Diamond for Electronics: Materials, Processing and Devices
Abstract
:1. Motivations
2. Diamond Properties towards Electronic Applications
3. Diamond Growth: Substrates, Techniques, and Doping
3.1. Diamond Substrates
3.2. MPCVD Growth and Parameters
3.3. Doping Issues
3.4. Diamond Surface Roughness Effect
3.5. Alternative Growth Geometries
4. Structural Characterization Techniques
5. Diamond Electronic Devices
5.1. Schottky, Ohmic Contacts, and Diamond SBDs
5.2. Diamond pn and PiN Junction Devices
5.3. Diamond FETs
6. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohashi, H. Power devices now and future, strategy of Japan. In Proceedings of the 2012 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD 2012), Bruges, Belgium, 3–7 June 2012. [Google Scholar]
- Pernot, J.; Volpe, P.N.; Omnès, F.; Muret, P.; Mortet, V.; Heanen, K.; Teraji, T. Hall hole mobility in boron-doped homoepitaxial diamond. Phys. Rev. B 2010, 81, 205203. [Google Scholar] [CrossRef]
- Pernot, J.; Koisumi, S. Electron mobility in phosphorous doped {111} homoepitaxial diamond. Appl. Phys. Lett. 2008, 93, 52105. [Google Scholar] [CrossRef]
- Isberg, J.; Hammersberg, J.; Johansson, E.; Wilkström, T.; Twitchen, D.; Whitehead, A.J.; Coe, S.E.; Scarsbrook, G.A. High carrier mobility in single-crystal plasma-deposited diamond. Science 2002, 297, 1670. [Google Scholar] [CrossRef] [PubMed]
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef] [Green Version]
- Mikhail, S.; Howell, D.A. A petrological assessment of diamond as a recorder of the mantle nitrogen cycle. Am. Mineral. 2016, 101, 780. [Google Scholar] [CrossRef] [Green Version]
- Schreck, M.; Asmussen, J.; Shikata, S.; Fujimori, N. Large-area high-quality single crystal diamond. MRS Bull. 2014, 39, 504–510. [Google Scholar] [CrossRef]
- Schreck, M.; Gsell, S.; Brescia, R.; Fischer, M. Ion bombardment induced buried lateral growth: The key mechanism for the synthesis of single crystal diamond wafers. Sci. Rep. 2017, 7, 44462. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Kawamata, Y.; Takaya, R.; Koyama, K.; Kasu, M. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (110) sapphire substrate. Appl. Phys. Lett. 2020, 117, 202102. [Google Scholar] [CrossRef]
- Levedev, V.; Engels, J.; Kustermann, J.; Weippert, J.; Cimalla, V.; Kirste, L.; Giese, C.; Quellmalz, P.; Graff, A.; Meyer, F.; et al. Growth defects in heteroepitaxial diamond. J. Appl. Phys. 2021, 129, 165301. [Google Scholar] [CrossRef]
- Schreck, M.; Arnault, J.-C. Heteroepitaxy of diamond on Ir/metal-oxide/Si substrates. In Power Electronics Device Applications of Diamond Semiconductors; Woodhead: Cambridge, UK, 2018; p. 58. [Google Scholar]
- Mehmel, L.; Issaoui, R.; Brinza, O.; Tallaire, A.; Mille, V.; Delchevalrie, J.; Saada, S.; Arnault, J.C.; Benedic, F.; Achard, J. Dislocation density reduction using overgrowth on hole arrays made in heteroepitaxial diamond substrates. J. Appl. Phys. Lett. 2021, 118, 061901. [Google Scholar] [CrossRef]
- Ichikawa, K.; Kurone, K.; Kodama, H.; Suzuki, K.; Sawabe, A. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diam. Relat. Mater. 2019, 94, 92. [Google Scholar] [CrossRef]
- Yamada, H.; Chayahara, A.; Mokuno, Y.; Kato, Y.; Shikata, S. A 2-in. mosaic wafer made of a single-crystal diamond. Appl. Phys. Lett. 2014, 104, 102110. [Google Scholar] [CrossRef]
- Kamo, M.; Sato, Y.; Matsumoto, S.; Setaka, N. Diamond synthesis from gas phase in microwave plasma. J. Cryst. Growth 1983, 62, 642. [Google Scholar] [CrossRef]
- Schwander, M.; Partes, K. A review of diamond synthesis by CVD processes. Diam. Relat. Mater. 2011, 20, 1287. [Google Scholar] [CrossRef]
- Butler, J.E.; Woodin, R.L. Thin film diamond growth mechanisms. Phil. Trans. R. Soc. A 1993, 342, 209. [Google Scholar]
- Setaka, N. Synthetic Diamond Emerging CVD Science and Technology; Spear, K.E., Dismukes, J.P., Eds.; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Wild, C.; Kohl, R.; Herres, N.; Müller-Sebert, W.; Koidl, P. Oriented CVD diamond films: Twin formation, structure and morphology. Diam. Relat. Mater. 1994, 3, 373. [Google Scholar] [CrossRef]
- Battaile, C.C.; Srolovitz, D.J.; Butler, J.E. Atomic-scale simulations of chemical vapor deposition on flat and vicinal diamond substrates. J. Cryst. Growth 1998, 194, 353. [Google Scholar] [CrossRef]
- Silva, F.; Achard, J.; Bonnin, X.; Michau, A.; Tallaire, A.; Brinza, O.; Gicquel, A. 3D crystal growth model for understanding the role of plasma pre--treatment on CVD diamond crystal shape. Phys. Status Solidi A 2006, 20, 3049. [Google Scholar] [CrossRef]
- Silva, F.; Bonnin, X.; Achard, J.; Brinza, O.; Michau, A.; Gicquel, A.J. Geometric modeling of homoepitaxial CVD diamond growth: I. The {1 0 0}{1 1 1}{1 1 0}{1 1 3} system. Cryst. Growth 2008, 310, 187. [Google Scholar] [CrossRef]
- Tallaire, A.; Kasu, M.; Ueda, K.; Makimoto, T. Origin of growth defects in CVD diamond epitaxial films. Diam. Relat. Mater. 2008, 17, 60. [Google Scholar] [CrossRef]
- Bogatskiy, A.; Butler, J.E. A geometric model of growth for cubic crystals: Diamond. Diam. Relat. Mater. 2015, 53, 58. [Google Scholar] [CrossRef]
- Hayashi, K.; Yamanaka, S.; Okushi, H.; Kajimura, K. Homoepitaxial diamond films with large terraces. Appl. Phys. Lett. 1996, 68, 1220. [Google Scholar] [CrossRef]
- Gamo, M.N.; Loh, K.P.; Sakaguchi, I. Surface morphology of homoepitaxially grown (111), (001), and (110) diamond studied by low energy electron diffraction and reflection high-energy electron diffraction. J. Vac. Sci. Technol. A 1999, 17, 2991. [Google Scholar] [CrossRef]
