix and the Orthotropic Inclusions.
Unit: GPa | Orthotropic Inclusions | Isotropic Matrix |
---|
Ort_01 | Ort_02 | Ort_03 | Ort_04 | Ort_05 |
---|
c11 | 139.54 | 279.08 | 418.61 | 41.86 | 69.77 | 143.10 |
c12 = c21 | 3.90 | 7.80 | 11.7 | 1.17 | 1.95 | 67.34 |
c13 = c31 | 3.90 | 7.80 | 11.7 | 1.17 | 1.95 | 67.34 |
c22 | 15.28 | 30.56 | 45.83 | 4.58 | 7.64 | 143.10 |
c23 = c32 | 3.29 | 6.59 | 9.88 | 0.99 | 1.65 | 67.34 |
c33 | 15.28 | 30.56 | 45.83 | 4.58 | 7.64 | 143.10 |
c44 | 5.90 | 11.80 | 17.70 | 1.77 | 2.95 | 37.88 |
c55 | 5.90 | 11.80 | 17.70 | 1.77 | 2.95 | 37.88 |
c66 | 5.90 | 11.80 | 17.70 | 1.77 | 2.95 | 37.88 |
Table 4.
Material properties of the isotropic matrix and the orthotropic inclusions.
Table 4.
Material properties of the isotropic matrix and the orthotropic inclusions.
Unit: GPa | Orthotropic Inclusions | Isotropic Matrix |
---|
Ort_06 | Ort_07 |
---|
c11 | 61.11 | 458.30 | 143.10 |
c12 = c21 | 17.95 | 134.63 | 67.34 |
c13 = c31 | 20.54 | 154.02 | 67.34 |
c22 | 32.77 | 245.78 | 143.10 |
c23 = c32 | 15.05 | 112.87 | 67.34 |
c33 | 47.89 | 359.15 | 143.10 |
c44 | 9.97 | 74.79 | 37.88 |
c55 | 15.16 | 113.69 | 37.88 |
c66 | 10.99 | 82.40 | 37.88 |
Table 5.
Material Property Characteristics.
Table 5.
Material Property Characteristics.
Material | | Characteristics |
---|
Matrix (Iso_01) | Isotropic | No restriction in Poisson’s ratio | E(Inclusion) > E(Matrix) |
Inclusion (Iso_01) | Isotropic | No restriction in Poisson’s ratio |
Matrix (Iso_02) | Isotropic | No restriction in Poisson’s ratio | E(Inclusion) > E(Matrix) |
Inclusion (Iso_02) | Isotropic | No restriction in Poisson’s ratio |
Matrix (Iso_03) | Isotropic | ν = 1/3 | E(Inclusion) > E(Matrix) |
Inclusion (Iso_03) | Isotropic | ν = 1/3 |
Matrix (Iso_04) | Isotropic | ν = 1/3 | E(Inclusion) > E(Matrix) |
Inclusion (Iso_04) | Isotropic | ν = 1/3; E(Iso_04) > E(Iso_03) |
Matrix (Iso_05) | Isotropic | ν = 1/3 | E(Inclusion) > E(Matrix) |
Inclusion (Iso_05) | Isotropic | ν = 1/3; E(Iso_05) > E(Iso_04) |
Matrix (Iso_06) | Isotropic | No restriction in Poisson’s ratio | E(Inclusion) < E(Matrix) |
Inclusion (Iso_06) | Isotropic | No restriction in Poisson’s ratio |
Matrix (Iso_07) | Isotropic | ν = 1/3 | E(Inclusion) < E(Matrix) |
Inclusion (Iso_07) | Isotropic | ν = 1/3 |
Matrix (Iso_08) | Isotropic | ν = 1/3 | E(Inclusion) < E(Matrix) |
Inclusion (Iso_08) | Isotropic | ν = 1/3; E(Iso_08) > E(Iso_07) |
Matrix (Ort_01) | Isotropic | No restriction in Poisson’s ratio |
Inclusion (Ort_01) | Orthotropic | c11 > c22 = c33 |
Matrix (Ort_02) | Isotropic | No restriction in Poisson’s ratio |
Inclusion (Ort_02) | Orthotropic | c11 > c22 = c33; c11(Ort_02) > c11(Ort_01) |
Matrix (Ort_03) | Isotropic | No restriction in Poisson’s ratio |
Inclusion (Ort_03) | Orthotropic | c11 > c22 = c33; c11(Ort_03) > c11(Ort_02) |
Matrix (Ort_04) | Isotropic | No restriction in Poisson’s ratio |
Inclusion (Ort_04) | Orthotropic | c11 > c22 = c33; c11(Ort_04) < c11(Ort_01) |
Matrix (Ort_05) | Isotropic | No restriction in Poisson’s ratio |
Inclusion (Ort_05) | Orthotropic | c11 > c22 = c33; c11(Ort_04) < c11(Ort_05) < c11(Ort_01) |
Matrix (Ort_06) | Isotropic | No restriction in Poisson’s ratio |
Inclusion (Ort_06) | Orthotropic | μ (Matrix) > c55 (Inclusion) > c66 (Inclusion) > c44 (Inclusion) |
Matrix (Ort_07) | Isotropic | No restriction in Poisson’s ratio |
Inclusion (Ort_07) | Orthotropic | c55 (Inclusion) > c66 (Inclusion) > c44 (Inclusion) > μ (Matrix) |
Table 6.
