Quartz Tuning Fork Sensor-Based Dosimetry for Sensitive Detection of Gamma Radiation
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chmielewski, A.G.; Haji-Saeid, M. Radiation technologies: Past, present and future. Radiat. Phys. Chem. 2004, 71, 17–21. [Google Scholar] [CrossRef]
- Murray, R.L.; Holbert, K.E. An introduction to the concepts, systems, and applications of nuclear processes. In Nuclear Energy, 7th ed.; Elsevier Inc.: Boston, MA, USA, 2014; p. 1. [Google Scholar]
- Vaiserman, A.; Koliada, A.; Zabuga, O.; Socol, Y. Health Impacts of Low-Dose Ionizing Radiation: Current Scientific Debates and Regulatory Issues. Dose-Response 2018, 16, 1559325818796331. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K.N.; Cole, W.C.; Haase, G.M. Radiation protection in humans: Extending the concept of as low as reasonably achievable (ALARA) from dose to biological damage. Br. J. Radiol. 2004, 77, 97–99. [Google Scholar] [CrossRef]
- Nicholas, T. Measurement and Detection of Radiation, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Hine, G.J.; Brownell, G.L. Radiation dosimetry. In Radiation Dosimetry; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Pohlkötter, A.; Willer, U.; Bauer, C.; Schade, W. Resonant tuning fork detector for electromagnetic radiation. Appl. Opt. 2008, 48, B119–B125. [Google Scholar] [CrossRef] [PubMed]
- Ovsik, M.; Manas, M.; Stanek, M.; Dockal, A.; Mizera, A.; Fluxa, P.; Bednarik, M.; Adamek, M. Nano-Mechanical Properties of Surface Layers of Polyethylene Modified by Irradiation. Materials 2020, 13, 929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waszczuk, K.; Piasecki, T.; Nitsch, K.; Gotszalk, T. Application of piezoelectric tuning forks in liquid viscosity and density measurements. Sens. Actuators B Chem. 2011, 160, 517–523. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, D.; He, X.; Wang, X. A Hydrodynamic Model for Measuring Fluid Density and Viscosity by Using Quartz Tuning Forks. Sensors 2019, 20, 198. [Google Scholar] [CrossRef] [Green Version]
- Lou, C.; Yang, X.; Li, X.; Chen, H.; Chang, C.; Liu, X. Graphene-Enhanced Quartz Tuning Fork for Laser-Induced Thermoelastic Spectroscopy. IEEE Sens. J. 2021, 21, 9819–9824. [Google Scholar] [CrossRef]
- Kosterev, A.A.; Tittel, F.K.; Serebryakov, D.; Malinovsky, A.L.; Morozov, I.V. Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 2005, 76, 043105. [Google Scholar] [CrossRef] [Green Version]
- Človečko, M.; Grajcar, M.; Kupka, M.; Neilinger, P.; Rehák, M.; Skyba, P.; Vavrek, F. High Q value Quartz Tuning Fork in Vacuum as a Potential Thermometer in Millikelvin Temperature Range. J. Low Temp. Phys. 2016, 187, 573–579. [Google Scholar] [CrossRef]
- Broadway, C.; Kinet, D.; Theodosiou, A.; Kalli, K.; Gusarov, A.; Caucheteur, C.; Mégret, P. CYTOP Fibre Bragg Grating Sensors for Harsh Radiation Environments. Sensors 2019, 19, 2853. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, S.; Kaya, S.; Karacali, H.; Yilmaz, E. The gamma irradiation responses of yttrium oxide capacitors and first assessment usage in radiation sensors. Sensors Actuators A Phys. 2017, 258, 44–48. [Google Scholar] [CrossRef]
- Han, J.-M.; Xu, M.; Wang, B.; Wu, N.; Yang, X.; Yang, H.; Salter, B.J.; Zang, L. Low Dose Detection of γ Radiation via Solvent Assisted Fluorescence Quenching. J. Am. Chem. Soc. 2014, 136, 5090–5096. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, Y.; Uno, T. Radiation-Induced Frequency Changes in Quartz Oscillators. Jpn. J. Appl. Phys. 1988, 27, 114. [Google Scholar] [CrossRef]