- Watanabe, H.; Takeuchi, D.; Yamanaka, S.; Okushi, H.; Kajimura, K. Homoepitaxial diamond film with an atomically flat surface over a large area. Diam. Relat. Mater. 1999, 8, 1272. [Google Scholar] [CrossRef]
- Collins, A.T.; Kamo, M.; Sato, Y. Optical centres related to nitrogen, vacancies and interstitials in polycrystalline diamond films grown by plasma-assisted chemical vapour deposition. J. Phys. D Appl. Phys. 1989, 22, 1402. [Google Scholar] [CrossRef]
- Spitsyn, B.V. Chemical crystallization of diamond from the activated vapor phase. J. Cryst. Growth 1990, 99, 1162. [Google Scholar] [CrossRef]
- Teraji, T.; Ito, T. Homoepitaxial diamond growth by high-power microwave-plasma chemical vapor deposition. J. Cryst. Growth 2004, 271, 409. [Google Scholar] [CrossRef]
- Teraji, T.; Mitani, S.; Ito, T. High rate growth and luminescence properties of high--quality homoepitaxial diamond (100) films. Phys. Status Solidi A 2003, 198, 395. [Google Scholar] [CrossRef]
- Ito, T.; Watanabe, T.; Irie, M.; Nakamura, J.; Teraji, T. Electron emissions from CVD diamond surfaces. Diam. Relat. Mater. 2003, 12, 434. [Google Scholar] [CrossRef]
- Teraji, T.; Yoshizaki, S.; Mitani, S.; Watanabe, T.; Hamada, M.; Ito, T. Highly sensitive UV photodetectors fabricated using high-quality single-crystalline CVD diamond films. Diam. Relat. Mater. 2004, 13, 858. [Google Scholar] [CrossRef]
- Ekimov, E.A.; Sidorov, V.A.; Bauer, E.D.; Mel’nik, N.N.; Curro, N.J.; Thompson, J.D.; Stishov, S.M. Superconductivity in diamond. Nature 2004, 428, 542. [Google Scholar] [CrossRef] [Green Version]
- Sidorov, V.A.; Ekimov, E.A. Superconductivity in diamond. Diam. Relat. Mater. 2010, 19, 351. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, S.; Kamo, M.; Sato, Y.; Ozaki, H.; Inuzuka, T. Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films. Appl. Phys. Lett. 1997, 71, 1065. [Google Scholar] [CrossRef]
- Makino, T.; Kato, H.; Ri, S.-G.; Cheng, Y.; Okushi, H. Electrical characterization of homoepitaxial diamond p–n+ junction. Diam. Relat. Mater. 2005, 14, 1995. [Google Scholar] [CrossRef]
- Koizumi, S.; Suzuki, M. n-Type doping of diamond. Phys. Status Solidi A 2006, 203, 3358. [Google Scholar] [CrossRef]
- Pinault-Thaury, M.-A.; Temgoua, S.; Gillet, R.; Bensalah, H.; Stenger, I.; Jomard, F.; Issaoui, R.; Barjon, J. Phosphorus-doped (113) CVD diamond: A breakthrough towards bipolar diamond devices. J. Appl. Phys. Lett. 2019, 114, 112106. [Google Scholar] [CrossRef]
- People, R.; Bean, J.C. Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained--layer heterostructures. Appl. Phys. Lett. 1985, 47, 322. [Google Scholar] [CrossRef]
- Alegre, M.P.; Araujo, D.; Fiori, A.; Piñero, J.C.; Lloret, F.; Villar, M.P.; Achatz, P.; Chicot, G.; Bustarret, E.; Jomard, F. Critical boron-doping levels for generation of dislocations in synthetic diamond. Appl. Phys. Lett. 2014, 105, 173103. [Google Scholar] [CrossRef] [Green Version]
- Lloret, F.; Eon, D.; Bustarret, E.; Fiori, A.; Araujo, D. Boron-doping proximity effects on dislocation generation during non-planar MPCVD homoepitaxial diamond growth. Nanomaterials 2018, 8, 480. [Google Scholar] [CrossRef] [Green Version]
- Dean, P.J.; Lightowlers, E.C.; Wight, D.R. Intrinsic and extrinsic recombination radiation from natural and synthetic aluminum-doped diamond. Phys. Rev. 1965, 140, A352. [Google Scholar] [CrossRef]
- Collins, A.; Lawson, S.; Davies, G.; Kanda, H. Real Time Ellipsometry Characterization and Process Monitoring for Amorphous Carbon Deposition. Mater. Sci. Forum 1990, 65–66, 19. [Google Scholar] [CrossRef]
- Ruf, T.; Cardona, M.; Sternschulte, H.; Wahl, S.; Thonke, K.; Sauer, R.; Pavone, P.; Anthony, T. Cathodoluminescence investigation of isotope effects in diamond. Solid State Commun. 1998, 105, 311. [Google Scholar] [CrossRef]
- Sauer, R.; Sternschulte, H.; Wahl, S.; Thonke, K.; Anthony, T. Cathodoluminescence investigation of isotope effects in diamond. Phys. Rev. Lett. 2000, 84, 4172. [Google Scholar] [CrossRef] [PubMed]
- Sharp, S.; Collins, A.; Davies, G.; Joyce, G. Higher resolution studies of shallow bound exciton luminescence in diamond. J. Phys. Condens. Matter 1997, 9, L451. [Google Scholar] [CrossRef]
- Kawarada, H.; Matsuyama, H.; Yokota, Y.; Sogi, T.; Yamaguchi, A.; Hiraki, A. Excitonic recombination radiation in undoped and boron-doped chemical-vapor-deposited diamonds. Phys. Rev. B 1993, 47, 3633. [Google Scholar] [CrossRef] [PubMed]
- Deneuville, A.; Baron, C.; Wade, M.; Jomard, F.; Chevallier, J. Cathodoluminescence of highly and heavily boron doped (100) homoepitaxial diamond films. Diam. Relat. Mater. 2006, 15, 597. [Google Scholar]
- Hasegawa, M.; Teraji, T.; Koizumi, S. Lattice location of phosphorus in n-type homoepitaxial diamond films grown by chemical-vapor deposition. Appl. Phys. Lett. 2001, 79, 3068. [Google Scholar] [CrossRef]
- Nakazawa, K.; Tanabe, K.; Tachiki, M.; Kawarada, H.; Koizumi, S. Excitonic recombination radiation in phosphorus-doped CVD diamonds. Phys. Rev. B 2001, 64, 23520. [Google Scholar] [CrossRef]
- Barjon, J.; Desfonds, P.; Pinault, M.-A.; Kociniewski, T.; Jomard, F.; Chevallier, J. Determination of the phosphorus content in diamond using cathodoluminescence spectroscopy. J. Appl. Phys. 2007, 101, 113701. [Google Scholar] [CrossRef]
- Omnès, F.; Muret, P.; Volpe, P.N.; Wade, M.; Pernot, J.; Jomard, F. Study of boron doping in MPCVD grown homoepitaxial diamond layers based on cathodoluminescence spectroscopy, secondary ion mass spectroscopy and capacitance–voltage measurements. Diam. Relat. Mater. 2011, 20, 912–916. [Google Scholar] [CrossRef]