Normalized tensile stress component (σxx/σoxx) within the isotropic spherical inclusion due to uniform remote tensile loading (σoxx).
Table 6.
Normalized tensile stress component (σxx/σoxx) within the isotropic spherical inclusion due to uniform remote tensile loading (σoxx).
Material | VIEM (Average) | Analytical Solution | Error (%) |
---|
Iso_01 | 1.5800 | - | - |
Iso_02 | 1.2823 | 1.2822 | 0.0078 |
Table 7.
Normalized tensile stress component (σxx/σoxx) within the isotropic spherical inclusion due to uniform remote tensile loading (σoxx).
Table 7.
Normalized tensile stress component (σxx/σoxx) within the isotropic spherical inclusion due to uniform remote tensile loading (σoxx).
Material | VIEM (Average) | Analytical Solution | Error (%) |
---|
Iso_03 | 1.3090 | 1.3091 | 0.0076 |
Iso_04 | 1.6171 | 1.6173 | 0.0124 |
Iso_05 | 1.7582 | 1.7582 | 0.0 |
Table 8.
Normalized tensile stress component (σxx/σoxx) within the isotropic spherical inclusion due to uniform remote tensile loading (σoxx).
Table 8.
Normalized tensile stress component (σxx/σoxx) within the isotropic spherical inclusion due to uniform remote tensile loading (σoxx).
Material | VIEM (Average) | Analytical Solution | Error (%) |
---|
Iso_06 | 0.7200 | 0.7200 | 0.0 |
Iso_07 | 0.3557 | 0.3556 | 0.0281 |
Iso_08 | 0.8343 | 0.8343 | 0.0 |
Table 9.
Normalized tensile stress component (σxx/σoxx) within the orthotropic spherical inclusion due to uniform remote tensile loading (σoxx).
Table 9.
Normalized tensile stress component (σxx/σoxx) within the orthotropic spherical inclusion due to uniform remote tensile loading (σoxx).
Material | VIEM (Average) |
---|
Ort_01 | 1.1520 |
Ort_02 | 1.4536 |
Ort_03 | 1.5910 |
Ort_04 | 0.5836 |
Ort_05 | 0.8129 |
Table 10.
Normalized tensile stress component (σxx/σoxx) within the isotropic prolate spheroidal inclusion due to uniform remote tensile loading (σoxx).
Table 10.
Normalized tensile stress component (σxx/σoxx) within the isotropic prolate spheroidal inclusion due to uniform remote tensile loading (σoxx).
Material | VIEM (Average) |
---|
a/b = c/b = 0.5 (see Figure 5) | a/b = c/b = 0.75 (see Figure 5) |
---|
Iso_01 | 1.4268 | 1.5028 |
Iso_02 | 1.2177 | 1.2500 |
Table 11.
Normalized tensile stress component (σxx/σoxx) within the isotropic prolate spheroidal inclusion due to uniform remote tensile loading (σoxx).
Table 11.
Normalized tensile stress component (σxx/σoxx) within the isotropic prolate spheroidal inclusion due to uniform remote tensile loading (σoxx).
Material | VIEM (Average) |
---|
a/b = c/b = 0.5 (See Figure 5) | a/b = c/b = 0.75 (See Figure 5) |
---|
Iso_03 | 1.2374 | 1.2736 |
Iso_04 | 1.4502 | 1.5330 |
Iso_05 | 1.5409 | 1.6477 |
Table 12.
Normalized tensile stress component (σxx/σoxx) within the isotropic prolate spheroidal inclusion due to uniform remote tensile loading (σoxx).
Table 12.
Normalized tensile stress component (σxx/σoxx) within the isotropic prolate spheroidal inclusion due to uniform remote tensile loading (σoxx).
| VIEM (Average) |
---|
a/b = c/b = 0.5 (See Figure 5) | a/b = c/b = 0.75 (See Figure 5) |
---|
Iso_06 | 0.7613 | 0.7397 |
Iso_07 | 0.4042 | 0.3780 |
Iso_08 | 0.8610 | 0.8471 |
Table 13.