- Thundat, T.; Sharp, S.L.; Fisher, W.G.; Warmack, R.J.; Wachter, E.A. Micromechanical radiation dosimeter. Appl. Phys. Lett. 1995, 66, 1563–1565. [Google Scholar] [CrossRef]
- Shamma, K.; Aldwayyan, A.; AlBrithen, H.; Alodhayb, A. Exploiting the properties of TiO2 thin films as a sensing layer on (MEMS)-based sensors for radiation dosimetry applications. AIP Adv. 2021, 11, 025209. [Google Scholar] [CrossRef]
- Alodhayb, A.N.; Albrithen, H.A.; Shamma, K.Z. Metal Oxide Based Radiation Sensor. U.S. Patent No. 10,871,580, 22 December 2020. [Google Scholar]
- Friedt, J.-M.; Carry, É. Introduction to the quartz tuning fork. Am. J. Phys. 2007, 75, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Alodhayb, A. Quartz tuning fork, a low-cost orthogonal measurement tool for the characterization of low-volume liquid reagents. Measurement 2020, 152, 107313. [Google Scholar] [CrossRef]
- Alshammari, A.; Aldosari, F.; Bin Qarmalah, N.; Lsloum, A.; Muthuramamoorthy, M.; Alodhayb, A. Detection of Chemical Host–Guest Interactions Using a Quartz Tuning Fork Sensing System. IEEE Sens. J. 2020, 20, 12543–12551. [Google Scholar] [CrossRef]
- Insiripong, S.; Kedkaew, C.; Thamaphat, K.; Chantima, N.; Limsuwan, P.; Kaewkhao, J. Irradiation effect on natural quartz from Zambia. Procedia Eng. 2012, 32, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Sawakuchi, G.; Okuno, E. Effects of high gamma ray doses in quartz. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2004, 218, 217–221. [Google Scholar] [CrossRef]
- Ettinger, K.; Brondo, J.; Holowacz, J. Progress in Dosimetry with Piezoelectric Quartz. Radiat. Prot. Dosim. 1990, 33, 163–166. [Google Scholar] [CrossRef]
- Johs, B.; Herzinger, C.M. Quantifying the accuracy of ellipsometer systems. Phys. Status Solidi C 2008, 5, 1031–1035. [Google Scholar] [CrossRef]
- Bruggeman, D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Der Phys. 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Ou, Y.; Baccaro, S.; Zhang, Y.; Yang, Y.; Chen, G. Effect of Gamma-Ray Irradiation on the Optical Properties of PbO-B2O3-SiO2and Bi2O3-B2O3-SiO2Glasses. J. Am. Ceram. Soc. 2010, 93, 338–341. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, N.; Alodhayb, A.N.; Almutairi, A.; Alshehri, H.; AlYemni, S.; Alsowygh, G.; Abdulmawla, S.; Shamma, K.; Albrithen, H.; Muthuramamoorthy, M.; et al. Quartz Tuning Fork Sensor-Based Dosimetry for Sensitive Detection of Gamma Radiation. Materials 2021, 14, 7035. https://doi.org/10.3390/ma14227035
Alanazi N, Alodhayb AN, Almutairi A, Alshehri H, AlYemni S, Alsowygh G, Abdulmawla S, Shamma K, Albrithen H, Muthuramamoorthy M, et al. Quartz Tuning Fork Sensor-Based Dosimetry for Sensitive Detection of Gamma Radiation. Materials. 2021; 14(22):7035. https://doi.org/10.3390/ma14227035
Chicago/Turabian StyleAlanazi, Nadyah, Abdullah N. Alodhayb, Atheer Almutairi, Hanan Alshehri, Sarah AlYemni, Ghadah Alsowygh, Sabaa Abdulmawla, Khaled Shamma, Hamad Albrithen, Muthumareeswaran Muthuramamoorthy, and et al. 2021. "Quartz Tuning Fork Sensor-Based Dosimetry for Sensitive Detection of Gamma Radiation" Materials 14, no. 22: 7035. https://doi.org/10.3390/ma14227035
APA StyleAlanazi, N., Alodhayb, A. N., Almutairi, A., Alshehri, H., AlYemni, S., Alsowygh, G., Abdulmawla, S., Shamma, K., Albrithen, H., Muthuramamoorthy, M., & Almuqrin, A. H. (2021). Quartz Tuning Fork Sensor-Based Dosimetry for Sensitive Detection of Gamma Radiation. Materials, 14(22), 7035. https://doi.org/10.3390/ma14227035