- Ghodbane, S.; Omnès, F.; Agnès, C. A cathodoluminescence study of boron doped {111}-homoepitaxial diamond films. Diam. Relat. Mater. 2010, 19, 273. [Google Scholar] [CrossRef]
- Maier, F.; Riedel, M.; Mantel, B.; Ristein, J.; Ley, L. Origin of surface conductivity in diamond. Phys. Rev. Lett. 2000, 85, 3472. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Qi, D.; Gao, X.; Wee, A.T.S. Surface transfer doping of semiconductors. Prog. Surf. Sci. 2009, 84, 279. [Google Scholar] [CrossRef]
- Pakes, C.I.; Garrido, J.A.; Kawarada, H. Diamond surface conductivity: Properties, devices, and sensors. MRS Bull. 2014, 39, 542. [Google Scholar] [CrossRef] [Green Version]
- Ristein, J. Diamond surfaces: Familiar and amazing. Appl. Phys. A Mater. Sci. Process. 2006, 82, 377. [Google Scholar] [CrossRef]
- Gökden, S.; Barana, R.; Balkan, N.; Mazzucato, S. The effect of interface roughness scattering on low field mobility of 2D electron gas in GaN/AlGaN heterostructure. Phys. E 2004, 24, 249. [Google Scholar] [CrossRef]
- Gurusinghe, M.N.; Davidsson, S.K.; Andersson, T.G. Two-dimensional electron mobility limitation mechanisms in heterostructures. Phys. Rev. B 2005, 72, 045316. [Google Scholar] [CrossRef]
- Karavolas, V.K.; Smith, M.J.; Fromhold, T.M.; Butcher, P.N.; Mulimani, B.G.; Gallagher, B.L.; Oxley, J.P. The effect of interface roughness scattering and background impurity scattering on the thermopower of a 2DEG in a Si MOSFET. J. Phys. Condens. Matter 1990, 2, 10401. [Google Scholar] [CrossRef]
- Wade, T.; Geis, M.W.; Fedynyshyn, T.H.; Vitale, S.A.; Varghese, J.O.; Lennon, D.M.; Grotjohn, T.A.; Nemanich, R.J.; Hollis, M.A. Effect of surface roughness and H–termination chemistry on diamond’s semiconducting surface conductance. Diam. Relat. Mater. 2017, 76, 79. [Google Scholar] [CrossRef]
- Zhang, X.; Matsumoto, T.; Yamasaki, S.; Nebel, C.E.; Inokuma, T.; Tokuda, N.J. Inversion-type p-channel diamond MOSFET issues. Mater. Res. 2021. [Google Scholar] [CrossRef]
- Sasama, Y.; Kageura, T.; Komatsu, K.; Imura, M.; Watanabe, K.; Taniguchi, T.; Yamaguchi, T. Charge-carrier mobility in hydrogen-terminated diamond field-effect transistors. J. Appl. Phys. 2020, 127, 185707. [Google Scholar] [CrossRef]
- Tallaire, A.; Brinza, O.; Mille, V.; William, L.; Achard, J. Reduction of dislocations in single crystal diamond by lateral growth over a macroscopic hole. Adv. Mater. 2017, 29, 1604823. [Google Scholar] [CrossRef] [PubMed]
- Lloret, F.; Gutierrez, M.; Araujo, D.; Eon, D.; Bustarret, E. MPCVD diamond lateral growth through microterraces to reduce threading dislocations density. Phys. Status Solidi A 2017, 214, 1700242. [Google Scholar] [CrossRef]
- Pinault-Thaury, M.-A.; Stenger, I.; Gillet, R.; Temgoua, S.; Chikoidze, E.; Dumont, Y.; Jomard, F.; Kociniewski, T.; Barjon, J. Attractive electron mobility in (113) n-type phosphorus-doped homoepitaxial diamond. Carbon 2021, 175, 254e258. [Google Scholar] [CrossRef]
- Lloret, F.; Fiori, A.; Araujo, D.; Eon, D.; Villar, M.P.; Bustarret, E. Stratigraphy of a diamond epitaxial three-dimensional overgrowth using doping superlattices. App. Phys. Lett. 2016, 108, 181901. [Google Scholar] [CrossRef] [Green Version]
- Lloret, F.; Araujo, D.; Eon, D.; Bustarret, E. Three-Dimensional Diamond MPCVD Growth over MESA Structures: A Geometric Model for Growth Sector Configuration. Cryst. Growth Des. 2018, 18, 7628. [Google Scholar] [CrossRef]
- Lloret, F.; Araujo, D.; Eon, D.; Villar, M.P.; Gonzalez-Leal, J.M.; Bustarret, E. Influence of methane concentration on MPCVD overgrowth of 100-oriented etched diamond substrates. Phys. Status Solidi A 2016, 213, 2570. [Google Scholar] [CrossRef]
- Zou, Y.; Larsson, K. Effect of boron doping on the CVD growth rate of diamond. J. Phys. Chem. C 2016, 120, 10658. [Google Scholar] [CrossRef]
- Lloret, F.; Eon, D.; Bustarret, E.; Donatini, F.; Araujo, D. Selectively boron doped homoepitaxial diamond growth for power device applications. Appl. Phys. Lett. 2021, 118, 023504. [Google Scholar] [CrossRef]
- Tarutani, M.; Takai, Y.; Shimizu, R.; Ando, T.; Kamo, M.; Bando, Y. Transmission electron microscopy study of interface and internal defect structures of homoepitaxial diamond. Appl. Phys. Lett. 1996, 68, 2070. [Google Scholar] [CrossRef]
- Hickey, D.P.; Kuryliw, E.; Siebein, K.; Jones, K.S.; Chodelka, R.; Elliman, R. Cross-sectional transmission electron microscopy method and studies of implant damage in single crystal diamond. J. Vac. Sci. Technol. A 2006, 24, 1302. [Google Scholar] [CrossRef]
- Jiang, N.; Shinjo, S.; Inaoka, T.; Shintani, Y.; Ito, T.; Makita, H.; Hatta, A.; Hiraki, A. Characterization of N-doped diamond films by transmission electron microscopy. J. Cryst. Growth 2001, 224, 111. [Google Scholar] [CrossRef]
- Yin, L.-W.; Li, M.-S.; Sun, D.-S.; Li, F.-Z.; Hao, Z.-Y. Some aspects of diamond crystal growth at high temperature and high pressure by TEM and SEM. Mater. Lett. 2002, 55, 397. [Google Scholar] [CrossRef]
- Barnes, R.; Bangert, U.; Martineau, P. HR-TEM imaging and image simulation of vacancy clusters in brown diamond. Phys. Status Solidi 2006, 203, 3081. [Google Scholar] [CrossRef]
- Sawada, H.; Ichinose, H.; Watanabe, H.; Takeuchi, D.; Okushi, H. Cross-sectional TEM study of unepitaxial crystallites in a homoepitaxial diamond film. Diam. Relat. Mater. 2001, 10, 2030. [Google Scholar] [CrossRef]
- Kono, S.; Saitou, T.; Kawata, H.; Goto, T.; Kakefuda, Y.; Komeda, T. Characteristic energy band values and electron attenuation length of a chemical-vapor-deposition diamond (0 0 1) 2 × 1 surface. Surf. Sci. 2009, 603, 860. [Google Scholar] [CrossRef]