Normalized Tensile Stress Component (σxx/σoxx) within the Orthotropic Prolate Spheroidal Inclusion due to Uniform Remote Tensile Loading (σoxx).
Table 13.
Normalized Tensile Stress Component (σxx/σoxx) within the Orthotropic Prolate Spheroidal Inclusion due to Uniform Remote Tensile Loading (σoxx).
Material | VIEM (Average) |
---|
a/b = c/b = 0.5 (See Figure 5) | a/b = c/b = 0.75 (See Figure 5) |
---|
Ort_01 | 1.1244 | 1.1385 |
Ort_02 | 1.3546 | 1.4038 |
Ort_03 | 1.4519 | 1.5202 |
Ort_04 | 0.6246 | 0.6027 |
Ort_05 | 0.8375 | 0.8246 |
Table 14.
Normalized tensile stress component (σxx/σoxx) within the isotropic oblate spheroidal inclusion due to uniform remote tensile loading (σoxx).
Table 14.
Normalized tensile stress component (σxx/σoxx) within the isotropic oblate spheroidal inclusion due to uniform remote tensile loading (σoxx).
Material | VIEM (Average) |
---|
b/a = c/a = 0.5 (See Figure 5) | b/a = c/a = 0.75 (See Figure 5) |
---|
Iso_01 | 2.1363 | 1.7790 |
Iso_02 | 1.4811 | 1.3599 |
Table 15.
Normalized tensile stress component (σxx/σoxx) within the isotropic oblate spheroidal inclusion due to uniform remote tensile loading (σoxx).
Table 15.
Normalized tensile stress component (σxx/σoxx) within the isotropic oblate spheroidal inclusion due to uniform remote tensile loading (σoxx).
Material | VIEM (Average) |
---|
b/a = c/a = 0.5 (See Figure 5) | b/a = c/a = 0.75 (See Figure 5) |
---|
Iso_03 | 1.5251 | 1.3938 |
Iso_04 | 2.2350 | 1.8413 |
Iso_05 | 2.6483 | 2.0556 |
Table 16.
Normalized tensile stress component (σxx/σoxx) within the isotropic oblate spheroidal inclusion due to uniform remote tensile loading (σoxx).
Table 16.
Normalized tensile stress component (σxx/σoxx) within the isotropic oblate spheroidal inclusion due to uniform remote tensile loading (σoxx).
Material | VIEM (Average) |
---|
b/a = c/a = 0.5 (See Figure 5) | b/a = c/a = 0.75 (See Figure 5) |
---|
Iso_06 | 0.6310 | 0.6793 |
Iso_07 | 0.2695 | 0.3134 |
Iso_08 | 0.7733 | 0.8072 |
Table 17.
Normalized tensile stress component (σxx/σoxx) within the orthotropic oblate spheroidal inclusion due to uniform remote tensile loading (σoxx).
Table 17.
Normalized tensile stress component (σxx/σoxx) within the orthotropic oblate spheroidal inclusion due to uniform remote tensile loading (σoxx).
Material | VIEM (Average) |
---|
b/a = c/a = 0.5 (See Figure 5) | b/a = c/a = 0.75 (See Figure 5) |
---|
Ort_01 | 1.2292 | 1.1833 |
Ort_02 | 1.7864 | 1.5780 |
Ort_03 | 2.1040 | 1.7745 |
Ort_04 | 0.5006 | 0.5453 |
Ort_05 | 0.7570 | 0.7882 |
Table 18.
Normalized shear stress components (σxy/σoxy, σxz/σoxz and σyz/σoyz) within the isotropic spherical inclusion due to remote shear loading (σoxy, σoxz and σoyz).
Table 18.
Normalized shear stress components (σxy/σoxy, σxz/σoxz and σyz/σoyz) within the isotropic spherical inclusion due to remote shear loading (σoxy, σoxz and σoyz).
Material | VIEM (Average) |
---|
σxy/σoxy | σxz/σoxz | σyz/σoyz |
---|
Iso_01 | 1.7109 | 1.7109 | 1.7109 |
Iso_05 | 1.9231 | 1.9231 | 1.9231 |
Iso_06 | 0.6636 | 0.6636 | 0.6636 |
Table 19.
Normalized shear stress components (σxy/σoxy, σxz/σoxz and σyz/σoyz) within the orthotropic spherical inclusion due to remote shear loading (σoxy, σoxz and σoyz).
Table 19.