- Graupner, R.; Maier, F.; Ristein, J.; Ley, L.; Jung, C. High-resolution surface-sensitive C core-level spectra of clean and hydrogen-terminated diamond (100) and (111) surfaces. Phys. Rev. B Cond. Matter Mater. Phys. 1998, 57, 12397. [Google Scholar] [CrossRef]
- Kono, S.; Sawabe, A.; Kodama, H.; Hayashi, Y.; Kageura, T.; Ogura, M.; Inaba, M.; Kawarada, H.; Teraji, T.; Ri, S.-G.; et al. Carbon 1s X-ray photoelectron spectra of realistic samples of hydrogen-terminated and oxygen-terminated CVD diamond (111) and (001). Diam. Relat. Mater. 2019, 93, 105. [Google Scholar] [CrossRef]
- Kono, S.; Saito, T.; Kang, S.H.; Jung, W.Y.; Kim, B.Y.; Kawata, H.; Goto, T.; Kakefuda, Y.; Yeom, H.W. Band diagram for chemical vapor deposition diamond surface conductive layer: Presence of downward band bending due to shallow acceptors. Surf. Sci. 2010, 604, 1148. [Google Scholar] [CrossRef]
- Alba, G.; Eon, D.; Villar, M.P.; Alcántara, R.; Chicot, G.; Cañas, J.; Letellier, J.; Pernot, J.; Araujo, D. H-Terminated Diamond Surface Band Bending Characterization by Angle-Resolved XPS. Surfaces 2020, 3, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Navas, J.; Araujo, D.; Piñero, J.C.; Sánchez-Coronilla, A.; Blanco, E.; Villar, P.; Alcántara, R.; Montserrat, J.; Florentin, M.; Eon, D.; et al. Oxygen termination of homoepitaxial diamond surface by ozone and chemical methods: An experimental and theoretical perspective. Appl. Surf. Sci. 2018, 433, 408. [Google Scholar] [CrossRef]
- Alba, G.; Villar, M.P.; Alcántara, R.; Navas, J.; Araujo, D. Surface States of (100) O-Terminated Diamond: Towards Other 1 × 1: O Reconstruction Models. Nanomaterials 2020, 10, 1193. [Google Scholar] [CrossRef] [PubMed]
- Alba, G.; Leinen, D.; Villar, M.P.; Alcántara, R.; Piñero, J.C.; Fiori, A.; Teraji, T.; Araujo, D. Comprehensive nanoscopic analysis of tungsten carbide/Oxygenated-diamond contacts for Schottky barrier diodes. Appl. Surf. Sci. 2021, 537, 147874. [Google Scholar] [CrossRef]
- Li, F.N.; Liu, J.W.; Zhang, J.W.; Wang, X.L.; Wang, W.; Liu, Z.C.; Wang, H.X. Measurement of barrier height of Pd on diamond (100) surface by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2016, 370, 496. [Google Scholar] [CrossRef]
- Kono, S.; Teraji, T.; Kodama, H.; Ichikawa, K.; Ohnishi, S.; Sawabe, A. Direct determination of the barrier height of Ti-based ohmic contact on p-type diamond (001). Diam. Relat. Mater. 2015, 60, 117. [Google Scholar] [CrossRef]
- Cañas, J.; Alba, G.; Leinen, D.; Lloret, F.; Gutierrez, M.; Eon, D.; Pernot, J.; Gheeraert, E.; Araujo, D. Diamond/γ-alumina band offset determination by XPS. Appl. Surf. Sci. 2020, 535, 146301. [Google Scholar] [CrossRef]
- Liu, J.W.; Liao, M.Y.; Imura, M.; Koide, Y. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 2012, 101, 1. [Google Scholar]
- Marechal, E.A.; Aoukar, M.; Vallée, C.; Rivière, C.; Eon, D.; Pernot, J.; Gheeraert, E. Energy-band diagram configuration of Al2O3/oxygen-terminated p-diamond metal-oxide-semiconductor. Appl. Phys. Lett. 2015, 107, 141601. [Google Scholar] [CrossRef]
- Zaitsev, A.M. Optical Properties of Diamond: A Data Handbook; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Tavares, C.; Omnès, F.; Pernot, J.; Bustarret, E. Electronic properties of boron-doped {111}-oriented homoepitaxial diamond layers. Diam. Relat. Mater. 2006, 15, 582. [Google Scholar] [CrossRef]
- Fernández-Lorenzo, C.; Araujo, D.; Martin, J.; Alcántara, R.; Navas, J.; Villar, M.P.; Alegre, M.P.; Volpe, P.N.; Omnés, F.; Bustarret, E. Hydrogen passivation of boron acceptors in as-grown boron-doped CVD diamond epilayers. Diam. Relat. Mat. 2010, 19, 904–907. [Google Scholar] [CrossRef]
- Araújo, D.; Kadri, M.; Wade, M.; Bustarret, E.; Deneuville, A. Excitonic emission and N- and B-incorporation in homoepitaxial CVD-grown diamond investigated by cathodoluminescence. Phys. Stat. Sol. 2005, 2, 1336. [Google Scholar] [CrossRef]
- De la Mata, B.G.; Sanz-Hervás, A.; Dowsett, M.G.; Schwitters, M.; Twitchen, D. Calibration of boron concentration in CVD single crystal diamond combining ultralow energy secondary ions mass spectrometry and high resolution X-ray diffraction. Diam. Relat. Mater. 2007, 16, 809. [Google Scholar] [CrossRef]
- El-Barbary, A.S.; Trasobares, S.; Ewels, C.P.; Stephan, O.; Okotrub, A.V.; Bulusheva, L.G.; Fall, C.J.; Heggie, M.I. Electron spectroscopy of carbon materials: Experiment and theory. J. Phys. Conf. Ser. 2006, 26, 149. [Google Scholar] [CrossRef]
- Cañas, J.; Piñero, J.C.; Lloret, F.; Gutierrez, M.; Pham, T.; Pernot, J.; Araujo, D. Determination of alumina bandgap and dielectric functions of diamond MOS by STEM-VEELS. Appl. Surf. Sci. 2018, 461, 93. [Google Scholar] [CrossRef]
- Hartmann, P.; Bohr, S.; Haubner, R.; Lux, B.; Wurzinger, P.; Griesser, M.; Bergmaier, A.; Dollinger, G.; Sternschulte, H.; Sauer, R. Diamond growth with boron addition. Int. J. Refract. Met. Hard Mater. 1998, 16, 223. [Google Scholar] [CrossRef]
- Waidmann, S.; Bartsch, K.; Endler, I.; Fontaine, F.; Arnold, B.; Knupfer, M.; Leonhardt, A.; Fink, J. Electron energy-loss spectroscopy in transmission of undoped and doped diamond films. Carbon 1999, 37, 823. [Google Scholar] [CrossRef]
- Bangert, U.; Barnes, R. Electron energy loss spectroscopy of defects in diamond. Phys. Status Solidi 2007, 204, 2201. [Google Scholar] [CrossRef]
- Bourgeois, E.; Bustarret, E.; Achatz, P.; Omnès, F.; Blase, X. Impurity dimers in superconducting B-doped diamond: Experiment and first-principles calculations. Phys. Rev. B 2006, 74, 094509. [Google Scholar] [CrossRef]
- Stöger-Pollach, M.; Schattschneider, P. The influence of relativistic energy losses on bandgap determination using valence EELS. Ultramicroscopy 2007, 107, 1178. [Google Scholar] [CrossRef] [PubMed]
- Araujo, D.; Achatz, P.; el Bouayadi, R.; García, A.J.; Alegre, M.P.; Villar, M.P.; Jomard, F.; Bustarret, E. Local boron doping quantification in homoepitaxial diamon structures. Diam. Relat. Mater. 2010, 19, 972. [Google Scholar] [CrossRef]
- Lu, Y.-G.; Turner, S.; Verbeeck, J.; Janssens, S.D.; Wagner, P.; Haenen, K.; Tendeloo, G.V. Direct visualization of boron dopant distribution and coodination in individual chamical vapor deposition nanocrystalline B-doped diamond grains. Appl. Phys. Lett. 2012, 101, 041907. [Google Scholar] [CrossRef] [Green Version]
- Araujo, D.; Alegre, M.P.; Piñero, J.C.; Fiori, A.; Bustarret, E.; Jomard, F. Boron concentration profiling by high angle annular dark field-scanning transmission electron microscopy in homoepitaxial δ-doped diamond layers. Appl. Phys. Lett. 2013, 103, 042104. [Google Scholar] [CrossRef] [Green Version]
- Piñero, J.C.; Lloret, F.; Alegre, M.P.; Villar, M.P.; Fiori, A.; Bustarret, E.; Araújo, D. High resolution boron content profilometry at δ-doping epitaxial diamond interfaces by CTEM. Appl. Surf. Sci. 2018, 461, 221. [Google Scholar] [CrossRef]
- Araujo, D.; Alegre, M.P.; García, A.J.; Villar, M.P.; Bustarret, E.; Achatz, P.; Volpe, P.N.; Omnès, F. Cross sectional evaluation of boron doping and defect distribution in homoespitaxial diamond layers. Phys. Status Solidi C 2011, 8, 1366. [Google Scholar]
- Matthews, J.W.; Blakeslee, A.E. Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 1974, 27, 118. [Google Scholar] [CrossRef]
- Wiesauer, K.; Springholz, G. Critical thickness and strain relaxation in high-misfit heteroepitaxial systems: PbTe1−xSex on PbSe (001). Phys. Rev. B 2004, 69, 245313. [Google Scholar] [CrossRef]
- Van der Merwe, J.H. Crystal interfaces. Part II. Finite overgrowths. J. Appl. Phys. 1963, 34, 123. [Google Scholar] [CrossRef]
- Dunstan, J.D.; Young, S.; Dixon, R.H. Geometrical theory of critical thicness and relaxation in strained-layer growth. J. Appl. Phys. 1991, 70, 3038. [Google Scholar] [CrossRef] [Green Version]
- Araujo, D.; Lloret, F.; Alba, G.; Alegre, M.P.; Villar, M.P. Dislocation generation mechanisms in heavily boron-doped diamond epilayers. Appl. Phys. Lett. 2021, 118, 052108. [Google Scholar] [CrossRef]
- Butler, J.E.; Geis, M.W.; Krohn, K.E.; Lawless Jr., J.; Deneault, S.; Lyszczarz, T.M.; Flechtner, D.; Wright, R. Exceptionally high voltage Schottky diamond diodes and low boron doping. Semicond. Sci. Technol. 2003, 18, 567. [Google Scholar] [CrossRef]
- Twitchen, D.J.; Whithead, A.J.; Coe, S.E.; Isberg, J.; Hammerberg, J.; Wikstrom, T.; Johansson, E. High-voltage single-crystal diamond diodes. IEEE Trans. Electron Devices 2004, 5, 826. [Google Scholar] [CrossRef]
- Huang, W.; Chow, T.P.; Yang, J.; Butler, J.E. High-voltage diamond Schottky rectifiers. Int. J. High Speed Electron. Syst. 2004, 14, 872. [Google Scholar] [CrossRef]
- Volpe, P.-N.; Muret, P.; Permot, J.; Omnès, F.; Teraji, T.; Koide, Y.; Jomard, F.; Planson, D.; Brosselard, P.; Dheilly, N.; et al. Extreme dielectric strength in boron doped homoepitaxial diamond. Appl. Phys. Lett. 2010, 97, 223501. [Google Scholar] [CrossRef] [Green Version]
- Umezawa, H.; Kato, Y.; Shikata, S. 1 Ω on-resistance diamond vertical-Schottky barrier diode operated at 250 °C. Appl. Phys. Express 2013, 6, 011302. [Google Scholar] [CrossRef]
- Okushi, H. High quality homoepitaxial CVD diamond for electronic devices. Diam. Relat. Mater. 2001, 10, 281. [Google Scholar] [CrossRef]
- Kawano, A.; Ishiwata, H.; Iriyama, S.; Okada, R.; Yamaguchi, T.; Takano, Y.; Kawarada, H. Superconductor-to-insulator transition in boron-doped diamond films grown using chemical vapor deposition. Phys. Rev. B 2010, 82, 085318. [Google Scholar] [CrossRef]
- Volpe, P.-N.; Pernot, J.; Muret, P.; Omnes, F. High hole mobility in boron doped diamond for power device applications. Appl. Phys. Lett. 2009, 94, 092102. [Google Scholar] [CrossRef]
- Pehrsson, P.E.; Merser, T.W. Oxidation of the hydrogenated diamond (100) surface. Surf. Sci. 2000, 460, 49. [Google Scholar] [CrossRef]
- Ri, S.G.; Nebel, C.E.; Takeuchi, D.; Rezek, B.; Tokuda, N.; Yamasaki, S.; Okushi, H. Surface conductive layers on (111) diamonds after oxygen treatments. Diam. Relat. Mater. 2006, 15, 692. [Google Scholar] [CrossRef]
- Maier, F.; Ristein, J.; Ley, L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Phys. Rev. B 2001, 64, 165411. [Google Scholar] [CrossRef]
- Riedel, M.; Ristein, J.; Ley, L. The impact of ozone on the surface conductivity of single crystall diamond. Diam. Relat. Mater. 2004, 13, 746. [Google Scholar] [CrossRef]
- Sakai, T.; Song, K.; Kanazawa, H.; Nakamura, Y.; Umezawa, H.; Tachiki, M.; Kawarada, H. Ozone-treated channel diamond field-effect transitors. Diam. Relat. Mater. 2003, 12, 1971. [Google Scholar] [CrossRef]
- Umezawa, H.; Ikeda, K.; Kumaresan, R.; Tatsumi, N.; Shikata, S. Increase in reverse operation limit by barrier height control of diamond Schottky barrier diode. IEEE. Electron Devices Lett. 2009, 30, 960. [Google Scholar] [CrossRef]
- Ikeda, K.; Umezawa, H.; Ramanujam, K.; Shikata, S. Thermally stable Schottky barrier diode by Ru/diamond. Appl. Phys. Express 2009, 2, 011202. [Google Scholar] [CrossRef] [Green Version]
- Traoré, A.; Muret, P.; Fiori, A.; Eon, D.; Gheeraert, E.; Pernot, J. Zr/oxidized diamond interface for high power Schottky diodes. Appl. Phys. Lett. 2014, 104, 052105. [Google Scholar] [CrossRef]