Normalized shear stress components (σxy/σoxy, σxz/σoxz and σyz/σoyz) within the orthotropic spherical inclusion due to remote shear loading (σoxy, σoxz and σoyz).
Material | VIEM (Average) |
---|
σxy/σoxy | σxz/σoxz | σyz/σoyz |
---|
Ort_06 | 1.4006 | 1.5456 | 1.3537 |
Ort_07 | 0.4356 | 0.5576 | 0.4030 |
Table 20.
Normalized shear stress components (σxy/σoxy, σxz/σoxz and σyz/σoyz) within the isotropic prolate spheroidal inclusion due remote shear loading (σoxy, σoxz and σoyz).
Table 20.
Normalized shear stress components (σxy/σoxy, σxz/σoxz and σyz/σoyz) within the isotropic prolate spheroidal inclusion due remote shear loading (σoxy, σoxz and σoyz).
Material | VIEM (Average) |
---|
a/b = c/b = 0.5 (See Figure 5) | a/b = c/b = 0.75 (See Figure 5) |
---|
σxy/σoxy | σxz/σoxz | σyz/σoyz | σxy/σoxy | σxz/σoxz | σyz/σoyz |
---|
Iso_01 | 1.7619 | 1.5329 | 1.7619 | 1.7490 | 1.6214 | 1.7490 |
Iso_05 | 1.9935 | 1.6765 | 1.9935 | 1.9772 | 1.7972 | 1.9772 |
Iso_06 | 0.6538 | 0.7036 | 0.6538 | 0.6565 | 0.6820 | 0.6565 |
Table 21.
Normalized shear stress components (σxy/σoxy, σxz/σoxz and σyz/σoyz) within the orthotropic prolate spheroidal inclusion due remote shear loading (σoxy, σoxz and σoyz).
Table 21.
Normalized shear stress components (σxy/σoxy, σxz/σoxz and σyz/σoyz) within the orthotropic prolate spheroidal inclusion due remote shear loading (σoxy, σoxz and σoyz).
Material | VIEM (Average) |
---|
a/b = c/b = 0.5 (See Figure 5) | a/b = c/b = 0.75 (See Figure 5) |
---|
σxy/σoxy | σxz/σoxz | σyz/σoyz | σxy/σoxy | σxz/σoxz | σyz/σoyz |
---|
Ort_06 | 1.4239 | 1.4192 | 1.3735 | 1.4180 | 1.4828 | 1.3685 |
Ort_07 | 0.4258 | 0.6010 | 0.3934 | 0.4282 | 0.5774 | 0.3957 |
Table 22.
Normalized shear stress components (σxy/σoxy, σxz/σoxz and σyz/σoyz) within the isotropic oblate spheroidal inclusion due remote shear loading (σoxy, σoxz and σoyz).
Table 22.
Normalized shear stress components (σxy/σoxy, σxz/σoxz and σyz/σoyz) within the isotropic oblate spheroidal inclusion due remote shear loading (σoxy, σoxz and σoyz).
Material | VIEM (Average) |
---|
b/a = c/a = 0.5 (See Figure 5) | b/a = c/a = 0.75 (See Figure 5) |
---|
σxy/σoxy | σxz/σoxz | σyz/σoyz | σxy/σoxy | σxz/σoxz | σyz/σoyz |
---|
Iso_01 | 1.7619 | 1.7619 | 1.5329 | 1.7490 | 1.7490 | 1.6214 |
Iso_05 | 1.9935 | 1.9935 | 1.6765 | 1.9772 | 1.9772 | 1.7972 |
Iso_06 | 0.6538 | 0.6538 | 0.7036 | 0.6565 | 0.6565 | 0.6820 |
Table 23.
Normalized shear stress components (σxy/σoxy, σxz/σoxz and σyz/σoyz) within the orthotropic oblate spheroidal inclusion due remote shear loading (σoxy, σoxz and σoyz).
Table 23.
Normalized shear stress components (σxy/σoxy, σxz/σoxz and σyz/σoyz) within the orthotropic oblate spheroidal inclusion due remote shear loading (σoxy, σoxz and σoyz).
Material | VIEM (Average) |
---|
b/a = c/a = 0.5 (See Figure 5) | b/a = c/a = 0.75 (See Figure 5) |
---|
σxy/σoxy | σxz/σoxz | σyz/σoyz | σxy/σoxy | σxz/σoxz | σyz/σoyz |
---|
Ort_06 | 1.4239 | 1.5808 | 1.2798 | 1.4180 | 1.5719 | 1.3175 |
Ort_07 | 0.4258 | 0.5477 | 0.4465 | 0.4282 | 0.5501 | 0.4226 |