- Van der Weide, J.; Nemanich, R.J. Influence of interfacial hydrogen and oxygen on the Schottky barrier height of nickel on (111) and (100) diamond surfaces. Phys. Rev. B 1994, 49, 13629. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, D.; Yamanaka, S.; Watanabe, H.; Okushi, H. Device grade B-doped homoepitaxial diamond thin films. Phys. Status Solidi A 2001, 186, 269. [Google Scholar] [CrossRef]
- Ri, S.-G.; Takeuchi, D.; Tokuda, N.; Okushi, H.; Yamasaki, S. Fermi level pinning-free interface at metals/homoepitaxial diamond (111) firlms after oxidation treatments. Appl. Phys. Lett. 2008, 92, 112112. [Google Scholar] [CrossRef]
- Liao, M.; Koide, Y.; Alvarez, J. Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact. Appl. Phys. Lett. 2005, 87, 022105. [Google Scholar]
- Teraji, T.; Koizumi, S.; Koide, Y.; Ito, T. Electric field breakdown of lateral-type Schottky diodes formed on lightly doped homoepitaxial diamond. Appl. Surf. Sci. 2008, 254, 6273. [Google Scholar] [CrossRef]
- Tsugawa, K.; Noda, H.; Hirose, K.; Kawarada, H. Schottky barrier heights, carrier density, and negative electron affinity of hydrogen-terminated diamond. Phys. Rev. B 2010, 81, 045303. [Google Scholar] [CrossRef]
- Umezawa, H.; Nagase, M.; Kato, Y.; Shikata, S. High temperature application of diamond power device. Diam. Relat. Mater. 2012, 24, 201. [Google Scholar] [CrossRef]
- Matsumoto, T. Schottky and ohmic contacts on diamond. In Power Electronics Device Applications of Diamond Semiconductors; Woodhead: Cambridge, UK, 2018; p. 241. [Google Scholar]
- Craciun, M.; Saby, C.; Muret, P.; Deneuville, A. A 3.4 eV potential barrier height in Schottky diodes on boron-doped diamond thin films. Diam. Relat. Mater. 2004, 13, 292. [Google Scholar] [CrossRef]
- Kato, H.; Yamasaki, S.; Okushi, H. n-type doping of (001)-oriented single-crystalline diamond by phosphorus. Appl. Phys. Lett. 2005, 86, 222111. [Google Scholar] [CrossRef]
- Suzuki, M.; Yoshida, H.; Sakuma, N.; Ono, T.; Sakai, T.; Koizumi, S. Electrical characterization of phosphorous-doped n-type homoepitaxial diamond layers by Schottky barrier diodes. Appl. Phys. Lett. 2004, 84, 2349. [Google Scholar] [CrossRef]
- Suzuki, M.; Koizumi, S.; Katagiri, M.; Ono, T.; Sakuma, N.; Yoshida, H.; Sakai, T. Electrical characteristics on n-type diamond Schottky diodes and metal/diamond interfaces. Phys. Status Solidi A 2006, 203, 3128. [Google Scholar] [CrossRef]
- Kato, H.; Takeuchi, D.; Tokuda, N.; Umezawa, H.; Yamasaki, S.; Okushi, H. Electrical activity of doped phosphorus atoms in (001) n-type diamond. Phys. Status Solidi A 2008, 205, 2195. [Google Scholar] [CrossRef]
- Jingu, Y.; Hirama, K.; Kawarada, H. Ultrashallow TiC source/drain contacts in fiamond MOSFETs formed by hydrogenation-last approach. IEEE Trans. Electron Devices 2010, 57, 966. [Google Scholar] [CrossRef]
- Ohmagari, S.; Matsumoto, T.; Umezawa, H.; Mokuno, Y. Ohmic contact formation to heavily boron-doped p+ diamond prepared by hot-filament chemical vapor deposition. MRS Adv. 2016, 1, 3489. [Google Scholar] [CrossRef]
- Huang, W.; Chow, T.P.; Yang, J.; Butler, J.E. High-voltage diamond vertical Schottky rectifiers. In Proceedings of the 17th International Symposium on Power Semiconductor Devices & Ics, Santa Barbara, CA, USA, 23–26 May 2005; pp. 319–322. [Google Scholar]
- Brezeanu, M.; Rashid, S.J.; Amaratunga, G.A.J.; Rupesinghe, N.L.; Butler, T.; Udrea, F.; Brezeanu, G. On-state behaviour of diamond M-i-P structures. In Proceedings of the 2006 International Semiconductor Conference, Sinaia, Romania, 27–29 September 2006; pp. 311–314. [Google Scholar]
- Tarelkin, S.; Bormashov, V.; Buga, S.; Volkov, A.; Teteruk, D.; Kornilov, N.; Kuznetsov, M.; Terentiev, S.; Golovanov, A.; Blank, V. Power diamond vertical Schottky barrier diode with 10 A forward current. Phys. Status Solidi A 2015, 212, 2621. [Google Scholar] [CrossRef]
- Volpe, P.N.; Muret, P.; Pernot, J.; Omnes, F.; Teraji, T.; Jomard, F.; Planson, D.; Brosselard, P.; Dheilly, N.; Vergne, B.; et al. High breakdown voltage Schottky diodes synthesized on p-type CVD diamond layer. Phys. Status Solidi A 2010, 207, 2088. [Google Scholar] [CrossRef]
- Umezawa, H.; Saito, T.; Tokuda, N.; Ogura, M.; Ri, S.G.; Yoshikawa, H.; Shikata, S. Leakage current analysis of diamond Schottky barrier diode. Appl. Phys. Lett. 2007, 90, 073506. [Google Scholar] [CrossRef] [Green Version]
- Eon, D.; Traore, A.; Pernot, J.; Gheeraert, E. Recent progress on diamond Schottky diode. In Proceedings of the 28th International Symposium on Power Semiconductor Devices and Ics (ISPSD), Prague, Czech Republic, 12–16 June 2016; p. 55. [Google Scholar]
- Eon, D.; Umezawa, H. Schottky diodes and MESFETS. In Power Electronics Device Applications of Diamond Semiconductors; Woodhead: Cambridge, UK, 2018; p. 302. [Google Scholar]
- Chicot, G.; Eon, D.; Rouger, N. Optimal drift region for diamond power devices. Diam. Relat. Mater. 2016, 69, 68. [Google Scholar] [CrossRef]
- Umezawa, H.; Gima, H.; Driche, K.; Kato, Y.; Yoshitake, T.; Mokuno, Y.; Gheeraert, E. Defect and field-enhancement characterization through electron-beam-induced current analysis. Appl. Phys. Lett. 2017, 110, 182103. [Google Scholar] [CrossRef]
- Kato, Y.; Teraji, T. Characterization methods of defects in single crystalline diamond for power device application. In Power Electronics Device Applications of Diamond Semiconductors; Woodhead: Cambridge, UK, 2018; p. 219. [Google Scholar]
- Ohmagari, S.; Yamada, H.; Tsubouchi, N.; Umezawa, H.; Chayahara, A.; Tanaka, S.; Mokuno, Y. Large reduction of threading dislocations in diamond by hot-filament chemical vapor deposition accompanying W incorporations. Appl. Phys. Lett. 2018, 113, 032108. [Google Scholar] [CrossRef]
- Koizumi, S.; Watanabe, K.; Hasegawa, M.; Kanda, H. Ultraviolet Emission from a Diamond pn Junction. Science 2001, 292, 1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horiuchi, K.; Okajima, Y.; Kawamura, A. Diamond Ultraviolet Light-Emitting Device. In Advanced Materials 2002: Synthesis and Characterization of Diamond, BN and Others Made from Gas Phase, Proceedings of the 9th International Symposium on Advanced Materials (ISAM 2002), Tsukuba, Japan, 3–7 March 2002; National Institute for Research in Inorganic Materials: Tsukuba, Japan, 2002. [Google Scholar]
- Makino, T.; Kato, H.; Ogura, M.; Watanabe, H.; Ri, S.G.; Yamasaki, S.; Okushi, H. Electrical and optical characterizations of (001)-oriented homoepitaxial diamond p–n junction. Diam. Relat. Mater. 2006, 15, 513. [Google Scholar] [CrossRef]
- Makino, T.; Oyama, K.; Kato, H.; Takeuchi, D.; Ogura, M.; Okushi, H.; Yamasaki, S. Diamond electronic devices fabricated using heavily doped hopping p+ and n+ layers. Jpn. J. Appl. Phys. 2014, 53, 05FA12. [Google Scholar] [CrossRef]
- Kato, H.; Makino, T.; Ogura, M.; Tokuda, N.; Okushi, H.; Yamasaki, S. Selective Growth of Buried n+ Diamond on (001) Phosphorus-Doped n-Type Diamond Film. Appl. Phys. Express 2009, 2, 055502. [Google Scholar] [CrossRef]
- Schreyvogel, C.; Temgoua, S.; Giese, C.; Cimalla, V.; Barjon, J.; Nebel, C.E. Fabrication of n-Type Doped V-Shaped Structures on (100) Diamond. Phys. Status Solidi A 2021, 218, 2000502. [Google Scholar] [CrossRef]
- Kato, H.; Makino, T.; Ogura, M.; Takeuchi, D.; Yamasaki, S. Fabrication of bipolar junction transistor on (001)-oriented diamond by utilizing phosphorus-doped n-type diamond base. Diam. Relat. Mater. 2013, 34, 41. [Google Scholar] [CrossRef]
- Suzuki, M. High voltage diamond pin diodes. Oyo Buturi 2016, 85, 218. [Google Scholar]
- Suzuki, M.; Sakai, T.; Makino, T.; Kato, H.; Takeuchi, D.; Ogura, M.; Okushi, H.; Yamasaki, S. Electrical characterization of diamond PiN diodes for high voltage applications. Phys. Status Solidi A 2013, 210, 2035. [Google Scholar] [CrossRef]
- Hiraiwa, A.; Kawarada, H.J. Blocking characteristics of diamond junctions with a punch-through design. Appl. Phys. 2015, 117, 124503. [Google Scholar]
- Makino, T.; Tanimoto, S.; Kato, H.; Tokuda, N.; Ogura, M.; Takeuchi, D.; Oyama, K.; Ohashi, H.; Okushi, H.; Yamasaki, S. Diamond Schottky-pn diode with high forward current density and fast switching operation. Phys. Status Solidi A 2009, 9, 2086. [Google Scholar] [CrossRef]
- Makino, T.; Kato, H.; Tokuda, N.; Ogura, M.; Takeuchi, D.; Oyama, K.; Tanimoto, S.; Okushi, H.; Yamasaki, S. Diamond Schottky-pn diode without trade-off relationship between on-resistance and blocking voltage. Phys. Status Solidi A 2010, 207, 2105. [Google Scholar] [CrossRef]
- Dutta, M.; Koeck, F.A.M.; Hathwar, R.a.; Goodnick, S.M.; Nemanich, R.J.; Chowdhury, S. Demonstration of Diamond-Based Schottky p-i-n Diode with Blocking Voltage >500 V. IEEE Electron Device Lett. 2016, 37, 1170. [Google Scholar] [CrossRef]
- Takeuchi, D.; Koizumi, S.; Makino, T.; Kato, H.; Ogura, M.; Ohashi, H.; Okushi, H.; Yamasaki, S. Negative electron affinity of diamond and its application to high voltage vacuum power switches. Phys. Status Solidi A 2013, 210, 1961. [Google Scholar] [CrossRef]
- Driche, K.; Umezawa, H.; Makino, T.; Ogura, M.; Okumura, H.; Gheeraert, E. Diamond based metal-semiconductor field effect transistor with over 2 kV breakdown voltages. In Proceedings of the EMRS 2018 Fall Meeting, Warsaw, Poland, 17–21 September 2018. [Google Scholar]
- Umezawa, H.; Ohmagari, S.; Mokuno, Y.; Kaneko, J.H. Characterization of X-ray radiation hardness of diamond Schottky barrier diode and metal-semiconductor field-effect transistor. In Proceedings of the 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD), Sapporo, Japan, 28 May–1 June 2017; p. 379. [Google Scholar]
- Iwasaki, T.; Kato, H.; Makino, T.; Ogura, M.; Takeuchi, D.; Yamasaki, S.; Hatano, M. High-Temperature Bipolar-Mode Operation of Normally-Off Diamond JFET. IEEE J. Electron Devices Soc. 2016, 5, 95. [Google Scholar] [CrossRef]
- Masumoto, T.; Kato, H.; Oyama, K.; Makino, T.; Ogura, M.; Takeuchi, D.; Inokuma, T.; Tokuda, N.; Yamasaki, S. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics. Sci. Rep. 2016, 6, 31585. [Google Scholar] [CrossRef]
- Masumoto, T.; Kato, H.; Makino, T.; Ogura, M.; Takeuchi, D.; Yamasaki, S.; Inokuma, T.; Tokuda, N. Inversion channel mobility and interface state density of diamond MOSFET using N-type body with various phosphorus concentrations. Appl. Phys. Lett. 2019, 114, 242101. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.T.; Rouger, N.; Masante, C.; Chicot, G.; Udrea, F.; Eon, D.; Gheeraert, E.; Pernot, J. Deep depletion concept for diamond MOSFET. Appl. Phys. Lett. 2017, 111, 173503. [Google Scholar] [CrossRef]
- Pham, T.T.; Pernot, J.; Masante, C.; Eon, D.; Gheeraert, E.; Chicot, G.; Udrea, F.; Rouger, N. 200 V, 4 MV/cm lateral diamond MOSFET. IEEE Electron. Device Lett. 2017, 38, 1571. [Google Scholar] [CrossRef]
- Kawarada, H. Hydrogen-terminated diamond surfaces and interfaces. Surf. Sci. Rep. 1996, 26, 205. [Google Scholar] [CrossRef]
- Nebel, C.E.; Sauerer, C.; Ertl, F.; Stutzmann, M.; Graeff, C.; Bergonzo, P.; Williams, O.; Jackman, R. Hydrogen-induced transport properties of holes in diamond surface layers. Appl. Phys. Lett. 2001, 79, 4541. [Google Scholar] [CrossRef]
- Taniuchi, H.; Umezawa, H.; Arima, T.; Tachiki, M.; Kawarada, H. High-frequency performance of diamond field-effect transistor. IEEE Electron Device Lett. 2001, EDL-22, 390. [Google Scholar] [CrossRef]
- Ueda, K.; Kasu, M.; Yamauchi, Y.; Makimoto, T.; Schwitters, M.; Twitchen, D.J.; Scarsbrook, G.A.; Coe, S.E. Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz. IEEE Electron Device Lett. 2006, 27, 570. [Google Scholar] [CrossRef]
- Matsudaira, H.; Miyamoto, S.; Ishizaka, H.; Umezawa, H.; Kawarada, H. Over 20-GHz cutoff frequency submicrometer-gate diamond MISFETs. IEEE Electron Device Lett. 2004, 25, 480. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, J.; Qi, C.; Cao, Z.; Kong, Y.; Chen, T. A High Frequency Hydrogen-Terminated Diamond MISFET with fT/fmax of 70/80 GHz. IEEE Electron Device Lett. 2018, 39, 1373. [Google Scholar] [CrossRef]
- Moon, J.-S.; Wong, J.; Chuong, D.; Arkun, E.; Morales, D.V.; Chen, P.; Malek, C.; Fanning, D.; Venkatesan, N.; Fay, P. Power Scaling of Graded-Channel GaN HEMTs with Mini-Field-Plate T-gate and 156 GHz fT. IEEE Electron Device Lett. 2021, 42, 796. [Google Scholar] [CrossRef]
- Husna, K.H.; Nirmal, D. A review of GaN HEMT broadband power amplifiers. AEU-Int. J. Electron. Commun. 2020, 116, 153040. [Google Scholar] [CrossRef]
- Cui, P.; Chen, H.; Xiao, J.Q.; Zeng, Y. High-Performance HZO/InAlN/GaN MIS-HEMT with fT/fmax of 155/250 GHz. arXiv 2021, arXiv:2101.09760. [Google Scholar]
- Hirama, K.; Sato, H.; Harada, Y.; Yamamoto, H.; Kasu, M. Diamond Field-Effect Transistors with 1.3 A/mm Drain Current Density by Al2O3 Passivation Layer. Jpn. J. Appl. Phys. 2012, 51, 0901121. [Google Scholar]
- Kitabayashi, Y.; Kudo, T.; Tsuboi, H.; Yamada, T.; Xu, D.; Shibata, M.; Matsumura, D.; Hayashi, Y.; Syamsul, M.; Inaba, M.; et al. Normally-Off C–H Diamond MOSFETs with Partial C–O Channel Achieving 2-kV Breakdown Voltage. IEEE Electron Device Lett. 2016, 37, 209. [Google Scholar] [CrossRef]
- Imanishi, S.; Horikawa, K.; Oi, N.; Okubo, S.; Kageura, T.; Hiraiwa, A.; Kawarada, H. 3.8 W/mm RF Power Density for ALD Al2O3-Based Two-Dimensional Hole Gas Diamond MOSFET Operating at Saturation Velocity. IEEE Electron Device Lett. 2019, 40, 279. [Google Scholar] [CrossRef]
- Kudara, K.; Imanishi, S.; Hiraiwa, A.; Komatsuzaki, Y.; Yamaguchi, Y.; Kawamura, Y.; Shinjo, S.; Kawarada, H. High Output Power Density of 2DHG Diamond MOSFETs with Thick ALD-Al2O3. IEEE Trans. Electron Devices 2021, 68, 3942. [Google Scholar] [CrossRef]
- Cui, A.; Zhang, J.; Ren, Z.; Zhou, H.; Wang, D.; Wu, Y.; Lei, Y.; Zhang, J.; Hao, Y. Microwave power performance analysis of hydrogen terminated diamond MOSFET. Diam. Relat. Mater. 2021, 118, 108538. [Google Scholar] [CrossRef]
- Iwataki, M.; Oi, N.; Amano, S.; Nishimura, J.; Kageura, T.; Inaba, M.; Hiraiwa, A.; Kawarada, H. Over 12,000 A/cm2 and 3.2 m Ω cm2 Miniaturized Vertical-Type Two-Dimensional Hole Gas Diamond MOSFET. IEEE Electron Device Lett. 2020, 41, 111. [Google Scholar] [CrossRef]
- Tsunoda, J.; Iwataki, M.; Oi, N.; Morishita, A.; Hiraiwa, A.; Kawarada, H. (111) vertical-type two-dimensional hole gas diamond MOSFETs with hexagonal trench structures. Carbon 2021, 176, 349e357. [Google Scholar] [CrossRef]
- Tokuda, N. Formation of atomically flat diamond surfaces. In Power Electronics Device Applications of Diamond Semiconductors; Woodhead: Cambridge, UK, 2018; p. 256. [Google Scholar]
- Tokuda, N. Step-edge growth and doping of diamond. In Diamonnd for Quantum Applications Part I, Semiconductor and Semimetals; Academic Press Inc.: Cambridge, MA, USA, 2020; Volume 103, p. 57. [Google Scholar]
- Kato, H.; Makino, T.; Ogura, M.; Yamasaki, S.; Jpn, J. Maskless selective growth method for p–n junction applications on (001)-oriented diamond. Appl. Phys. 2012, 51, 090118. [Google Scholar]
- Hoshino, Y.; Kato, H.; Makino, T.; Ogura, M.; Iwasaki, T.; Hatano, M.; Yamasaki, S. Electrical properties of lateral p–n junction diodes fabricated by selective growth of n+ diamond. Physica Status Solidi 2012, 209, 1761. [Google Scholar] [CrossRef]
- Nagai, N.; Nakamura, Y.; Yamada, T.; Tabakoya, T.; Matsumoto, T.; Inokuma, T.; Nebel, C.E.; Makino, T.; Yamasaki, S.; Tokuda, N. Formation of U-shaped diamond trenches with vertical {111} sidewalls by anisotropic etching of diamond (110) surfaces. Diam. Relat. Mater. 2020, 103, 107713. [Google Scholar] [CrossRef]
Property (Unit), (See [5]) | Si | SiC-4H | GaN | Ga2O3 | Diamond |
---|---|---|---|---|---|
Bandgap (eV) | 1.1 | 3.23 | 3.42 | 4.8 | 5.45 |
Dielectric constant, ε | 11.8 | 9.7 | 9 | 10 | 5.7 |
Breakdown field (MV/cm) | 0.3 | 3 | 2 | 8 | 10 |
Electron mobility (cm2/Vs) | 1500 | 1000 | 2000 | 300 | 1000 |
Hole mobility (cm2/Vs) | 480 | 100 | 20 | 2000 | |
Thermal conductivity (W/cmK) | 1.5 | 5 | 1.5 | 0.27 | 22 |
Johnson’s figure of merit (1023 ΩW/s2) | 2.3 | 900 | 490 | 1236 | 2530 |
Keyes’ figure of merit (107 W/Ks) | 10 | 53 | 17 | 2 | 218 |
Baliga’s figure of merit (Si = 1) | 1 | 554 | 188 | 3214 | 23,068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, D.; Suzuki, M.; Lloret, F.; Alba, G.; Villar, P. Diamond for Electronics: Materials, Processing and Devices. Materials 2021, 14, 7081. https://doi.org/10.3390/ma14227081
Araujo D, Suzuki M, Lloret F, Alba G, Villar P. Diamond for Electronics: Materials, Processing and Devices. Materials. 2021; 14(22):7081. https://doi.org/10.3390/ma14227081
Chicago/Turabian StyleAraujo, Daniel, Mariko Suzuki, Fernando Lloret, Gonzalo Alba, and Pilar Villar. 2021. "Diamond for Electronics: Materials, Processing and Devices" Materials 14, no. 22: 7081. https://doi.org/10.3390/ma14227081
APA StyleAraujo, D., Suzuki, M., Lloret, F., Alba, G., & Villar, P. (2021). Diamond for Electronics: Materials, Processing and Devices. Materials, 14(22), 7081. https://doi.org/10.3390/ma14227081